922
Views
193
CrossRef citations to date
0
Altmetric
Research Article

Ecological and Agricultural Significance of Bacterial Polyhydroxyalkanoates

, , &
Pages 55-67 | Received 29 Sep 2004, Accepted 13 Oct 2004, Published online: 11 Oct 2008
 

Abstract

Polyhydroxyalkanoates (PHAs) are a group of carbon and energy storage compounds that are accumulated during suboptimal growth by many bacteria, and intracellularly deposited in the form of inclusion bodies. Accumulation of PHAs is thought to be used by bacteria to increase survival and stress tolerance in changing environments, and in competitive settings where carbon and energy sources may be limited, such as those encountered in the soil and the rhizosphere. Understanding the role that PHAs play as internal storage polymers is of fundamental importance in microbial ecology, and holds great potential for the improvement of bacterial inoculants for plants and soils. This review summarizes the current knowledge on the ecological function of PHAs, and their strategic role as survival factors in microorganisms under varying environmental stress is emphasized. It also explores the phylogeny of the PHA cycle enzymes, PHA synthase, and PHA depolymerase, suggesting that PHA accumulation was earlier acquired and maintained during evolution, thus contributing to microbial survival in the environment.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 783.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.