ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Benefits of Two Mitigation Strategies for Container Vessels: Cleaner Engines and Cleaner Fuels

View Author Information
Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
College of Engineering−Center for Environmental Research and Technology, University of California, Riverside, 1084 Columbia Avenue, Riverside, California 92507, United States
Cite this: Environ. Sci. Technol. 2012, 46, 9, 5049–5056
Publication Date (Web):April 2, 2012
https://doi.org/10.1021/es2043646
Copyright © 2012 American Chemical Society

    Article Views

    735

    Altmetric

    -

    Citations

    35
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Emissions from ocean-going vessels (OGVs) are a significant health concern for people near port communities. This paper reports the emission benefits for two mitigation strategies, cleaner engines and cleaner fuels, for a 2010 container vessel. In-use emissions were measured following International Organization for Standardization (ISO) protocols. The overall in-use nitrogen oxide (NOx) emission factor was 16.1 ± 0.1 gkW–1 h–1, lower than the Tier 1 certification (17 gkW–1 h–1) and significantly lower than the benchmark value of 18.7 gkW–1 h–1 commonly used for estimating emission inventories. The in-use particulate matter (PM2.5) emission was 1.42 ± 0.04 gkW–1 h–1 for heavy fuel oil (HFO) containing 2.51 wt % sulfur. Unimodal (∼30 nm) and bimodal (∼35 nm; ∼75 nm) particle number size distributions (NSDs) were observed when the vessel operated on marine gas oil (MGO) and HFO, respectively. First-time emission measurements during fuel switching (required 24 nautical miles from coastline) showed that concentrations of sulfur dioxide (SO2) and particle NSD took ∼55 min to reach steady-state when switching from MGO to HFO and ∼84 min in the opposite direction. Therefore, if OGVs commence fuel change at the regulated boundary, then vessels can travel up to 90% of the distance to the port before steady-state values are re-established. The transient behavior follows a classic, nonlinear mixing function driven by the amount of fuel in day tank and the fuel consumption rate. Hence, to achieve the maximum benefits from a fuel change regulation, fuel switch boundary should be further increased to provide the intended benefits for the people living near the ports.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional selected specifications of vessel and engine and detailed derivation of the equation to predict switchover time. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 35 publications.

    1. Kati Lehtoranta, Päivi Aakko-Saksa, Timo Murtonen, Hannu Vesala, Leonidas Ntziachristos, Topi Rönkkö, Panu Karjalainen, Niina Kuittinen, Hilkka Timonen. Particulate Mass and Nonvolatile Particle Number Emissions from Marine Engines Using Low-Sulfur Fuels, Natural Gas, or Scrubbers. Environmental Science & Technology 2019, 53 (6) , 3315-3322. https://doi.org/10.1021/acs.est.8b05555
    2. Nicholas R. Gysel, William A. Welch, Kent Johnson, Wayne Miller, and David R. Cocker, III . Detailed Analysis of Criteria and Particle Emissions from a Very Large Crude Carrier Using a Novel ECA Fuel. Environmental Science & Technology 2017, 51 (3) , 1868-1875. https://doi.org/10.1021/acs.est.6b02577
    3. Nicholas R. Gysel, Robert L. Russell, William A. Welch, and David R. Cocker, III . Impact of Aftertreatment Technologies on the In-Use Gaseous and Particulate Matter Emissions from a Tugboat. Energy & Fuels 2016, 30 (1) , 684-689. https://doi.org/10.1021/acs.energyfuels.5b01987
    4. Valbona Celo, Ewa Dabek-Zlotorzynska, and Mark McCurdy . Chemical Characterization of Exhaust Emissions from Selected Canadian Marine Vessels: The Case of Trace Metals and Lanthanoids. Environmental Science & Technology 2015, 49 (8) , 5220-5226. https://doi.org/10.1021/acs.est.5b00127
    5. Ling Tao, David Fairley, Michael J. Kleeman, and Robert A. Harley . Effects of Switching to Lower Sulfur Marine Fuel Oil on Air Quality in the San Francisco Bay Area. Environmental Science & Technology 2013, 47 (18) , 10171-10178. https://doi.org/10.1021/es401049x
    6. M. Yusuf Khan, Harshit Agrawal, Sindhuja Ranganathan, William A. Welch, J. Wayne Miller, and David R. Cocker, III . Greenhouse Gas and Criteria Emission Benefits through Reduction of Vessel Speed at Sea. Environmental Science & Technology 2012, 46 (22) , 12600-12607. https://doi.org/10.1021/es302371f
    7. Rafał Krakowski, Kazimierz Witkowski. Investigating the Effects of Environmentally Friendly Additives on the Exhaust Gas Composition and Fuel Consumption of an Internal Combustion Engine. Applied Sciences 2024, 14 (7) , 2956. https://doi.org/10.3390/app14072956
    8. Hasan Koten, Mohammad Mostafa Namar. Artificial Intelligence in Diesel Engines. 2024https://doi.org/10.5772/intechopen.1003741
    9. Wenqi Hou, Zeyu Liu, Guangyuan Yu, Shujun Bie, Yan Zhang, Yingjun Chen, Dong Ma, Fan Zhang, Chunjing Lou, Xiaodong Hu, Yong Gui, Weizhong Zhou. On-board measurements of OC/EC ratio, mixing state, and light absorption of ship-emitted particles. Science of The Total Environment 2023, 904 , 166692. https://doi.org/10.1016/j.scitotenv.2023.166692
    10. Sangita Choudhary, Tapan Panda, Abhishek Behl. Modelling the linkage between fossil fuel usage and organizational sustainability. Journal of Cleaner Production 2023, 413 , 137440. https://doi.org/10.1016/j.jclepro.2023.137440
    11. Defu Zhang, Zhenyu Shen, Nan Xu, Tingting Zhu, Lei Chang, Hui Song. Development of a Zero-Dimensional Model for a Low-Speed Two-Stroke Marine Diesel Engine with Exhaust Gas Bypass and Performance Evaluation. Processes 2023, 11 (3) , 936. https://doi.org/10.3390/pr11030936
    12. Päivi T. Aakko-Saksa, Kati Lehtoranta, Niina Kuittinen, Anssi Järvinen, Jukka-Pekka Jalkanen, Kent Johnson, Heejung Jung, Leonidas Ntziachristos, Stéphanie Gagné, Chiori Takahashi, Panu Karjalainen, Topi Rönkkö, Hilkka Timonen. Reduction in greenhouse gas and other emissions from ship engines: Current trends and future options. Progress in Energy and Combustion Science 2023, 94 , 101055. https://doi.org/10.1016/j.pecs.2022.101055
    13. Achilleas Grigoriadis, Sokratis Mamarikas, Ioannis Ioannidis, Elisa Majamäki, Jukka-Pekka Jalkanen, Leonidas Ntziachristos. Development of exhaust emission factors for vessels: A review and meta-analysis of available data. Atmospheric Environment: X 2021, 12 , 100142. https://doi.org/10.1016/j.aeaoa.2021.100142
    14. Jiacheng Yang, Tianbo Tang, Yu Jiang, Georgios Karavalakis, Thomas D. Durbin, J. Wayne Miller, David R. Cocker, Kent C. Johnson. Controlling emissions from an ocean-going container vessel with a wet scrubber system. Fuel 2021, 304 , 121323. https://doi.org/10.1016/j.fuel.2021.121323
    15. Angelos T. Anastasopolos, Uwayemi M. Sofowote, Philip K. Hopke, Mathieu Rouleau, Tim Shin, Aman Dheri, Hui Peng, Ryan Kulka, Mark D. Gibson, Paul-Michel Farah, Navin Sundar. Air quality in Canadian port cities after regulation of low-sulphur marine fuel in the North American Emissions Control Area. Science of The Total Environment 2021, 791 , 147949. https://doi.org/10.1016/j.scitotenv.2021.147949
    16. Robert A. Kotchenruther. Source apportionment of PM 2.5 at IMPROVE monitoring sites within and outside of marine vessel fuel sulfur emissions control areas. Journal of the Air & Waste Management Association 2021, 71 (9) , 1114-1126. https://doi.org/10.1080/10962247.2021.1917463
    17. Hannah Schlaerth, Joseph Ko, Rebecca Sugrue, Chelsea Preble, George Ban-Weiss. Determining black carbon emissions and activity from in-use harbor craft in Southern California. Atmospheric Environment 2021, 256 , 118382. https://doi.org/10.1016/j.atmosenv.2021.118382
    18. Cavan McCaffery, Hanwei Zhu, Georgios Karavalakis, Thomas D. Durbin, J. Wayne Miller, Kent C. Johnson. Sources of air pollutants from a Tier 2 ocean-going container vessel: Main engine, auxiliary engine, and auxiliary boiler. Atmospheric Environment 2021, 245 , 118023. https://doi.org/10.1016/j.atmosenv.2020.118023
    19. Weihan Peng, Jiacheng Yang, Joel Corbin, Una Trivanovic, Prem Lobo, Patrick Kirchen, Steven Rogak, Stéphanie Gagné, J. Wayne Miller, David Cocker. Comprehensive analysis of the air quality impacts of switching a marine vessel from diesel fuel to natural gas. Environmental Pollution 2020, 266 , 115404. https://doi.org/10.1016/j.envpol.2020.115404
    20. Richao Wang, Zibing Yuan, Junyu Zheng, Cheng Li, Zhijiong Huang, Wenshi Li, Yan Xie, Yiran Wang, Kaiyang Yu, Lejun Duan. Characterization of VOC emissions from construction machinery and river ships in the Pearl River Delta of China. Journal of Environmental Sciences 2020, 96 , 138-150. https://doi.org/10.1016/j.jes.2020.03.013
    21. Jonathan P. D. Abbatt, W. Richard Leaitch, Amir A. Aliabadi, Allan K. Bertram, Jean-Pierre Blanchet, Aude Boivin-Rioux, Heiko Bozem, Julia Burkart, Rachel Y. W. Chang, Joannie Charette, Jai P. Chaubey, Robert J. Christensen, Ana Cirisan, Douglas B. Collins, Betty Croft, Joelle Dionne, Greg J. Evans, Christopher G. Fletcher, Martí Galí, Roya Ghahreman, Eric Girard, Wanmin Gong, Michel Gosselin, Margaux Gourdal, Sarah J. Hanna, Hakase Hayashida, Andreas B. Herber, Sareh Hesaraki, Peter Hoor, Lin Huang, Rachel Hussherr, Victoria E. Irish, Setigui A. Keita, John K. Kodros, Franziska Köllner, Felicia Kolonjari, Daniel Kunkel, Luis A. Ladino, Kathy Law, Maurice Levasseur, Quentin Libois, John Liggio, Martine Lizotte, Katrina M. Macdonald, Rashed Mahmood, Randall V. Martin, Ryan H. Mason, Lisa A. Miller, Alexander Moravek, Eric Mortenson, Emma L. Mungall, Jennifer G. Murphy, Maryam Namazi, Ann-Lise Norman, Norman T. O'Neill, Jeffrey R. Pierce, Lynn M. Russell, Johannes Schneider, Hannes Schulz, Sangeeta Sharma, Meng Si, Ralf M. Staebler, Nadja S. Steiner, Jennie L. Thomas, Knut von Salzen, Jeremy J. B. Wentzell, Megan D. Willis, Gregory R. Wentworth, Jun-Wei Xu, Jacqueline D. Yakobi-Hancock. Overview paper: New insights into aerosol and climate in the Arctic. Atmospheric Chemistry and Physics 2019, 19 (4) , 2527-2560. https://doi.org/10.5194/acp-19-2527-2019
    22. Yu Jiang, Jiacheng Yang, Stéphanie Gagné, Tak W. Chan, Kevin Thomson, Emmanuel Fofie, Robert A. Cary, Dan Rutherford, Bryan Comer, Jacob Swanson, Yue Lin, Paul Van Rooy, Akua Asa-Awuku, Heejung Jung, Kelley Barsanti, Georgios Karavalakis, David Cocker, Thomas D. Durbin, J. Wayne Miller, Kent C. Johnson. Sources of variance in BC mass measurements from a small marine engine: Influence of the instruments, fuels and loads. Atmospheric Environment 2018, 182 , 128-137. https://doi.org/10.1016/j.atmosenv.2018.03.008
    23. Hendryk Czech, Benjamin Stengel, Thomas Adam, Martin Sklorz, Thorsten Streibel, Ralf Zimmermann. A chemometric investigation of aromatic emission profiles from a marine engine in comparison with residential wood combustion and road traffic: Implications for source apportionment inside and outside sulphur emission control areas. Atmospheric Environment 2017, 167 , 212-222. https://doi.org/10.1016/j.atmosenv.2017.08.022
    24. Thorsten Streibel, Jürgen Schnelle-Kreis, Hendryk Czech, Horst Harndorf, Gert Jakobi, Jorma Jokiniemi, Erwin Karg, Jutta Lintelmann, Georg Matuschek, Bernhard Michalke, Laarnie Müller, Jürgen Orasche, Johannes Passig, Christian Radischat, Rom Rabe, Ahmed Reda, Christopher Rüger, Theo Schwemer, Olli Sippula, Benjamin Stengel, Martin Sklorz, Tiina Torvela, Benedikt Weggler, Ralf Zimmermann. Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil. Environmental Science and Pollution Research 2017, 24 (12) , 10976-10991. https://doi.org/10.1007/s11356-016-6724-z
    25. Robert A. Kotchenruther. The effects of marine vessel fuel sulfur regulations on ambient PM2.5 at coastal and near coastal monitoring sites in the U.S.. Atmospheric Environment 2017, 151 , 52-61. https://doi.org/10.1016/j.atmosenv.2016.12.012
    26. Raghu Betha, Lynn M. Russell, Kevin J. Sanchez, Jun Liu, Derek J. Price, Maryam A. Lamjiri, Chia-Li Chen, Xiaobi M. Kuang, Gisele O. da Rocha, Suzanne E. Paulson, J. Wayne Miller, David R. Cocker. Lower NO x but higher particle and black carbon emissions from renewable diesel compared to ultra low sulfur diesel in at-sea operations of a research vessel. Aerosol Science and Technology 2017, 51 (2) , 123-134. https://doi.org/10.1080/02786826.2016.1238034
    27. Daniel A. Burgard, Carmen R.M. Bria. Bridge-based sensing of NOx and SO2 emissions from ocean-going ships. Atmospheric Environment 2016, 136 , 54-60. https://doi.org/10.1016/j.atmosenv.2016.04.014
    28. Zihang Peng, Yunshan Ge, Jianwei Tan, Mingliang Fu, Xin Wang, Ming Chen, Hang Yin, Zhe Ji. Emissions from several in-use ships tested by portable emission measurement system. Ocean Engineering 2016, 116 , 260-267. https://doi.org/10.1016/j.oceaneng.2016.02.035
    29. Amir A. Aliabadi, Jennie L. Thomas, Andreas B. Herber, Ralf M. Staebler, W. Richard Leaitch, Hannes Schulz, Kathy S. Law, Louis Marelle, Julia Burkart, Megan D. Willis, Heiko Bozem, Peter M. Hoor, Franziska Köllner, Johannes Schneider, Maurice Levasseur, Jonathan P. D. Abbatt. Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker Amundsen from the Polar 6 aircraft platform. Atmospheric Chemistry and Physics 2016, 16 (12) , 7899-7916. https://doi.org/10.5194/acp-16-7899-2016
    30. Juha Kalli, Sari Repka, Minna Alhosalo. Estimating Costs and Benefits of Sulphur Content Limits in Ship Fuel. International Journal of Sustainable Transportation 2015, 9 (7) , 468-477. https://doi.org/10.1080/15568318.2013.808389
    31. Jonathan Westerlund, Mattias Hallquist, Åsa M. Hallquist. Characterization of fleet emissions from ships through multi-individual determination of size-resolved particle emissions in a coastal area. Atmospheric Environment 2015, 112 , 159-166. https://doi.org/10.1016/j.atmosenv.2015.04.018
    32. Sebastian Oeder, Tamara Kanashova, Olli Sippula, Sean C. Sapcariu, Thorsten Streibel, Jose Manuel Arteaga-Salas, Johannes Passig, Marco Dilger, Hanns-Rudolf Paur, Christoph Schlager, Sonja Mülhopt, Silvia Diabaté, Carsten Weiss, Benjamin Stengel, Rom Rabe, Horst Harndorf, Tiina Torvela, Jorma K. Jokiniemi, Maija-Riitta Hirvonen, Carsten Schmidt-Weber, Claudia Traidl-Hoffmann, Kelly A. BéruBé, Anna J. Wlodarczyk, Zoë Prytherch, Bernhard Michalke, Tobias Krebs, André S. H. Prévôt, Michael Kelbg, Josef Tiggesbäumker, Erwin Karg, Gert Jakobi, Sorana Scholtes, Jürgen Schnelle-Kreis, Jutta Lintelmann, Georg Matuschek, Martin Sklorz, Sophie Klingbeil, Jürgen Orasche, Patrick Richthammer, Laarnie Müller, Michael Elsasser, Ahmed Reda, Thomas Gröger, Benedikt Weggler, Theo Schwemer, Hendryk Czech, Christopher P. Rüger, Gülcin Abbaszade, Christian Radischat, Karsten Hiller, Jeroen T. M. Buters, Gunnar Dittmar, Ralf Zimmermann, . Particulate Matter from Both Heavy Fuel Oil and Diesel Fuel Shipping Emissions Show Strong Biological Effects on Human Lung Cells at Realistic and Comparable In Vitro Exposure Conditions. PLOS ONE 2015, 10 (6) , e0126536. https://doi.org/10.1371/journal.pone.0126536
    33. Robert A. Kotchenruther. The effects of marine vessel fuel sulfur regulations on ambient PM 2.5 along the west coast of the U.S.. Atmospheric Environment 2015, 103 , 121-128. https://doi.org/10.1016/j.atmosenv.2014.12.040
    34. C. D. Cappa, E. J. Williams, D. A. Lack, G. M. Buffaloe, D. Coffman, K. L. Hayden, S. C. Herndon, B. M. Lerner, S.-M. Li, P. Massoli, R. McLaren, I. Nuaaman, T. B. Onasch, P. K. Quinn. A case study into the measurement of ship emissions from plume intercepts of the NOAA ship Miller Freeman. Atmospheric Chemistry and Physics 2014, 14 (3) , 1337-1352. https://doi.org/10.5194/acp-14-1337-2014
    35. M. Yusuf Khan, Sindhuja Ranganathan, Harshit Agrawal, William A. Welch, Christopher Laroo, J. Wayne Miller, David R. Cocker. Measuring in-use ship emissions with international and U.S. federal methods. Journal of the Air & Waste Management Association 2013, 63 (3) , 284-291. https://doi.org/10.1080/10962247.2012.744370

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect