ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Graphene Quantum Dots as Fluorescence Probes for Turn-off Sensing of Melamine in the Presence of Hg2+

View Author Information
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
Petrochemical Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, P. O. Box 2455, Kingdom of Saudi Arabia
*Tel: +86 25 83594196. Fax: +86 2583594196. E-mail: [email protected]
Cite this: ACS Appl. Mater. Interfaces 2014, 6, 4, 2858–2864
Publication Date (Web):January 24, 2014
https://doi.org/10.1021/am405305r
Copyright © 2014 American Chemical Society

    Article Views

    3327

    Altmetric

    -

    Citations

    116
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A rapid and sensitive fluorescence sensing system for melamine based on charge transfer quenching of the fluorescence of graphene quantum dots (GQDs) in the presence of Hg2+ is proposed. The synthesized GQDs were strongly luminescent with predominantly aromatic sp2 domains. Melamine could coordinate with mercury through nitrogen atoms in both its amine and triazine groups and bring more Hg2+ to the surface of GQDs through π–π stacking, thus leading to quenching of the GQDs’ fluorescence. The quenching mechanism was investigated in detail and ascribed to charge transfer from the GQDs to Hg2+ with melamine acting as the linkage agent. The melamine demonstrated a linear range 0.15–20 μM and a detection limit of 0.12 μM, which was far below the regulatory level, suggesting the promising practical usage of this sensing system. This sensing system also possessed high selectivity for melamine in the presence of possible interferences. Finally, this novel sensor was successfully applied for melamine detection in raw milk and satisfactory recovery was achieved.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional information as noted in text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 116 publications.

    1. Jyoti, Jose Muñoz, Martin Pumera. Quantum Material-Based Self-Propelled Microrobots for the Optical “On-the-Fly” Monitoring of DNA. ACS Applied Materials & Interfaces 2023, 15 (50) , 58548-58555. https://doi.org/10.1021/acsami.3c09920
    2. Terefe Tafese Bezuneh, Tadesse Haile Fereja, Haijuan Li, Yongdong Jin. Solid-Phase Pyrolysis Synthesis of Highly Fluorescent Nitrogen/Sulfur Codoped Graphene Quantum Dots for Selective and Sensitive Diversity Detection of Cr(VI). Langmuir 2023, 39 (4) , 1538-1547. https://doi.org/10.1021/acs.langmuir.2c02966
    3. Mayank Garg, Neelam Vishwakarma, Amit L. Sharma, Suman Singh. Amine-Functionalized Graphene Quantum Dots for Fluorescence-Based Immunosensing of Ferritin. ACS Applied Nano Materials 2021, 4 (7) , 7416-7425. https://doi.org/10.1021/acsanm.1c01398
    4. Mingao Sun, Yuxin Li, Lina Zhao, Xiaojun Zhang, Chaohan Zhang, Xiaomeng Jin, Dechen Shan, Guangming Li. Luminescence-Color-Changing Sensing toward Melamine Based on a White-Light-Emitting Film. ACS Applied Polymer Materials 2021, 3 (6) , 2998-3008. https://doi.org/10.1021/acsapm.1c00162
    5. Kasumi Motomiya, Kazuya Sugita, Manabu Hagiwara, Shinobu Fujihara. Biphasic Sol–Gel Synthesis of Microstructured/Nanostructured YVO4:Eu3+ Materials and Their H2O2 Sensing Ability. ACS Omega 2019, 4 (23) , 20353-20361. https://doi.org/10.1021/acsomega.9b02915
    6. Zackery S. Schroer, Yingfen Wu, Yuqian Xing, Xu Wu, Xiao Liu, Xu Wang, Onnica G. Pino, Chuanmin Zhou, Colin Combs, Qinqin Pu, Min Wu, Julia Xiaojun Zhao, Jiao Chen. Nitrogen–Sulfur-Doped Graphene Quantum Dots with Metal Ion-Resistance for Bioimaging. ACS Applied Nano Materials 2019, 2 (11) , 6858-6865. https://doi.org/10.1021/acsanm.9b01309
    7. Yunpeng Zhang, Xiaotong Liu, Shi Qiu, Qiuqi Zhang, Wei Tang, Hongtao Liu, Yunlong Guo, Yongqiang Ma, Xiaojun Guo, Yunqi Liu. A Flexible Acetylcholinesterase-Modified Graphene for Chiral Pesticide Sensor. Journal of the American Chemical Society 2019, 141 (37) , 14643-14649. https://doi.org/10.1021/jacs.9b05724
    8. Siyong Gu, Chien-Te Hsieh, Yi-Yin Tsai, Yasser Ashraf Gandomi, Sinchul Yeom, Kenneth David Kihm, Chun-Chieh Fu, Ruey-Shin Juang. Sulfur and Nitrogen Co-Doped Graphene Quantum Dots as a Fluorescent Quenching Probe for Highly Sensitive Detection toward Mercury Ions. ACS Applied Nano Materials 2019, 2 (2) , 790-798. https://doi.org/10.1021/acsanm.8b02010
    9. Yongxin Fu, Hui Jin, Xiangning Bu, Rijun Gui. Melamine-Induced Decomposition and Anti-FRET Effect from a Self-Assembled Complex of Rhodamine 6G and DNA-Stabilized Silver Nanoclusters Used for Dual-Emitting Ratiometric and Naked-Eye-Visible Fluorescence Detection. Journal of Agricultural and Food Chemistry 2018, 66 (37) , 9819-9827. https://doi.org/10.1021/acs.jafc.8b03402
    10. Namasivayam Dhenadhayalan, Ta-Wei Lin, Hsin-Lung Lee, King-Chuen Lin. Multisensing Capability of MoSe2 Quantum Dots by Tuning Surface Functional Groups. ACS Applied Nano Materials 2018, 1 (7) , 3453-3463. https://doi.org/10.1021/acsanm.8b00634
    11. Li Tang, Shi Mo, Shi Gang Liu, Yu Ling, Xiao Fang Zhang, Nian Bing Li, Hong Qun Luo. A Sensitive “Turn-On” Fluorescent Sensor for Melamine Based on FRET Effect between Polydopamine-Glutathione Nanoparticles and Ag Nanoparticles. Journal of Agricultural and Food Chemistry 2018, 66 (9) , 2174-2179. https://doi.org/10.1021/acs.jafc.7b05245
    12. Susmita Maiti, Somashree Kundu, Chandra Nath Roy, Tushar Kanti Das, and Abhijit Saha . Synthesis of Excitation Independent Highly Luminescent Graphene Quantum Dots through Perchloric Acid Oxidation. Langmuir 2017, 33 (51) , 14634-14642. https://doi.org/10.1021/acs.langmuir.7b02611
    13. Shiwei Zhou, Yingying Wang, and Jun-Jie Zhu . Simultaneous Detection of Tumor Cell Apoptosis Regulators Bcl-2 and Bax through a Dual-Signal-Marked Electrochemical Immunosensor. ACS Applied Materials & Interfaces 2016, 8 (12) , 7674-7682. https://doi.org/10.1021/acsami.6b01010
    14. Nan Li, Aung Than, Xuewan Wang, Shaohai Xu, Lei Sun, Hongwei Duan, Chenjie Xu, and Peng Chen . Ultrasensitive Profiling of Metabolites Using Tyramine-Functionalized Graphene Quantum Dots. ACS Nano 2016, 10 (3) , 3622-3629. https://doi.org/10.1021/acsnano.5b08103
    15. Yubin Su, Bingfang Shi, Suqi Liao, Jingjin Zhao, Lini Chen, and Shulin Zhao . Silver Nanoparticles/N-Doped Carbon-Dots Nanocomposites Derived from Siraitia Grosvenorii and Its Logic Gate and Surface-Enhanced Raman Scattering Characteristics. ACS Sustainable Chemistry & Engineering 2016, 4 (3) , 1728-1735. https://doi.org/10.1021/acssuschemeng.5b01698
    16. Li Zhang, Dong Peng, Ru-Ping Liang, and Jian-Ding Qiu . Nitrogen-Doped Graphene Quantum Dots as a New Catalyst Accelerating the Coordination Reaction between Cadmium(II) and 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin for Cadmium(II) Sensing. Analytical Chemistry 2015, 87 (21) , 10894-10901. https://doi.org/10.1021/acs.analchem.5b02450
    17. Pu Zhang, Ying Zhuo, Yuanyuan Chang, Ruo Yuan, and Yaqin Chai . Electrochemiluminescent Graphene Quantum Dots as a Sensing Platform: A Dual Amplification for MicroRNA Assay. Analytical Chemistry 2015, 87 (20) , 10385-10391. https://doi.org/10.1021/acs.analchem.5b02495
    18. Ruquan Ye, Zhiwei Peng, Andrew Metzger, Jian Lin, Jason A. Mann, Kewei Huang, Changsheng Xiang, Xiujun Fan, Errol L. G. Samuel, Lawrence B. Alemany, Angel A. Martí, and James M. Tour . Bandgap Engineering of Coal-Derived Graphene Quantum Dots. ACS Applied Materials & Interfaces 2015, 7 (12) , 7041-7048. https://doi.org/10.1021/acsami.5b01419
    19. Tufan Ghosh and Edamana Prasad . White-Light Emission from Unmodified Graphene Oxide Quantum Dots. The Journal of Physical Chemistry C 2015, 119 (5) , 2733-2742. https://doi.org/10.1021/jp511787a
    20. Jyoti Duhan, Himanshu Kumar, Sangeeta Obrai. Fabrication and DFT study of IFE based nano-sensor for fluorometric detection of Norepinephrine. Optics & Laser Technology 2024, 174 , 110665. https://doi.org/10.1016/j.optlastec.2024.110665
    21. Fathima Anjila P.K, G.R. Tharani, Anand Sundaramoorthy, Venkat Kumar Shanmugam, Karthikeyan Subramani, Shanmugavel Chinnathambi, Ganesh N. Pandian, Vimala Raghavan, Andrews Nirmala Grace, Singaravelu Ganesan, Mangaiyarkarasi Rajendiran. An ultra-sensitive detection of Melamine in milk using Rare-earth doped Graphene Quantum Dots- Synthesis and Optical Spectroscopic approach. Microchemical Journal 2024, 196 , 109670. https://doi.org/10.1016/j.microc.2023.109670
    22. Yue Wu, Wei Lan, Song He, Xiaoming Guo, Chengying Hai, Xiangyu Zhao, Hengye Chen, Wanjun Long, Yuanbin She, Haiyan Fu. Highly selective detection of epinephrine by a “turn-off” fluorescent sensor based on N-doped carbon quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023, 298 , 122760. https://doi.org/10.1016/j.saa.2023.122760
    23. Shahnaz Ahmed, Suman Lahkar, Simanta Doley, Dambarudhar Mohanta, Swapan Kumar Dolui. A hierarchically porous MOF confined CsPbBr3 quantum dots: Fluorescence switching probe for detecting Cu (II) and melamine in food samples. Journal of Photochemistry and Photobiology A: Chemistry 2023, 443 , 114821. https://doi.org/10.1016/j.jphotochem.2023.114821
    24. Mauricio Llaver, Santiago D. Barrionuevo, Horacio Troiani, Rodolfo G. Wuilloud, Francisco J. Ibañez. Highly selective and sensitive fluorescent determination of Fe3+ within alcoholic beverages with 1,5-diphenylcarbazone-functionalized graphene quantum dots. Talanta Open 2023, 7 , 100202. https://doi.org/10.1016/j.talo.2023.100202
    25. Inderbir Kaur, Vandana Batra, Naveen Kumar Reddy Bogireddy, Yogesh Kumar, Vivechana Agarwal. Carbon Dots as a Novel Detection Material for Food Additives and Pesticides: A Mini Review. Microscopy and Microanalysis 2023, 29 (Supplement_1) , 4-8. https://doi.org/10.1093/micmic/ozad067.003
    26. Himshweta, Minni Singh. Nanosensor platforms for detection of milk adulterants. Sensors and Actuators Reports 2023, 5 , 100159. https://doi.org/10.1016/j.snr.2023.100159
    27. Zhiya Wang, Rong Liu, Zhifang Fu, Xin Yi, Yongjun Hu, Changhui Liu, Dong Pan, Zhaoyang Wu. A ratiometric fluorescence sensor based on gold silver nanoclusters and tungsten disulfide quantum dots with simple fabrication for the detection of copper ions in river water. Analytical Methods 2023, 15 (20) , 2505-2511. https://doi.org/10.1039/D3AY00378G
    28. Sultan Şahin, Özge Ergüder, Levent Trabzon, Caner Ünlü. Quantum dots for sensing applications. 2023, 443-473. https://doi.org/10.1016/B978-0-323-88431-0.00025-9
    29. Manisha Chatterjee, Prathul Nath, Sachin Kadian, Anshu Kumar, Vishal Kumar, Partha Roy, Gaurav Manik, Soumitra Satapathi. Highly sensitive and selective detection of dopamine with boron and sulfur co-doped graphene quantum dots. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-13016-4
    30. Mauricio Llaver, Santiago D. Barrionuevo, Eduardo Prieto, Rodolfo G. Wuilloud, Francisco J. Ibañez. Functionalized graphene quantum dots obtained from graphene foams used for highly selective detection of Hg2+ in real samples. Analytica Chimica Acta 2022, 1232 , 340422. https://doi.org/10.1016/j.aca.2022.340422
    31. Mahendra R. Mahajan, Pravin O. Patil. Design of zero-dimensional graphene quantum dots based nanostructures for the detection of organophosphorus pesticides in food and water: A review. Inorganic Chemistry Communications 2022, 144 , 109883. https://doi.org/10.1016/j.inoche.2022.109883
    32. Kun WANG, Er-Fei DONG, Min FANG, Ting CHEN, Wei-Ju ZHU, Cun LI. Construction of ratio fluorescence sensor based on CdTe quantum dots and benzocoumarin-3-carboxylic acid for Hg2+ detection. Chinese Journal of Analytical Chemistry 2022, 50 (4) , 100070. https://doi.org/10.1016/j.cjac.2022.100070
    33. T. Daniel Thangadurai, N. Manjubaashini, D. Nataraj, Vincent Gomes, Yong Ill Lee. A review on graphene quantum dots, an emerging luminescent carbon nanolights: Healthcare and Environmental applications. Materials Science and Engineering: B 2022, 278 , 115633. https://doi.org/10.1016/j.mseb.2022.115633
    34. M.H.M. Facure, R. Schneider, L.A. Mercante, D.S. Correa. Rational hydrothermal synthesis of graphene quantum dots with optimized luminescent properties for sensing applications. Materials Today Chemistry 2022, 23 , 100755. https://doi.org/10.1016/j.mtchem.2021.100755
    35. Wenshuo Zhang, Hongda Zhong, Pingping Zhao, Aiguo Shen, Houbin Li, Xinghai Liu. Carbon quantum dot fluorescent probes for food safety detection: Progress, opportunities and challenges. Food Control 2022, 133 , 108591. https://doi.org/10.1016/j.foodcont.2021.108591
    36. Esma Sari. Synthesis and characterization of high quantum yield graphene quantum dots via pyrolysis of glutamic acid and aspartic acid. Journal of Nanoparticle Research 2022, 24 (2) https://doi.org/10.1007/s11051-022-05428-0
    37. Sutthipoj Wongrerkdee, Pichitchai Pimpang. Fluorescence Quenching Probe Based on Graphene Quantum Dots for Detection of Copper Ion in Water. Integrated Ferroelectrics 2022, 222 (1) , 56-68. https://doi.org/10.1080/10584587.2021.1961516
    38. Li Zhang, Cheng Zhi Huang. Preparation and structure tuning of graphene quantum dots for optical applications in chemosensing, biosensing, and bioimaging. 2022, 41-77. https://doi.org/10.1016/B978-0-323-90244-1.00011-2
    39. Ashajyothi C., Harish K. Handral, Prabhurajeshwar C.. Applications of Metal and Metal Oxide-Based Nanomaterials in Medical and Biological Activities. 2022, 312-337. https://doi.org/10.4018/978-1-7998-8936-6.ch014
    40. Shenbagavalli Kathiravan, Karthika Lakshmi Servarayan, Ellairaja Sundaram, Vasantha Vairathevar Sivasamy. Fluorescent Biosensing and Chemosensing Strategies for Food Quality Assessment. 2022, 91-120. https://doi.org/10.1007/978-981-16-8333-6_5
    41. Arumugam Selva Sharma, Shujat Ali, Devaraj Sabarinathan, Marimuthu Murugavelu, Huanhuan Li, Quansheng Chen. Recent progress on graphene quantum dots‐based fluorescence sensors for food safety and quality assessment applications. Comprehensive Reviews in Food Science and Food Safety 2021, 20 (6) , 5765-5801. https://doi.org/10.1111/1541-4337.12834
    42. Xiaoling Bao, Jianhong Liu, Qingshu Zheng, Lixin Duan, Yuzhu Zhang, Junlong Qian, Tao Tu. Colorimetric recognition of melamine in milk using novel pincer zinc complex stabilized gold nanoparticles. Chinese Chemical Letters 2021, 32 (10) , 3023-3026. https://doi.org/10.1016/j.cclet.2021.04.014
    43. Chan Yeong Park, Min Woo Kim, Kyoung Yeol Park, Seung Hoon Baek, Ruth Stephanie, Subhadeep Ghosh, Hyang Sook Chun, Yun Suk Huh, Jang-Kyo Kim, Jong Pil Park, Tae Jung Park. Discovering melamine-specific bioreceptors via phage display, constructing its validation method based on the quenching on nanocomplex, and applying screened bioreceptor to the electrochemical assay of melamine. Sensors and Actuators B: Chemical 2021, 330 , 129279. https://doi.org/10.1016/j.snb.2020.129279
    44. Sinchul Yeom, Kenneth D. Kihm, Chien-Te Hsieh, Tae-Sik Oh. Facile optical quantification of mercury ion concentration using graphene quantum dot coated filter paper disks. Materials Chemistry and Physics 2021, 260 , 124168. https://doi.org/10.1016/j.matchemphys.2020.124168
    45. Darwin Kurniawan, Wei-Hung Chiang. Synthesis and Applications of Graphene Quantum Dots. 2020, 131-173. https://doi.org/10.1039/9781788019279-00131
    46. Jincymol Kappen, Manikka Kubendran Aravind, Perumal Varalakshmi, Balasubramaniem Ashokkumar, S. Abraham John. Hydroxyl rich graphene quantum dots for the determination of Hg(II) in the presence of large concentration of major interferents and in living cells. Microchemical Journal 2020, 157 , 104915. https://doi.org/10.1016/j.microc.2020.104915
    47. Faezeh Askari, Abbas Rahdar, Mohadeseh Dashti, John F. Trant. Detecting Mercury (II) and Thiocyanate Using “Turn-on” Fluorescence of Graphene Quantum Dots. Journal of Fluorescence 2020, 30 (5) , 1181-1187. https://doi.org/10.1007/s10895-020-02586-z
    48. Sachin Kadian, Gaurav Manik. A highly sensitive and selective detection of picric acid using fluorescent sulfur‐doped graphene quantum dots. Luminescence 2020, 35 (5) , 763-772. https://doi.org/10.1002/bio.3782
    49. Jing Qian, Zhenting Yang, Haining Cui, Keqi An, Chanchan Ren, Qian Liu, Kun Wang. Fabricating a signal-off photoelectrochemical sensor based on BiPO4-graphene quantum dots nanocomposites for sensitive and selective detection of hydroquinone. Journal of Electroanalytical Chemistry 2020, 868 , 114177. https://doi.org/10.1016/j.jelechem.2020.114177
    50. Liying Sheng, Baihe Huangfu, Qinhai Xu, Wenli Tian, Zhenjiang Li, Alan Meng, Shuqin Tan. A highly selective and sensitive fluorescent probe for detecting Cr(VI) and cell imaging based on nitrogen-doped graphene quantum dots. Journal of Alloys and Compounds 2020, 820 , 153191. https://doi.org/10.1016/j.jallcom.2019.153191
    51. Gebremedhin Gebremariam Gebreegziabher, Assefa Sergawie Asemahegne, Delele Worku Ayele, Dhakshnamoorthy Mani, Rewrewa Narzary, Partha Pratim Sahu, Ashok Kumar. Polyaniline–graphene quantum dots (PANI–GQDs) hybrid for plastic solar cell. Carbon Letters 2020, 30 (1) , 1-11. https://doi.org/10.1007/s42823-019-00064-6
    52. Vaishali Sharma, Narayan N. Som, Sharad Babu Pillai, Prafulla K. Jha. Utilization of doped GQDs for ultrasensitive detection of catastrophic melamine: A new SERS platform. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 224 , 117352. https://doi.org/10.1016/j.saa.2019.117352
    53. Tobias Wehner, Joachim Heck, Claus Feldmann, Klaus Müller‐Buschbaum. Reactivity of ZrO(MFP) and ZrO(RP) Nanoparticles with LnCl 3 for Solvatochromic Luminescence Modification and pH‐Dependent Optical Sensing. Chemistry – A European Journal 2019, 25 (72) , 16630-16638. https://doi.org/10.1002/chem.201903744
    54. Hui-Hui Zeng, Zhi-Ying Zhou, Fang Liu, Jie Deng, Shu-Yun Huang, Guo-Ping Li, Pei-Qing Lai, Yue-Ping Xie, Wei Xiao. Design and synthesis of a vanadate-based ratiometric fluorescent probe for sequential recognition of Cu 2+ ions and biothiols. The Analyst 2019, 144 (24) , 7368-7377. https://doi.org/10.1039/C9AN01518C
    55. Xiaoling Bao, Jianhong Liu, Qingshu Zheng, Wei Pei, Yimei Yang, Yanyun Dai, Tao Tu. Visual recognition of melamine in milk via selective metallo-hydrogel formation. Chinese Chemical Letters 2019, 30 (12) , 2266-2270. https://doi.org/10.1016/j.cclet.2019.07.025
    56. Vedashree V. Sirdeshmukh, Harshika R. Apte, Anup A. Kale. Graphene Quantum Dots as promising probes in electrochemical immunoassay for rapid and sensitive detection of pathogenic Staphylococcus aureus. 2019, 108-114. https://doi.org/10.1109/NANOMED49242.2019.9130608
    57. Ying Xu, Yao Fan, Lei Zhang, Qin Wang, Haiyan Fu, Yuanbin She. A novel enhanced fluorescence method based on multifunctional carbon dots for specific detection of Hg2+ in complex samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 220 , 117109. https://doi.org/10.1016/j.saa.2019.05.014
    58. Igor Araújo Pinto, Carlos A.T. Toloza, Joseany M.S. Almeida, Andrea R. da Silva, Dunieskys G. Larrude, Ricardo Q. Aucélio. Quantification of neomycin in rubella vaccine by off/on metal ion mediated photoluminescence from functionalized graphene quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 220 , 117139. https://doi.org/10.1016/j.saa.2019.117139
    59. Foroozan Hasanpour, Mohsen Nekoeinia, Abolfazl Semnani, Rana Shirazinia. Synthesis of semicarbazide catechol derivative as a potential electrode modifier: application in electrocatalysis of catechol amine drugs. Chemical Papers 2019, 73 (8) , 2081-2089. https://doi.org/10.1007/s11696-019-00764-3
    60. Hai-Bo Wang, Hong-Yu Bai, An-Li Mao, Tian Gan, Yan-Ming Liu. Poly(adenine)-templated fluorescent Au nanoclusters for the rapid and sensitive detection of melamine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 219 , 375-381. https://doi.org/10.1016/j.saa.2019.04.075
    61. Fangjie Zheng, Wei Ke, Yuan Zhao, Chuanlai Xu. Pt NPs catalyzed chemiluminescence method for Hg 2+ detection based on a flow injection system. ELECTROPHORESIS 2019, 40 (16-17) , 2218-2226. https://doi.org/10.1002/elps.201900014
    62. Khadijeh Nekoueian, Mandana Amiri, Mika Sillanpää, Frank Marken, Rabah Boukherroub, Sabine Szunerits. Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chemical Society Reviews 2019, 48 (15) , 4281-4316. https://doi.org/10.1039/C8CS00445E
    63. Debabrata Mandal, Suparna khatun, Amar Nath Gupta, Amreesh Chandra. DNA supported graphene quantum dots for Ag ion sensing. Nanotechnology 2019, 30 (25) , 255501. https://doi.org/10.1088/1361-6528/ab084c
    64. Ying-Peng Zhang, Ji-Mei Ma, Yun-Shang Yang, Jia-Xi Ru, Xiao-Yu Liu, Ying Ma, Hui-Chen Guo. Synthesis of nitrogen-doped graphene quantum dots (N-GQDs) from marigold for detection of Fe3+ ion and bioimaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 217 , 60-67. https://doi.org/10.1016/j.saa.2019.03.044
    65. Radhika N. K., Sai Siva Gorthi. Enhancement of the fluorescence properties of double stranded DNA templated copper nanoparticles. Materials Science and Engineering: C 2019, 98 , 1034-1042. https://doi.org/10.1016/j.msec.2019.01.042
    66. Y. Ma, A.Y. Chen, X.F. Xie, X.Y. Wang, D. Wang, P. Wang, H.J. Li, J.H. Yang, Y. Li. Doping effect and fluorescence quenching mechanism of N-doped graphene quantum dots in the detection of dopamine. Talanta 2019, 196 , 563-571. https://doi.org/10.1016/j.talanta.2019.01.001
    67. Yi Li, Weilu Zhang, Xiangmei Jiang, Yanxia Kou, Jiajia Lu, Liang Tan. Investigation of photo-induced electron transfer between amino-functionalized graphene quantum dots and selenium nanoparticle and it's application for sensitive fluorescent detection of copper ions. Talanta 2019, 197 , 341-347. https://doi.org/10.1016/j.talanta.2019.01.036
    68. Panxing Yang, Jie Su, Ruiwei Guo, Fanglian Yao, Caideng Yuan. B,N-Co-doped graphene quantum dots as fluorescence sensor for detection of Hg 2+ and F − ions. Analytical Methods 2019, 11 (14) , 1879-1883. https://doi.org/10.1039/C9AY00249A
    69. Shuhei Kusano, Keisuke Matsumoto, Osamu Hayashida. Modular design for fluorophore homodimer probes using diethylentriamine as a common spacer. Organic & Biomolecular Chemistry 2019, 17 (14) , 3599-3603. https://doi.org/10.1039/C9OB00406H
    70. Muthaiah Shellaiah, Kien Sun. Review on Nanomaterial-Based Melamine Detection. Chemosensors 2019, 7 (1) , 9. https://doi.org/10.3390/chemosensors7010009
    71. Abhay Sachdev, Rocky Raj, Ishita Matai, Vinay Kumar, P. Gopinath, Sunita Mishra. Label-free fluorescence “turn-on” detection of SO 3 2− by gold nanoclusters: integration in a hydrogel platform and intracellular detection. Analytical Methods 2019, 11 (9) , 1214-1223. https://doi.org/10.1039/C8AY02813C
    72. Vaishali Sharma, Hardik L. Kagdada, Dheeraj K. Singh, Prafulla K. Jha. Trapping Melamine with Pristine and Functionalized Graphene Quantum Dots: DFT and SERS Studies. 2019, 441-451. https://doi.org/10.1007/978-981-15-0202-6_35
    73. Majid Masteri-Farahani, Faezeh Askari. Design and photophysical insights on graphene quantum dots for use as nanosensor in differentiating methamphetamine and morphine in solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 206 , 448-453. https://doi.org/10.1016/j.saa.2018.08.044
    74. Lei Zhang, Yongquan Luo, Yameng Zhao, Boxin Guan, Lingyi Zhang, Bohao Yu, Weibing Zhang. Silver nanoparticle-incorporated ultralong hydroxyapatite nanowires with internal reference as SERS substrate for trace environmental pollutant detection. New Journal of Chemistry 2018, 42 (22) , 17950-17957. https://doi.org/10.1039/C8NJ03743D
    75. Virginia Ruiz, Ana Pérez-Marquez, Jon Maudes, Hans-Jürgen Grande, Nieves Murillo. Enhanced photostability and sensing performance of graphene quantum dots encapsulated in electrospun polyacrylonitrile nanofibrous filtering membranes. Sensors and Actuators B: Chemical 2018, 262 , 902-912. https://doi.org/10.1016/j.snb.2018.02.081
    76. Marta Maria Pereira da Silva Neves, María Begoña González‐García, Alejandro Pérez‐Junquera, David Hernández‐Santos, Pablo Fanjul‐Bolado. Quenching of graphene quantum dots fluorescence by alkaline phosphatase activity in the presence of hydroquinone diphosphate. Luminescence 2018, 33 (3) , 552-558. https://doi.org/10.1002/bio.3445
    77. Tapas Kumar Mondal, Diptiman Dinda, Shyamal Kumar Saha. Nitrogen, sulphur co-doped graphene quantum dot: An excellent sensor for nitroexplosives. Sensors and Actuators B: Chemical 2018, 257 , 586-593. https://doi.org/10.1016/j.snb.2017.11.012
    78. Alan Meng, Qinhai Xu, Kun Zhao, Zhenjiang Li, Jun Liang, Qingdang Li. A highly selective and sensitive “on-off-on” fluorescent probe for detecting Hg(II) based on Au/N-doped carbon quantum dots. Sensors and Actuators B: Chemical 2018, 255 , 657-665. https://doi.org/10.1016/j.snb.2017.08.028
    79. Donovan M. Mafukidze, Tebello Nyokong. Graphene quantum dot-phthalocyanine polystyrene conjugate embedded in asymmetric polymer membranes for photocatalytic oxidation of 4-chlorophenol. Journal of Coordination Chemistry 2017, 70 (21) , 3598-3618. https://doi.org/10.1080/00958972.2017.1400664
    80. Nguyen Thi Ngoc Anh, Ankan Dutta Chowdhury, Ruey-an Doong. Highly sensitive and selective detection of mercury ions using N, S-codoped graphene quantum dots and its paper strip based sensing application in wastewater. Sensors and Actuators B: Chemical 2017, 252 , 1169-1178. https://doi.org/10.1016/j.snb.2017.07.177
    81. Sathish C. Dhanabalan, Balaji Dhanabalan, Joice S. Ponraj, Qiaoliang Bao, Han Zhang. 2D–Materials‐Based Quantum Dots: Gateway Towards Next‐Generation Optical Devices. Advanced Optical Materials 2017, 5 (19) https://doi.org/10.1002/adom.201700257
    82. Marek J. Brzozowski, Mahi R. Singh. Photoluminescence Quenching in Quantum Emitter, Metallic Nanoparticle, and Graphene Hybrids. Plasmonics 2017, 12 (4) , 1021-1028. https://doi.org/10.1007/s11468-016-0354-7
    83. Xiaoye Wen, Zhefeng Fan. A novel ‘turn-on’ fluorescence probe with aggregation-induced emission for the selective detection and bioimaging of Hg2+ in live cells. Sensors and Actuators B: Chemical 2017, 247 , 655-663. https://doi.org/10.1016/j.snb.2017.03.062
    84. Chuanxia Chen, Dan Zhao, Tao Hu, Jian Sun, Xiurong Yang. Highly fluorescent nitrogen and sulfur co-doped graphene quantum dots for an inner filter effect-based cyanide sensor. Sensors and Actuators B: Chemical 2017, 241 , 779-788. https://doi.org/10.1016/j.snb.2016.11.010
    85. Lijiao Liang, Shujun Zhen, Chengzhi Huang. Visual and light scattering spectrometric method for the detection of melamine using uracil 5′-triphosphate sodium modified gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 173 , 99-104. https://doi.org/10.1016/j.saa.2016.08.049
    86. Zhou Xiaoyan, Li Zhangyi, Li Zaijun. Fabrication of valine-functionalized graphene quantum dots and its use as a novel optical probe for sensitive and selective detection of Hg 2+. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 171 , 415-424. https://doi.org/10.1016/j.saa.2016.08.037
    87. Shweta Sharma, Varnika Prakash, S.K. Mehta. Graphene/silver nanocomposites-potential electron mediators for proliferation in electrochemical sensing and SERS activity. TrAC Trends in Analytical Chemistry 2017, 86 , 155-171. https://doi.org/10.1016/j.trac.2016.10.004
    88. Mengke Wang, Yan Li, Lei Wang, Xingguang Su. A label-free fluorescence nanosensor for the determination of adrenaline based on graphene quantum dots. Analytical Methods 2017, 9 (30) , 4434-4438. https://doi.org/10.1039/C7AY01271C
    89. Xue Wang, Rumin Li, Jingyuan Liu, Rongrong Chen, Hongsen Zhang, Qi Liu, Zhanshuang Li, Jun Wang. Melamine modified graphene hydrogels for the removal of uranium( vi ) from aqueous solution. New Journal of Chemistry 2017, 41 (19) , 10899-10907. https://doi.org/10.1039/C7NJ01927K
    90. Pedro Ma Carrasco, Ignacio García, Luis Yate, Ramón Tena Zaera, Germán Cabañero, Hans J. Grande, Virginia Ruiz. Graphene quantum dot membranes as fluorescent sensing platforms for Cr (VI) detection. Carbon 2016, 109 , 658-665. https://doi.org/10.1016/j.carbon.2016.08.038
    91. B.B. Campos, L. Gelde, M. Algarra, J.C.G. Esteves da Silva, M.I. Vázquez, J. Benavente. Characterization of cellulose membranes modified with luminescent silicon quantum dots nanoparticles. Carbohydrate Polymers 2016, 151 , 939-946. https://doi.org/10.1016/j.carbpol.2016.05.097
    92. Ojodomo J. Achadu, Imran Uddin, Tebello Nyokong. The interaction between graphene quantum dots grafted with polyethyleneimine and Au@Ag nanoparticles: Application as a fluorescence “turn-on” nanoprobe. Journal of Photochemistry and Photobiology A: Chemistry 2016, 324 , 96-105. https://doi.org/10.1016/j.jphotochem.2016.03.016
    93. Lulu Tan, Yimeng Zhang, Hong Qiang, Yonghui Li, Jingyan Sun, Liangyu Hu, Zhengbo Chen. A sensitive Hg(II) colorimetric sensor based on synergistic catalytic effect of gold nanoparticles and Hg. Sensors and Actuators B: Chemical 2016, 229 , 686-691. https://doi.org/10.1016/j.snb.2016.02.037
    94. Qingxiang Wang, Feng Gao, Jiancong Ni, Xiaolei Liao, Xuan Zhang, Zhenyu Lin. Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep22441
    95. Ángela I. López‐Lorente. Carbon‐Based Luminescent Nanosensors. 2016, 1-37. https://doi.org/10.1002/9780470027318.a9531
    96. Ojodomo J. Achadu, Imran Uddin, Tebello Nyokong. Fluorescence behavior of nanoconjugates of graphene quantum dots and zinc phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry 2016, 317 , 12-25. https://doi.org/10.1016/j.jphotochem.2015.11.006
    97. Gen-Xia Cao, Xiu-Ming Wu, Yu-Ming Dong, Zai-Jun Li, Guang-Li Wang. Colorimetric determination of melamine based on the reversal of the mercury(II) induced inhibition of the light-triggered oxidase-like activity of gold nanoclusters. Microchimica Acta 2016, 183 (1) , 441-448. https://doi.org/10.1007/s00604-015-1669-3
    98. Ojodomo J. Achadu, Tebello Nyokong. Interaction of Graphene Quantum Dots with 4-Acetamido-2,2,6,6-Tetramethylpiperidine-Oxyl Free Radicals: A Spectroscopic and Fluorimetric Study. Journal of Fluorescence 2016, 26 (1) , 283-295. https://doi.org/10.1007/s10895-015-1712-0
    99. Palanichamy Kaleeswaran, Thanasekaran Nandhini, Kasi Pitchumani. Naked eye sensing of melamine: aggregation induced recognition by sodium d -gluconate stabilised silver nanoparticles. New Journal of Chemistry 2016, 40 (4) , 3869-3874. https://doi.org/10.1039/C5NJ03083H
    100. Qianqian Du, Fei Qu, Beibei Mao, Shuyun Zhu, Jinmao You. Turn-on fluorescent detection of melamine based on Ag nanoclusters–Hg 2+ system. New Journal of Chemistry 2016, 40 (10) , 8459-8464. https://doi.org/10.1039/C6NJ01338D
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect