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Transcriptome profiling and proteomic 
validation reveals targets of the androgen 
receptor signaling in the BT‑474 breast cancer 
cell line
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Abstract 

Background:  Accumulating evidence suggests that the androgen receptor (AR) and its endogenous ligands influ‑
ence disease progression in breast cancer (BCa). However, AR-mediated changes in BCa differ among the various BCa 
subtypes according to their hormone receptor profile [i.e., presence/absence of estrogen receptor (ER), progesterone 
receptor (PR) and human epidermal growth factor receptor 2, (HER2)]. Thus, we explored the androgen-regulated 
transcriptomic changes in the ER+PR+HER2+ BCa cell line, BT-474, and compared them with PR-mediated changes.

Methods:  We performed RNA sequencing analysis in treated BT-474 cells with dihydrotestosterone (DHT) and 
progesterone. Validation of the top ten differentially androgen-regulated genes and a number of other genes found 
in enriched signaling pathways was performed by qRT-PCR in BT-474 and other BCa cell lines. In addition, a parallel 
reaction monitoring targeted proteomic approach was developed to verify selected transcripts at the protein level.

Results:  In total 19,450 transcripts were detected, of which 224 were differentially regulated after DHT treatment. The 
increased expression of two well-known androgen-regulated genes, KLK2 (p < 0.05) and KLK3 (p < 0.001), confirmed 
the successful androgen stimulation in BT-474 cells. The transcription factor, ZBTB16, was the most highly upregulated 
gene, with ~ 1000-fold change (p < 0.001). Pathway enrichment analysis revealed downregulation of the DNA replica‑
tion processes (p < 0.05) and upregulation of the androgen signaling and fatty acid metabolism pathways (p < 0.05). 
Changes related to progesterone treatment showed opposite effects in gene expression than DHT treatment. Similar 
expression profiles were observed among other BCa cell lines expressing high levels of AR (ZR75.1 and MBA-MB-453). 
The parallel reaction monitoring targeted proteomic analysis further confirmed that altered protein expression (KLK3, 
ALOX15B) in the supernatant and cell lysate of DHT-treated BT-474 cells, compared to control cells.

Discussion:  Our findings suggest that AR modulates the metabolism of BT-474 cells by affecting the expression of a 
large number of genes and proteins. Based on further pathway analysis, we suggest that androgen receptor acts as a 
tumor suppressor in the BT-474 cells.
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Background
Despite tremendous efforts in breast cancer (BCa) 
research, BCa cases are increasing at a rate of 0.3% per 
year [1]. The expression profile of estrogen receptor (ER), 
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progesterone receptor (PR), androgen receptor (AR) and 
human epidermal growth factor receptor 2 (HER2) has 
been used to classify BCa into subgroups, thus facilitating 
targeted therapies such as the ER+BCa most prevalent 
treatment has been the anti-estrogen drug tamoxifen, 
whereas for HER2+ BCa, the HER2 inhibitor, trastu-
zumab (Herceptin) is being used. Despite the currently 
available targeted treatments, drug resistance occurs in 
many cases after a period, leading to relapse of breast 
cancer. Cancer cells use various molecular pathways to 
evade the immune system and drug effectiveness. On the 
other hand, targeted therapy is restricted to the receptor-
positive subtypes since BCa negative in the three main 
receptors (ER, PR, HER2), also known as triple-negative 
BCa (TNBC), is treated with chemotherapy.

Existing studies show that the AR affects the ER-
expressing BCa through various ways. For instance, AR 
can bind to estrogen-responsive elements of ER-target 
genes and modulate their expression [2], competing with 
ER [3–5]. Thus, the AR/ER ratio sometimes is critical for 
BCa progression and outcome. For example, when AR is 
more abundant than ER, AR binds to estrogen respon-
sive elements (EREs) resulting in the decrease of estro-
gen-mediated proliferation. On the other hand, if ER is 
expressed at higher levels, ER binds to AREs, inhibiting 
AR-regulated mechanisms and promoting cell prolifera-
tion. In addition, some genes are ER and AR-regulated, 
such as MYC, GREB1, GATA3, FOXA1, RERG and BEX1 
[6–8] and their expression (upregulation or downregula-
tion) depends on the receptor status, resulting in promo-
tion or protection against BCa [7–11]. Furthermore, AR 
affects the ERα and ERβ directly. Specifically, AR binds 
to the ligand-binding domain (LBD) of the ERα, when 
androgens are absent and estrogen present. The AR/ERα 
complex phosphorylates EGFR, promoting DNA syn-
thesis and causing changes in the cytoskeleton [12, 13]. 
Apart from that, AR binds to the ARE of ERβ, promoting 
ERβ transcription and the subsequent inhibition of ER 
signaling and cell proliferation [14–17].

In the present study, we hypothesize that AR and its 
ligands cause transcriptomic changes in AR+ BCa cells. 
To test this hypothesis, RNAseq analysis was employed 
in an ER+PR+HER2+ BCa cell line, BT474, with which we 
could use to identify molecular associations in our study.

We chose RNA seq as a robust, highly sensitive tech-
nology, with which we could facilitate new molecular 
information. The BT474 cell line is a clinically relevant 
model to investigate the effects of AR (and other can-
didate molecules that may influence/trigger cancer 
progression) in BCa, since it was derived from a ductal 
carcinoma, luminal B type, representative for Stage II 
cancer of a post-menopausal woman and expresses AR, 
ER, PR, and HER2 receptor [18–21]. The BT474 cell line 

is highly expressing AR [19–21]. Once stimulated by 
androgens (dihydrotestosterone, DHT), BT474 cells pro-
duce high levels of KLK3 [22], a well-known androgen-
regulated gene, used as a positive control. Our aim was to 
investigate the AR regulation at the gene expression level 
of the BCa cell line, BT474. Treatment of BT474 with 
DHT-mediated expression of several AR-regulated genes 
and identified molecular pathways that were significantly 
enriched. Also, BT474 cells were treated with progester-
one (PROG) to compare any progesterone-related effects 
overlapping with androgens [7]. We extended our find-
ings to six other BCa cell lines with various receptor pro-
files to test the expression of genes that were included in 
the validation list of BT474. Furthermore, we studied the 
protein expression of 24 validated mRNAs identified by 
RNA-seq and investigated their correlation with protein 
levels using a targeted MS-based approach, parallel reac-
tion monitoring (PRM).

AR expression levels in most BCa cell lines have been 
determined and this knowledge could be incorporated in 
existing transcriptomic data to delineate the effect of AR 
according to the BCa cell types. This information, along 
with the use of high-throughput techniques (RNAseq 
and PRM), could facilitate the identification of novel 
markers for prognosis or personalized therapies.

Materials and methods
Cell lines and culture conditions
Seven breast cancer cell lines, BT474, ZR75-1, T47D, 
MCF7, MDA-MB-453, SkBr3, MDA-MB-468, (ATCC) 
with different receptor expression profiles were cultured 
in their respective growth media, listed in Additional 
file 1: Table S1. The prostate cancer cell line LnCaP was 
also used as an AR-positive cell line [19], cultured in phe-
nol-free RPMI-1640 medium (Gibco™ ThermoFisher). 
All media were supplemented with 1% antibiotic–anti-
mycotic and 10% fetal bovine serum (FBS). All cell lines 
were authenticated with ≥ 80% match (Additional file 3: 
Table  S1-2), at the Centre for Applied Genomics at the 
hospital for Sick Children (SickKids, Canada).

Hormonal stimulation of breast cancer cell lines
Cells were cultured in the appropriate growth media 
(Additional file 1: Table S1) and incubated at 37 °C in an 
atmosphere of 5% CO2 The grown cells were transferred 
in T-25/T-75 flasks (RNAseq and PRM) and in 24 or 
6-well plates (qRT-PCR). Once cells reached the desired 
confluency, they were subjected to starvation for 24  h 
using growth media supplemented with 10% charcoal-
stripped fetal bovine serum. Next, they were stimulated 
with dihydrotestosterone (DHT, androgen, 10  nM) or 
progesterone (progestin, 10 nM) for 24 h and 5 days. The 
culture supernatants were collected for KLK3 protein 
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quantification using ELISA. Cell lysates were prepared 
for the mRNA expression study for several genes, using 
RNA sequencing and real-time qPCR. Stimulation with 
ethanol was included as a negative control. For each con-
dition, experiments were performed in triplicates.

For the parallel reaction monitoring experiment, 
starvation was performed using a serum-free growth 
medium without FBS and insulin. Then, cells were stimu-
lated with ethanol (control, 0.1%) or DHT (10 nM). For 
the 24 h stimulation, cells were grown at 80% confluency, 
whereas for the 5-days, cells were stimulated at 60% con-
fluency to avoid cell overgrowth. Cell pellets and super-
natants were collected and stored at − 80 °C until further 
use.

KLK3 enzyme‑linked immunosorbent assay (ELISA)
The samples used were supernatants derived from the 
hormonally treated cells at 24 h and 5-days, respectively. 
The KLK3 ELISA was performed as previously described 
[23].

RNA extraction and cDNA synthesis
The total RNA was extracted from the cell lines using the 
RNeasy mini kit (QIAGEN). Total RNA (0.5–1  μg) was 
reverse-transcribed into first-strand cDNA using the 
SensiFast cDNA synthesis kit (BIOLINE) for preparing 
the samples for RNA-seq. The iScript™ cDNA synthe-
sis Kit (BIO-RAD) was used for cDNA synthesis for the 
validation and inhibition experiments. The RNA extrac-
tion and both cDNA synthesis kits were used accord-
ing to the manufacturer’s instructions. RNA and cDNA 
concentrations were measured using the NanoDrop 
spectrophotometer.

Quantitative RT‑PCR
Quantitative real-time RT-PCR was carried out in a 10-μl 
reaction mixture containing 8  μl SYBR Green Power 
Up PCR Master mix (Applied Biosystems™), 80–100 ng 
of cDNA, and 300  nM of each primer according to the 
manufacturer’s instructions. The conditions for qRT-
PCR were as follows: 50 °C for 2 min, 95 °C for 10 min, 45 
cycles of 95 °C for 15 s and 60 °C for 1 min.

for melt curve: 95  °C for 15  s, 60  °C for 1  min, 95  °C 
for 30 s, 60 °C for 15 s. SYBR fluorescence was detected 
using the ABI 7500 Real-Time PCR and QuantStudio 6 
Flex Real-Time PCR Systems (Applied Biosystems). The 
housekeeping gene Glyceraldehyde-3-Phosphate Dehy-
drogenase (GAPDH) was used to normalize the gene 
expression data. DHT-treated and control samples were 
tested in triplicates. The primers of each gene used for 
validation are listed in Additional file  1: Table  S2. The 
qRT-PCR products were run on 2% agarose gels and visu-
alized by SYBR Safe DNA gel stain.

RNA sequencing
The BT474 cells were treated with ethanol, DHT or 
PROG, as described above. The cell pellets were collected 
after 24  h and washed twice with phosphate-buffered 
saline (PBS), followed by RNA extraction and clean up 
(QIAGEN). Samples with 10  μl of 150  ng/μl RNA were 
sequenced at The Centre for Applied Genomics in the 
Hospital for Sick Children (Toronto, Canada), using the 
Illumina Solexa sequencing technology.

RNAseq data analysis
The RSeQC package v2.3.7 [24] was used for assessment 
of the read distribution, positional duplication and to 
confirm the strandedness of the alignment. Raw trimmed 
reads were mapped to the human genome hg19 assembly, 
using Tophat v2.011/Bowtie2 [25]. The reference RPKM 
(reads per kilobase of transcript per million mapped 
reads) values were used to estimate gene abundance in 
each sample. The RPKM values were used to calculate 
the fold change (FC) between treated and untreated cells. 
The log2-transformed FC values of all genes and distribu-
tions were evaluated for DHT vs control (ethanol) and 
PROG vs control (ethanol) comparisons. The raw gene 
counts were sample-normalized using DESeq v1.18.0 
[26]. Principal component analysis (PCA) was performed 
to assess the relation among samples.

The statistical analysis of the raw data was performed 
by the Informatics Facilities at SickKids Hospital (Can-
ada). The EdgeR R package, v.3.8.6 was used for the dif-
ferential expression analysis. The list of the differentially 
expressed genes was filtered to only genes whose cpm 
(counts per million reads) was > 0.4 in at least 2 sam-
ples. The significance of the gene expression was calcu-
lated based on the Benjamini–Hochberg method (FDR 
adjusted p-value ≤ 0.05). Further bioinformatics analy-
sis was followed using the Perseus v1.6.0.7, GSEA v.3.0, 
Cytoscape v3.6.0 (Enrichment Map [27, 28]), and the 
online tools PANTHER 13.1 [29], Database for Annota-
tion, Visualization and Integrated Discovery (DAVID, 
2021 Update) [30], and STRING v11.0 [31] using the 
default parameters (full STRING network the network 
edges mean interaction evidence derived from text-min-
ing, experiments, databases, co-expression, neighbor-
hood, gene fusion and co-occurrence interaction score of 
0.4).

Pathway analysis
The list of differentially expressed genes (DEGs) was 
used for the pathway analysis. The list was first ranked 
based on the gene set enrichment analysis (GSEA) score, 
which was calculated by multiplying the logarithm of the 
p-value with the direction (sign) of the fold change for 
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each gene [log(p-value)  *  sign(logFC)] [32].The ranked 
list was uploaded into the GSEA v.3.0 software and was 
analyzed using the pathway gene set database (Human_
GOBP_AllPathways_no_GO_iea) available by the Bader 
laboratory (dated May 1, 2018) [27].In order to avoid 
false-positive gene sets, we used only pathways that con-
tained at least 15 genes and a maximum of 200 genes, 
500 permutations and a cutoff of p < 0.1, as suggested by 
Reimand et al. [32]. The files from GSEAPreranked gene 
set analysis were uploaded to Cytoscape v3.6.0, using the 
Enrichment Map plugin for better visualization of the 
gene set network.

Inhibition experiments
To further validate the expression of the selected 
genes, we performed inhibition experiments using two 
AR-inhibitors.

Enzalutamide (Selleckchem, USA) and hydroxy-fluta-
mide, (Sigma, USA), and one PR-inhibitor (Mifepristone, 
RU486, kindly provided from Roussel-Uclaf, Romain-
ville, France). BT474 cells were cultured in 6-well plates 
with the indicated growth media. Once the cells reached 
70–80% confluency, they were subjected to growth media 
supplemented with 10% charcoal stripped FBS for 24 h. 
Then, they were washed with PBS and incubated with 
inhibitor compounds for 2  h at a final concentration of 
1 μM. The hormonal stimulation was followed by adding 
the appropriate hormone into the same culture media at 
a final concentration of 10 nM. After 24 h and 5 days of 
incubation respectively, cells were collected for mRNA 
extraction and gene expression analysis with qRT-PCR. 
The supernatants were collected for KLK3 quantification 
using ELISA to assess experiment success. Stimulation 
with 0.1% ethanol was included as a control. All condi-
tions were performed in triplicates.

Parallel reaction monitoring (PRM) validation experiments
Cell culture
Cell pellets and supernatants derived from hormonally 
treated BT474 cells were collected and processed accord-
ingly for proteomic analysis. Exogenous crude heavy 
isotopically (13C and 15N) labeled (heavy) peptides (JPT 
Peptide Technologies GmbH, Berlin, Germany) were 
added to the samples during sample processing and used 
as internal controls to facilitate and ensure the detec-
tion of candidate endogenous peptides (light). The PRM 
method was built with the potential to identify relative 
quantification of the candidate proteins by calculating 
the light-to-heavy ratios of the peptide intensities. The 
process was performed twice (A and B), with triplicated 
biological samples, at 24 h and 5 days.

Sample preparation
The cell pellets were prepared based on a previously 
described protocol [33]. Supernatant amounts of 15  μg 
total protein were used for sample assessment, method 
optimization and sample testing. Once mass spectrom-
etry (MS) confirmed the presence of the tryptic peptides 
(light), isotopically labeled peptides (heavy) were added 
at a specific concentration, based on the peptide limit of 
detection [34]. The heavy (exogenous) and light (endog-
enous) peptide mixture was then passed through OMIX 
C18 tips (Agilent Technologies, USA), washed with 
buffer A (water and 0.1% formic acid) and eluted in 4 μl 
buffer 65% B (65% acetonitrile, 35% water and 0.1% for-
mic acid). The elution mix was diluted up to 60 μl with 
buffer A, of which 18 μl w injected into the MS. Samples 
used for optimization purposes were tested in duplicates. 
Samples used for protein validation were analyzed in 
triplicates.

KLK3 expression was assessed in all supernatant sam-
ples with ELISA. Despite the KLK3 ELISA results, we 
considered samples to be evaluable if KLK3 was also 
detected by MS (limit of quantification 5.7  ng/mL, 
[34]) and only those samples were used for further data 
analysis.

Peptide selection and method development
Candidate peptides for 23 proteins were selected using 
the online comprehensive platforms, Selected Reaction 
Monitoring Atlas (SRMAtlas) [35] and neXtProt [36], 
which combine peptide information with MS-observed 
evidence. The peptide selection was based on certain cri-
teria, as previously described [37, 38]. In the end, one to 
two tryptic peptides per protein that showed a satisfac-
tory chromatographic spectrum in Skyline (v.19.1.0.193) 
were selected for PRM method development (Additional 
file 1: Table S5).

The presence of endogenous tryptic peptides was con-
firmed using 28 crude heavy isotopically (13C and 15N) 
labelled peptides (JPT Peptide Technology, Berlin, Ger-
many), which were spiked into light pooled digested 
samples and injected into the MS. The lyophilized heavy 
peptides were prepared according to the manufacturer’s 
guidelines. The peptides were solubilized in 20% ACN 
and 80% 0.1 M ammonium bicarbonate, at a final concen-
tration of 0.1 nmol/μl, aliquoted and stored at −  20  °C. 
Small amounts of each heavy peptide were used to cre-
ate a 1000  fmol/μl (per peptide) heavy peptide pool for 
optimization purposes. First, 1500 fmol of the heavy pep-
tide pool were added to the 15 μg pooled sample digest in 
order to determine and verify the retention time (RT) for 
each peptide. The verified RTs were used for the devel-
opment of a single multiplexed, scheduled PRM method 
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with a 60-min long gradient. The RT window was set at 
± 3 min from verified elution times, with the acquisition 
of 5–10 points across the peak. The normalized HCD col-
lision energy was set at 27. Due to the two different types 
of matrices, we developed two PRM methods, one for the 
proteome samples (cell pellets) and one for the secretome 
samples (supernatant). In addition, the two PRM meth-
ods monitored different proteins/peptides in the pro-
teome and the secretome pools. As a result of the two 
scheduled PRM methods, we were able to identify nine 
out of 23 proteins, based on their endogenous presence 
(light) and the heavy peptide performance within the 
sample matrix (Additional file  1: Table  S6). These nine 
proteins were present in the final validation list, and their 
expression levels were studied in the treated vs untreated 
samples.

Mass spectrometry
The processed samples were injected with a nano-elec-
trospray ionization source into the Q Exactive HF-X 
mass spectrometer. The chromatography was performed 
using the EASY-1000nLC pump (Thermo Fisher Scien-
tific, USA) [39]. The solvent A (buffer A) was water with 
0.1% formic acid and the solvent B (buffer B) contained 
65% acetonitrile with 0.1% formic acid. The samples 
were loaded (18  μl) onto a 0.75  µm × 3.3  cm Integra-
Frit trap column (New Objective, USA) using buffer A. 
The peptides were eluted from the trap column using 
an increasing concentration of buffer B at 300  nl/min 
onto a resolving 15  cm long analytical column with a 
PicoTip (8 μm tip) and an inner diameter of 75 μm (New 
Objective), over a 60  min-long gradient. The columns 
were packed in-house with Agilent Pursuit C18 media 
(Aglient, USA) using 5 µm and 3 µm beads for trap and 
analytical columns, respectively.

For the targeted inclusion list of the PRM method, the 
MS1 scan range was also 400–1500  m/z at a resolution 
of 60,000 (at 200 m/z) with AGC target value of 1e6 and 
maximum IT of 120 ms. The PRM MS/MS filtering had 
a resolution set to 15,000 (at 200 m/z), AGC target value 
2e5, maximum IT time of 120  ms, isolation window of 
1.4 m/z with NCE set to 27, inclusion mass accuracy of 
10 or 5 ppm, and acquisition duration of 6 min for each 
peptide. The 60-min gradient for the PRM consisted 
of 0–2  min 1–5% buffer B, 2–49  min 5–35% buffer B, 
49–52 min 35–65% buffer B, 52–53 min 65–100% buffer 

B at a 300  nL/min flow rate. At 53  min, the flow rate 
increased to 450 nL/min within 10 s and remained at this 
flow rate for seven additional minutes until the end of the 
gradient.

MS bioinformatic analysis and statistics
The Xcalibur software v.4.3.73.11 (Thermo Fisher Sci-
entific, USA) was used to generate raw files. The raw 
files were uploaded to Proteome Discover (PD) v1.4 
and searched with the SwissProt human search engine 
for determination and identification of proteins. The 
false detection rate (FDR) for the PD searches was set 
to a high confidence level (1% FDR). Skyline software (v. 
19.1.0.193) was used simultaneously for the identification 
and visualization of transitions and determine the pres-
ence and co-elution of heavy and endogenous peptides 
at the same retention time (RT). We examined all pep-
tides manually for the accurate integration of their peaks 
and the quantification of the area-under the curve (AUC) 
was used for the calculation of the light to heavy peptide 
ratios (AUC​light/AUC​heavy).

Statistical analysis was carried out using the GraphPad 
Prism v.8.0 software (GraphPad Software, San Diego, 
CA). The statistical significance was determined using 
the student’s t-test for each protein, between the two 
conditions (treated vs untreated samples), without cor-
rection for multiple comparisons and alpha = 0.05. The 
protein expression was analyzed individually without 
assuming a consistent SD. P-values less than 0.05 were 
considered statistically significant.

Results
Investigation of androgen‑regulated changes in the BT474 
transcriptome
Our aim was to search for transcriptomic changes in 
the BT474 cell line upon androgen stimulation. First, 
we investigated whether BT474 cells responded to the 
treatment of the two hormones, DHT (10 nM) and pro-
gesterone (10  nM), by examining mRNA levels of the 
positive control, the well-known androgen-regulated 
gene, KLK3. Only DHT induced the expression of KLK3, 
whose mRNA levels were upregulated after 24 h stimula-
tion (Additional file 2: Fig. S1A). We then continued with 
RNAseq analysis (Fig. 1A).

Samples collected after the 24  h treatment were sub-
jected to total RNA extraction and RNA sequencing 

Fig. 1  Project pipeline. A Workflow of the transcriptomic analysis of hormonally treated BT474 cells. Cells were cultured and treated with hormones 
or ethanol (used as control) for 24 h. Cell pellets were collected and subjected to total RNA isolation. GSEA and Cytoscape software was used for the 
functional and pathway analysis of the differentially expressed genes. DHT dihydrotestosterone (10 nM), PROG progesterone (10 nM). B Principal 
Component Analysis (PCA) of BT474 RNA sequencing in three treatment conditions (Ethanol, DHT, and PROG). Each condition was performed in 
triplicates and groups clearly cluster. DHT dihydrotestosterone (10 nM), PROG progesterone (10 nM). C Experimental workflow of targeted PRM 
proteomics and data analysis for the validation of select androgen-regulated proteins in the BT474 cell line. For details see under “methods”

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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was conducted using the HiSeq Illumina Technology 
platform (Fig. 1A). The starting reads were ~ 30 million, 
which were processed (trimming of adaptors and low 
quality) and aligned to the genome. The libraries con-
structed contained minimal amounts of mtRNA, 92% of 
the reads mapped to exons, and the final number of reads 
for analysis was 21–24 million, a depth suitable for differ-
ential expression analysis. In addition, an empirical per-
mutation-based procedure PCA (Principal Component 
Analysis) was performed to assess a relation among all 
samples and identify informative principal components. 
In this analysis, the informative components of the PCA 
are PC1 and PC2 (Fig. 1B). The first principal component 
(PC1) corresponds to the most significant factor that dif-
ferentiates the samples, representing the cells’ response 
to individual treatment the samples grouped well by con-
dition (ethanol, DHT, PROG). The PC2 describes the sec-
ond critical factor, corresponding to the hormonal (DHT 
and PROG) versus control (ethanol) treatments. This 
observation seems reasonable since the hormonal treat-
ments are expected to stimulate pathways that would not 
be activated by ethanol alone. In addition, the inter-group 
variability was small since the three replicates of each 
condition grouped close together. This distinct group-
ing provided a better comparison of the transcriptomes 
between the three groups and enabled us to continue 
with further analysis (Fig. 1B). As a result, the data analy-
sis can be performed with confidence that any difference 
observed between treated and untreated cells is related 
to the hormone effect on the cells and is not a random 
finding.

We identified 19,443 differentially expressed genes 
(DEGs) between the DHT-treated BT474 and control 
cells, whereas in the PROG-treated BT474 cells, 19,561 
DEGs were identified. Of those genes, 15,422 and 15,483 
genes respectively, were protein-coding genes (Ensembl, 
Biomart analysis [40], Fig. 2A), resulting in a significant 
portion (~ 77%) of the whole genome [41].

The histograms illustrating the normal distribution 
of differentially expressed transcripts (FDR ≤ 0.05), a 
heat map and volcano plots were generated (Fig. 2B–D) 
using Perseus software. The heatmap showed that the 
gene expression profile of the DHT-treated cells differs 
from the one derived from PROG-treated cells. Many 
of the genes expressed in DHT-treated cells are not dif-
ferentially expressed in PROG-treated cells (grey color) 
(Fig.  2D) and others show the opposite direction of 
expression (up vs downregulation), and vice versa. This 
finding suggests that cells respond to the two hormones 
differently.

We only considered genes that showed more than two 
(≥ 2) fold-change in RNA abundance for further analysis 
and higher confidence. In DHT-stimulated BT474 cells, 

we identified 224 significantly differentially expressed 
genes, of which 132 were up-regulated and 92 were 
down-regulated (Table  1). Nine genes were non-detect-
able before treatment and were detected only after the 
DHT stimulation. In addition, six genes were silenced 
after DHT treatment, since no transcripts were detected 
post-treatment (raw count was 0 in all replicates). A brief 
analysis of these 224 genes showed that 195 of them were 
protein-coding, and 29 were non-coding transcripts 
(Table  1). Treatment with progesterone resulted in 243 
differentially expressed genes, of which 122 were up-reg-
ulated and 121 were down-regulated (Table 1). Similar to 
the DHT treatment, nine genes were expressed only after 
treatment, whereas 10 genes were silenced. Among the 
243 genes, 214 were protein-coding, and 29 were non-
coding (Table 1).

Comparison of the DEGs between the DHT and pro-
gesterone responses showed that only 45 genes (10.7%) 
were common. Among the 45 DEGs, 18 were upregu-
lated, 21 were downregulated, and 6 were DHT-upreg-
ulated and PROG-downregulated (Additional file 2: Fig. 
S2D). The complete list of the significant DEGs as a result 
of the hormonal treatment of BT474 cells is shown in 
Additional file 1: Table S4.

Gene ontology and pathway analysis reveals 
cancer‑related pathways gene expression
The gene ontology (GO) analysis of the differentially 
expressed transcripts was performed using the publicly 
available classification system PANTHER [29]. Results 
showed similar patterns of GO analysis between the two 
conditions for the molecular function, biological process, 
and cellular component of DEGs (Additional file  2: Fig. 
S2). Around 40% of the DEGs participate in “catalytic 
activities” (Additional file  2: Fig. S2A), consistent with 
the increased metabolic processes (Additional file 2: Fig. 
S2B). Biological processes that show higher enrichment 
in the DHT-treated cells include developmental pro-
cesses and biological regulation, which are also found to 
be significant by other androgen-related reports [42]. In 
the cellular component GO analysis, the DHT enhanced 
the expression of more genes that are associated with the 
membrane component, which is also consistent with the 
increased activation of membrane transporter proteins.

Additional signaling analysis was performed using 
DAVID (2021 Update) functional annotation. Of the 
224 significantly DHT-regulated DEGs, 57 genes were 
significantly enriched in the GAD_DISEASE_CLASS 
category, under the term “cancer” (Additional file  1: 
Table  S7). Interestingly, 13 of the 57 genes (ABCC11, 
BCL2, CXCL12, UGT1A6, UGT2B11, UGT2B15, ADRB2, 
ADH1C, DRD2, IGF1, KLK3, PNMT, and PGR) were 
associated with BCa. Further analysis in DAVID with 
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Fig. 2  Hormonally regulated changes in the BT474 transcriptome. A Pie charts illustrating the different transcript types that are hormonally 
regulated in BT474 cells. In both conditions, DHT- and PROG-treated cells, 79% of the transcripts are protein-coding, 5% long non-coding RNAs 
(lncRNA), 2% microRNAs (miRNA), 2% small non-coding RNA (ncRNA), 2% pseudogenes, and the remaining 11% belong to other categories and 
gene ID duplications. *snoRNA, snRNA, scaRNA, scRNA, miscRNA. **Polymorphic_pseudogene, processed_pseudogene, transcribed_processed_
pseudogene, transcribed_unitary_pseudogene, transcribed_unprocessed_ pseudogene, unitary_pseudogene, unprocessed_pseudogene. ***TEC 
(To be experimentally confirmed), ribosome The transcript categorization was performed on Ensembl website, using the bioinformatics tool, 
Biomart. B Histograms demonstrating the FC (fold change) distribution of DEGs in the transcript list, C Volcano plots illustrating the most significant 
differentially expressed genes. Red color shows the upregulated genes and blue color shows the downregulated genes. D Heatmap illustrating 
the differential expression profiles in DHT-treated and PROG-treated cells, respectively, compared to controls. Red color represents the upregulated 
genes, whereas the blue color represents the downregulated genes. Grey color corresponds to the genes that were not expressed, or the ratio 
could not be assessed in this experiment. All graphs were constructed in Perseus software using the log2FC values derived from the expression 
comparison between the hormone-treated and control cells. E, F Venn diagram representing the number and overlapping of DEGs in DHT-treated 
BT474 cells with known AR-regulated and cancer/BCa-related genes. The identification of the cancer/BCa related enriched genes were identified 
with the Gene Ontology annotation (E) and the KEGG analysis (F) of DAVID (2021 Update) online tool. G Comparison of gene set numbers identified 
in GSEA analysis of the RNA-seq experiment in DHT and PROG-treated BT474 cells. For the GSEA (v.3.0) analysis, only gene sets that contained 
15–200 genes were used (q-value < 0.1). DHT dihydrotestosterone (10 nM), PROG progesterone (10 nM) *NES: normalized enrichment score
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the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
revealed twelve KEGG pathways that were found to be 
significantly enriched (Benjamini–Hochberg FDR ≤ 0.05), 

whereas under PROG conditions no significant enrich-
ment pathway was identified (Additional file 1: Table S8). 
In DHT-enriched pathways, the cancer-related pathways 

PROG-treated BT474 

D) E)

Fig. 2  continued
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contained the highest number of genes (14 genes, 6.5%) 
compared to the other significant pathways. The compar-
ison of the above- mentioned genes with a list of 5,186 
known AR-regulated genes (Additional file 3: Table S3), 
showed that nine (ZBTB16, KLK3, IGF1, NKX3-1, 
CTNNA2, CXCL12, WNT6, WNT10B, and BCL2) out 
of the 14 cancer-related genes are known to be AR-reg-
ulated, whereas the rest five (ADCY2, LAMA3, LAMC2, 
RARB, and PTGER3) are identified here as newly AR-reg-
ulated candidates.

Furthermore, a total of 159 genes were first identified 
as AR-regulated genes (cancer and non-cancer related) 
in this study (Fig. 2E). In the top 20 upregulated DEGs, 
eight genes (CYP4F8, MIR548D1, HAAO, OR2B6, 
ESPNP, CASQ1, C11orf91, and TDRG1) were identified 
as newly AR-regulated genes (Additional file 1: Table S4). 
This finding suggests that AR acts differently in various 
BCa cells and underlines the variation of the hormonal 

effect in various cancerous cells. Here we show that AR 
can target unknown cancer-related genes and affect their 
expression, which may be associated indirectly with 
molecular pathways related to cancer or anti-cancer phe-
notypes. Thus, under a more global point of view of the 
AR function in this BCa cell line, we further analyzed our 
data with the GSEA method.

Pathway analysis of the hormonal regulated DEGs
In order to reveal the biological significance of our tran-
scriptomic results, we performed a GSEA analysis to 
identify gene sets and enrichment signaling pathways 
associated with BCa. We identified 46 enrichment path-
ways, of which only three gene sets were upregulated 
(1 of androgen-related pathway and two gene sets that 
belong to the fatty acid metabolism (FAM), and 43 down-
regulated (Additional file  3: Table  S6). An enrichment 
map (q < 0.1) was generated to visualize the enrichment 
network pathways (Fig. 3A). Two or more gene sets that 
showed a good relationship were clustered together and 
annotated under the same group.

On the other hand, GSEA analysis of the PROG-regu-
lated data set resulted in 321 enriched gene sets (Fig. 3B), 
313 of which were upregulated and eight downregu-
lated. Comparison of the gene sets identified in DHT and 
PROG-treated cells (Fig.  2G) revealed only three com-
mon gene sets. However, these three pathways display 
opposite enrichment score in DHT (negative) and the 
PROG (positive) conditions (Fig. 2G). In addition, using 
the AutoAnnotate Cytoscape application, we grouped 

F) G)

GSEA Pathway name DHT vs EtOH
NES score

PROG vs EtOH
NES score

Homology Directed Repair -1.93 1.62
DNA recombination -1.96 1.69
HALLMARK_E2F_TARGETS -2.33 2.31

Fig. 2  continued

Table 1  Summary table of DEGs in hormonally treated BT474 
cells with RNA sequencing

a Protein-coding transcripts
b Transcripts identified in terms of presence vs absence, and vice versa (see text)

DHT vs EtOH Progesterone vs EtOH

Genes detected 19,443 (15,422)a 19,561 (15,483)a 

Genes significant (EdgeR) 224 (195)a 243 (214)a

Common significant genes 45

Upregulated 132 (9)b 122 (9)b

Downregulated 92 (6)b 121 (10)b
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gene sets into major biological themes based on the fre-
quency within the pathways. We observed that clusters 
related to DNA replication and proliferation consist of 
downregulated pathways under DHT-treatment (blue 
arrow in Fig. 3A), whereas in PROG-treatment they are 
upregulated (red arrow in Fig. 3B). This observation con-
firms the role of DHT as an anti-proliferative hormone 
in ER+PR+ BT474 cells in contrast with progesterone, 
which promotes cell proliferation and progression in BCa 
cells [43].

We further analyzed the gene sets identified in DHT-
treated samples by investigating the leading-edge gene 
subset of the top 20 gene sets, according to the normal-
ized enrichment score (NES). We found that 20 genes 
included in the leading edge of those gene sets (Addi-
tional file  1: Table  S9) were significantly expressed (sig-
nificant DEGs list). Among these, AZGP1 was included 

in the leading edge of the “Hallmark androgen response” 
gene set and is a known AR-target gene [44, 45]. How-
ever, this gene is known to stimulate lipid degradation 
(UniProt [46]), suggesting that AZGP1 may act as a 
mediator between AR and the FAM, since other seven 
significant genes are involved in this pathway (CYP4F3, 
CYP4F12, CYP2A6, ALOX15B, CROT, ACSM1, and 
HPGD). Other genes that are not included in the leading 
edge of the top 20 gene sets, but are also FAM-related, 
are listed on Additional file  1: Table  S10. Moreover, 
CROT and HPGD are known androgen-regulated genes 
in PCa [47], but were not included on the leading edge of 
the “Hallmark androgen response” gene set. Functional 
information for those genes was obtained from UniProt 
[46]. Interestingly, AZGP1 (FC: 4.84) and the rest of the 
genes were found to be positively regulated by DHT 
(Additional file 1: Table S4).

A)

200
15

Gene set size of gene set (# of genes) overlap size

gene set enrichment score

-2.33 0 2.09
down up

Fig. 3  Pathway analysis of hormone-regulated genes identified by RNA sequencing of BT474 cells. Enrichment map of the DHT- (A) and PROG- (B) 
regulated genes. The analysis was performed using the Cytoscape software (GSEA 3.0, Enrichment Map plugin, q-value < 0.1). Blue color nodes 
represent downregulated gene sets, whereas red color nodes show the upregulated gene sets. The node size corresponds to the number of genes 
included within each gene set. For details see under Section “methods”
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Fig. 3  continued
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In vitro validation of candidate genes with quantitative 
real‑time PCR
To validate our RNAseq findings we used quantitative 
real-time PCR. A list of candidate genes for validation 
(Table  2 and Additional file  1: Table  S12) was created 
based on two criteria. The first criterion includes the 
top 10 protein-coding upregulated genes (#1–10) and 
two top downregulated genes (#20–21) of significantly 
DHT-regulated transcripts (Table  2). The second crite-
rion included genes that belong to selective enrichment 
pathways (#11–19). Two additional genes, S100P (#22) 
and NDC80 (#23), were tested as non-DHT-regulated 

(controls), since they showed a significant increase 
(> 2-FC, p-value < 0.05) only in PROG-treated cells. For 
example, S100P is a known PROG-regulated gene [48]. 
The expression of AR (#24) and ESR1 (estrogen receptor 
1) (#25) was also tested.

The expression of almost all the candidate genes was 
confirmed by qRT-PCR. All genes showed the same 
direction of expression in both RNAseq and qRT-PCR 
(Additional file 2: Fig. S3A), except GSCAM. As expected, 
the four additional genes (S100P, NDC80, AR, and ESR1) 
did not show significant change (> ± 2 FC, p-value > 0.05) 
in DHT-treated cells. In both PROG-regulated genes, 

Table 2  List of candidate genes for validation of RNAseq

# Genes RNA-seq FC FDR-adj 
p-value Pathway AR PR qRT-

PCR FC
FDR-adj 
p-value

1 ZBTB16 1161.47 3.44E-85 No annotated pathway + - 62762.08 6.55E-04
2 UGT2B11 131.60 2.44E-40 No annotated pathway + - 81.12 6.55E-04

3 KLK3 78.19 1.57E-05 Androgen-response 
pathway + - 3742.71 6.55E-04

4 UGT2B28 52.22 4.67E-15 No annotated pathway + - 622.24 4.20E-03
5 CYP4F8 48.81 0 Fatty acid metabolism + - 100.79 6.55E-04
6 RANBP3L 37.37 6.98E-47 No annotated pathway + - 20.60 4.20E-03

7 KLK2 25.33 1.42E-02 Androgen-response 
pathway + - 2351.55 1.57E-03

8 ZPLD1 22.53 4.52E-02 No annotated pathway + - 1.78 4.55E-02
9 MYBPC1 22.48 4.70E-62 No annotated pathway + + 21.39 2.00E-06
10 HAAO 21.71 2.87E-10 No annotated pathway + + 3.12 1.05E-03

11 FKBP5 6.10 9.57E-23 Androgen-response 
pathway + + 8.22 3.96E-03

12 AZGP1 4.84 2.85E-22 Androgen-response 
pathway + + 5.04 3.24E-03

13 CYP4F3 4.66 7.33E-33 Fatty acid metabolism + + 5.08 1.11E-02
14 ALOX15B 2.78 1.44E-73 Fatty acid metabolism + - 3.65 3.96E-03
15 NABP1 -2.09 7.77E-09 DNA recombination + - -1.81 1.10E-02

16 CXCL12 -2.75 2.89E-24
Signaling by 

ERBB4/Estrogen-
dependent gene expression

+ + -2.98 3.84E-03

17 PGR -2.87 1.19E-72 Signaling by 
ERBB4/Estrogen- + + -2.27 1.11E-02

dependent gene expression
18 WNT6 -3.02 1.14E-03 Wnt-beta catenin signaling + - -6.92 2.61E-02
19 DKK1 -3.26 5.02E-36 Wnt-beta catenin signaling + - -3.33 1.11E-02
20 GCSAM -22.00 1.82E-02 No annotated pathway + - 2.13* 7.13E-01
21 DKK2 -27.95 2.06E-09 No annotated pathway + + -12.24 4.20E-03

22 S100P-DHT 1.48 2.26E-04 No annotated pathway - + 1.37 3.41E-02
S100P-PROG 2.92 3.30E-30 No annotated pathway 4.09 1.17E-02

23 NDC80-DHT* 1.04 7.51E-01 No annotated pathway - + -1.51* 9.82E-01
NDC80-PROG 2.10 2.72E-38 No annotated pathway 1.69 4.35E-02

24 AR -1.59 3.09E-31 Androgen-response 
pathway - - -1.33 1.70E-02

25 ESR1 -1.38 1.87E-16
Signaling by 

ERBB4/Estrogen-
dependent gene expression

- - -1.72* 6.66E-02

Rows highlighted in grey indicate the validated genes by qRT-PCR

FC fold change
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S100P and NDC80, their expression was also validated 
with qRT-PCR as shown in Additional file  2: Fig. S3B. 
Depiction of representative validated genes that their 
FC expression could be shown qualitatively is shown in 
Additional file 2: Fig. S3C.

Inhibition of AR suppressed five genes, (ZBTB16, 
KLK3, UGT2B11, UGT2B28 and MYBPC1) (Additional 
file 2: Fig. S4C), which are included in the top 10 highly 
upregulated genes in DHT-treated BT474 cells (Table 2). 
At the same time, two representative AR-downregu-
lated genes, (CXCL12 and PGR), showed significantly 
increased expression levels after the inhibition of AR 
(Additional file 2: Fig. S4C).

BCa cell lines with high AR expression levels share similar 
expression profiles
Our results showed that AR expression levels of MDA-
MB-453 cells are the highest [49], followed by BT474, 
ZR75.1, whereas SkBr3 cells expressed the lowest AR 
mRNA levels. This is also in agreement with the RNA 
sequencing data available from CCLE (Cancer Cell Line 
Encyclopedia, https://​sites.​broad​insti​tute.​org/​ccle/) 
(Additional file  1: Table  S11 and Additional file  2: Fig. 
S5A). Analysis of the expression of the validated genes 
revealed that BT474, ZR75.1 and MDA-MB-453 cell 
lines share common expression changes in many genes 
(Additional file 2: Fig. S5E). Interestingly, these three cell 
lines have the highest levels of AR compared to the other 
cell lines. Furthermore, we classified the validated genes 
based on the GSEA pathway analysis, to identify any 
pathways that are enriched in the above-mentioned cell 
lines (Additional file 2: Fig. S6). Expression of most genes 
(ZBTB16, UGT2B11, UGT2B28, RANBP3L, MYBPC1, 
and HAAO) were not included in any annotated path-
way. These genes along with the FAM-related genes were 
found to be increased in the three AR-highly expressed 
cell lines. Depiction of representative validated genes and 
their FC expression could be found in Additional file  2: 
Fig. S6B.

PRM verifies the AR‑regulated expression of the top 
candidate genes
A general representation of the PRM experimental work-
flow is depicted in Fig. 1C. KLK3 expression was tested in 
treated and untreated BT474 cells, at the protein level, as 
indicator (positive control) of the successful stimulation. 
As expected, KLK3 protein levels increased after 5-days 
in both independent experiments, A and B (Additional 
file 2: Fig. S1B). We investigated the protein expression of 
23 genes in BT474 of these 21 were qRT-PCR-validated 
genes (identified in RNA sequencing) two genes were 
used as additional controls including PMEPA1 (known 
AR-regulated gene, second positive control at 24 h) [50, 

51] and NDC80 (cell cycle and mitosis pathway, negative 
control at 24 h) [52] (Table 2, Additional file 1: Table S12). 
Nine out of 23 (39%) proteins were verified (Additional 
file 2: Fig. S7A). Four proteins (KLK3, ALOX15B, AZGP1, 
and S100P) showed increased expression after DHT 
treatment, whereas five proteins (PGR, NABP1, NDC80, 
CXCL12, and DKK1) showed a decrease.

It is noteworthy that in some cases, the L/H ratio 
could not be calculated due to the absence of endog-
enous (light) peptides. (Additional file  2: Fig. S7B, C.). 
Some of those proteins are grouped under the same bio-
logical pathways and behaved as expected. For example, 
KLK3, AZGP1, and IQGAP2 belong to the upregulated 
androgen-responsive pathway, and PGR, and CXCL12 
belong to the downregulated estrogen-dependent gene 
expression pathway (GSEA, Enrichment map). In addi-
tion, DKK1, member of WNT-beta catenin signaling 
pathway, and ALOX15B, a member of fatty acid metab-
olism, were found to be downregulated and upregu-
lated, respectively, consistent with the negative/positive 
enrichment of the respective pathways (GSEA analysis). 
Similarly, genes associated with cell cycle were found to 
be downregulated for example, NABP1 belongs to the 
DNA recombination/repair process (negatively enriched, 
GSEA analysis of RNAseq) and NDC80 (member of kine-
tochore complex) is required for the spindle checkpoint 
during mitosis [52, 53].

Interaction studies
The STRING analysis confirmed connection of co-
expressed genes, mentioned above (Fig. 4). Some exam-
ples are AR, KLK3, and AZGP1, which belong to the 
androgen-response pathway and PGR, and CXCL12, 
which are known members of estrogen-dependent gene 
expression and interact directly with ESR1. It is worth 
mentioning that the gene group, AR-KLK3-AZGP1-
(STRING network, Fig.  4), was mentioned in a patent 
application as biomarkers for PCa diagnosis in 2015 [54], 
and were also detected in proteomic studies of seminal 
plasma [45], suggesting that there is a strong androgen-
dependent association among these genes. Moreover, 
high protein levels of AZGP1 were also associated with 
less aggressive phenotype in ER+ BCa and delayed recur-
rence of PCa [55].

Correlation of the transcriptomic and proteomic changes 
of DHT‑treated BT474 cells
Next, we wanted to examine if protein levels correlated 
with mRNA expression of the respective genes. We per-
formed a Pearson correlation analysis between the log2 
fold change values of the 17-verified proteins by PRM 
experiments (A and B) and the log2 RPKM values derived 
from RNA sequencing. In both comparisons (RPMA/B vs 

https://sites.broadinstitute.org/ccle/
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RNAseq), the correlation coefficient (r) showed a mod-
erate to strong positive linear relationship (rA = 0.73 and 
rB = 0.69 respectively, Additional file  1: Table  S13) [56], 

suggesting that for these 17 genes, mRNA expression 
changes were accompanied with similar protein levels 
changes (Fig. 5A and B).

Fig. 4  Schematic representation of the significant DEGs of DHT-regulated BT474 cells, using the online tool, STRING. The genes associated with 
either fatty acid metabolism or the WNT-pathway, cluster clearly together. Lines with different colors represent the source of data that indicate the 
protein–protein interaction light blue: from curated databases, purple: experimentally determined, green: gene neighborhood, red: gene fusions, 
dark blue: gene co-occurrence, yellow: text mining, black: co-expression, and grey: protein homology
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Fig. 5  Pearson correlation analysis between the transcript and protein levels of DHT-regulated genes in BT474 cells. The X axis shows the 
transcriptomic (log2 RPKM ratio) and the Y axis the proteomic (log2 PRM ratio) levels of DHT-treated BT474 cells. The graphs A and B show the 
comparison of the RNA sequencing results with the two PRM experiments, respectively. Pearson correlation was calculated using the GraphPad 
software
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Discussion
Increasing technological advances helped to improve 
our knowledge in BCa-related molecular characteristics 
[57]. Although cost prohibitive as a routine molecular 
diagnostic for the clinic, RNA sequencing has proved a 
powerful tool. Therefore, BCa research with RNA-seq in 
tissue samples or cell lines can help focus on molecular 
mechanisms of cancer progression.

In our study, we used RNA sequencing to identify 
androgen-regulated genes in the BCa cell line, BT474, and 
investigated transcriptomic changes caused by the andro-
gen, DHT. The BT474 cell line is an ER+PR+HER2+AR+ 
BCa cell line with high response to androgen treatment 
[18, 22] and for this reason, we chose it as a model for the 
current experiments. Of the 19,443 candidate DHT-reg-
ulated DEGs, 15,422 (79.3%) were protein-coding tran-
scripts. As observed, AR and its ligand, DHT, affect the 
expression of known and unknown androgen-regulated 
genes associated with cancer (Fig. 2E, F, Additional file 3: 
Table  S4-5), many of which are also BCa-related genes. 
At the same time, we investigated the effect of progester-
one to exclude the possibility that any observed changes 
can be caused non-specifically by either of the two hor-
mones. While comparing the results of the two hormonal 
treatments, we found that a few identical genes exhibited 
similar expression (9.3%, Fig.  2D, Additional file  2: Fig. 
S2D), whereas the molecular pathways were enriched in 
opposing directions (Fig. 2G).

The results from GSEA analysis showed that only three 
gene sets were positively enriched in DHT-treated cells. 
The first one was the androgen-related pathway and the 
other two belonged to fatty acid metabolism (Fig.  3A). 
The enrichment of the first pathway was somehow 
expected since the observations were seen upon stimu-
lation with the androgen DHT. The second molecular 
pathway, the fatty acid metabolism, was an interesting 
finding. The fatty acid metabolism (FAM) is an essential 
component for energy production in cells. Dysregulation 
of FAM has been associated with a malignant phenotype 
in different cancer types, such as PCa [42] and BCa [58]. 
Monaco M.E et al. [58] attempted to gather information 
regarding FAM pathways and classify them based on the 
intrinsic molecular BCa subtypes. The authors report 
that the luminal-type BCas maintain a balance between 
lipid synthesis and oxidation, whereas the more aggres-
sive basal-like BCa, TNBC, overexpress genes that are 
related to the utilization of exogenous fatty acids. Simi-
larly, our data show overexpression of genes associated 
with fatty acid synthesis (ACACA, FASN) and activa-
tion (ACSL3), and downregulation of SLC6A14, which is 
involved in glutamine uptake. Another study reports the 
upregulation of FASN expression upon DHT stimula-
tion in AR+ER+PR+T47D cells, which are accompanied 

by the formation of lipid droplets and decreased cell 
growth [59]. In addition, the known AR-upregulated 
genes, UGT2B11 and UGT2B28, were recently reported 
to cross-talk between androgen and lipid signaling [60, 
61]. Thus, DHT could cause lipid accumulation, which 
leads to cell differentiation by arresting the proliferation 
of cancer cells through gene regulation [59].

The arrest of cell proliferation was observed through 
the GSEA analysis (Fig. 3A), in which most of the down-
regulated pathways were associated with DNA replica-
tion, mitosis, and other proliferation-related pathways. 
Two representative genes, NDC80 and NABP1, were 
found to be downregulated by DHT. Previous studies 
showed that NDC80, a vital member of the kinetochore 
assembly complex during mitosis, was upregulated in 
benign breast tumors [53] and was related to the malig-
nant features of BCa [62]. On the other hand, the role of 
NABP1, a gene associated with DNA replication (GSEA 
analysis), in BCa is still unclear. However, by reducing the 
expression of all those genes, AR may suppress cell prolif-
eration (Fig. 6), suggesting a protective role in BCa pro-
gression in BT474 cells, and perhaps in other AR+ER+ 
BCas, that needs to be further investigated.

Furthermore, the upregulation of two tumor suppress-
ing genes, CLDN8 (FC: 3.34) and ZBTB16 (FC: 1161.47) 
is in concordance with the above finding. The first gene, 
CLDN8, is associated with a favorable prognosis in BCa 
when it is co-expressed with AR, suggesting that CLDN8 
acts as a tumor-suppressor gene [63]. In the same way, 
the top DHT-upregulated gene, ZBTB16, is a known 
AR-regulated gene mainly for its expression in PCa. In 
BCa, ZBTB16 was also found to be expressed, but little 
is known regarding its function [7]. This gene is a tumor-
suppressor with anti-proliferative activity in PCa cells 
[64]. Androgen receptor causes ZBTB16 expression in 
PCa cells and in turn ZBTB16 regulates AR activity by 
acting as a negative feedback regulator, controlling AR-
dependent cell proliferation [65–67]. Considering this, 
it is possible that AR upregulates ZBTB16 expression to 
suppress the expression of downstream genes that pro-
mote the cancerous behavior of these cells.

In addition, we validated the downregulation of genes 
related with the Wnt-pathway (DKK1 [GSEA], WNT6 
[GSEA], WNT10B [GSEA], and CAV1 [68]) and estrogen-
pathway (PGR and CXCL12), which are usually increased 
in ER+ BCa [69] (Fig. 3A and Additional file 2: Fig. S3A). 
Furthermore, it is worth mentioning that DKK1 (UniProt 
[46]) and BCL2 genes [70] show anti-apoptotic activity. 
Thus, their DHT-induced downregulation may activate 
the apoptotic process in BCa cells. Last but not least, 
MYBPC1, which is a known AR-regulated gene in PCa 
[47], was found to be one of the top 10 upregulated genes. 
Interestingly, it is suggested to be a favorable prognostic 
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marker in BCa based on the Human Protein Atlas Pathol-
ogy [71].

Another important finding was identifying a common 
gene expression profile in three BCa cell lines, BT474, 
ZR75.1 and MDA-MB-453, after DHT treatment (Addi-
tional file 2: Fig. S5). The first two are AR+ER+PR+ BCa 
cell lines, whereas the third is an AR+TNBC. In agree-
ment with the literature [19, 72, 73], we found that all the 
three cell lines express AR at higher levels in comparison 
to the other BCa cell lines (Additional file 1: Table S1 and 
Additional file 2: Fig. S5A).

Verification of the candidate genes using PRM fur-
ther supports our data from RNAseq. The expres-
sion of nine out of 23 genes (39%) was verified with a 
positive correlation between their mRNA and protein 
expression levels in both PRM experiments (Fig.  5). 
However, this percentage is low, but it was expected 
considering the challenges of low correspondence 
between mRNA and protein expression levels due to 
biological (e.g., molecular differences between mRNA 
and proteins) and technical challenges (e.g., peptide 
modifications). In addition, it is worth mentioning 
that genes with low mRNA-protein correlation often 

participate in the formation of large protein com-
plexes, such as those related to complement activation, 
oxidative phosphorylation, and transcription initiation 
[74], resulting protein quantification that is less corre-
lated with RNA measurements. Targets that could not 
be detected with the PRM method are not necessarily 
absent. Proteins and mRNA molecules are structur-
ally and functionally different. Both molecules differ in 
the half-life rate, turnover, and stability [75]. In addi-
tion, some mRNAs may be translated into low abun-
dance proteins, which could be below the detection 
limit of our proteomic assay [76]. Of note, the pro-
teins that correspond to the mRNAs detected at the 
24 h time point are not necessarily detectable at same 
time point. Thus, transcripts and proteins are tempo-
rally different, and some findings may derive from sec-
ondary responses to androgen, after the 24  h period. 
We should also consider the features of the various 
techniques used to detect and identify of mRNAs 
and proteins. The sensitivity and limit of detection of 
transcriptomic and proteomic techniques are differ-
ent. Usually, transcriptomics is more sensitive than 
proteomics. Many transcripts do not show protein 
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evidence or translated proteins may exhibit incom-
plete or wrong annotations of genes [77], explaining 
the absence of proteins that correspond to specific 
mRNAs.

Nevertheless, targeted mass spectrometry-based 
approaches are widely used in research for protein 
detection and quantification. The novel targeted MS-
based approach of heavy-peptide labelled PRM shows 
high analytical performance, high sensitivity and high 
mass accuracy [78, 79]. This may be a useful tool for 
further implementation in more relevant systems 
[80], such as in cell line in  vivo models, and patient-
derived xenograft models [81, 82], with potential to 
be ultimately used in clinical assays. Thus, precision 
medicine can benefit from this approach by identify-
ing biomarkers for monitoring disease progression 
or response to treatment, based on the patient’s pro-
teome [81, 82].

To summarize, in BT474, DHT increases expression of 
cell proliferation-related genes, FAM genes related to the 
lipid synthesis and oxidation [58], which may be associ-
ated with decreased cell growth and increased cell dif-
ferentiation [59]. On the other hand, we observed that 
FAM-related genes were also expressed in DHT-treated 
MDA-MB-453 cells, as previously observed by oth-
ers [58], were associated with malignant phenotype in 
TNBC [73], and with increased cell proliferation [20, 73]. 
Taken this information into consideration, we speculate 
that AR can take advantage of the increased FAM to 
arrest tumor growth in luminal-type BCa, or to promote 
tumor progression in TNBC. Furthermore, knowing that 
MCF7 cells show increased proliferation, whereas T47D 
and ZR75.1 cells decreased [20], the differences in cell 
proliferation rate of androgen-treated BCa cells could 
be a result of the AR to ER ratio [5]. More specifically, 
AR causes increased tumor growth in TNBC with high 
AR levels (MDA-MB-453) [5, 83] and in ER+BCa with 
low AR levels (MCF7) [5, 84, 85]. On the other hand, AR 
acts as tumor suppressor in ER+BCa with high AR levels 
(BT474, T47D and ZR75.1) [20]. Nevertheless, this spec-
ulation needs further investigation.

Interaction analysis of these proteins revealed that 
AR is a significant regulator of gene expression in AR+ 
BCa, involving cross-talk with primary BCa-related 
genes that in turn activate secondary signaling path-
ways associated with BCa (reviewed in Ref. [69]). We 
can assume that DHT acts as a suppressor of cell pro-
liferation and of anti-apoptotic processes, essential for 
cancer progression (Fig.  6). However, future extended 
inhibitory studies of AR and its partners will be very 
important to define the actual signaling action of AR 
and complete the identified primary targets (activator 

and repressor transcription factors), and subsequent 
AR-related secondary responses.

Conclusions
The AR mechanism of action shows diverse effects in 
different BCa subtypes, indicating the necessity of more 
profound investigation of AR-mediated mechanism in a 
BCa subtype-based approach, which can be extended in 
therapies co-targeting the AR signaling along with other 
pathways (e.g., fatty acid metabolism) depending on the 
hormonal profiling of BCa. This information could be 
used in the treatment of BCa through the AR pathway 
that may act as a mechanism of tumor suppression by 
downregulating cancer-promoting pathways and pre-
venting cell growth, in a personalized manner, that needs 
to be further elucidated.
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