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Supplementary Methods 

 

1. Trade Database and Verification 

1.1 Data Source and Categories for US-China Bilateral Trade Database (BTD) 

In this study, to make linkages between the trade commodity and ship categories, 

a detailed Bilateral Trade Database (BTD) was established. The trade data between 

China and the US in 2016 was acquired from the “China Customs Statistics Yearbook 

2016”, which was published by the “China Customs Magazine” 

(http://www.ccmag.cn/index.php). This yearbook was authorized by China's General 

Administration of Customs, including the data on the value and weight of trade 

commodities. The trade commodities were classified based on the Harmonized 

Commodity Description and Coding System code (HS code)7 formulated by the 

World Customs Organization. The commodity statistics of US-China bilateral trade 

was in 8-digit numbers, including 22 sections, 98 chapters and 12,346 commodity 

subcategories of US-China trade in total. The whole BTD used in this research is 

provided in this Supplementary Information for more details on the value, weight. All 

commodity information is country level data, without specific to ports/regions level. 

1.2 QA/QC of the Bilateral Trade Database 

As the data was from the official department, we consider it reliable. In addition, 

it was compared with the data collected from USA Trade Online in 20168, as shown in 

Supplementary Fig.1. The total commodity values of US-to-China and China-to–US 

trade in the BTD were 134.3 and 385.1 billion dollars, respectively, while that in the 

USA Trade Online were 115.5 and 462.5 billion dollars, respectively). The value 

ratios of the BTD to USA Trade Online for US-to-China and China-to-US trade were 

1.16 and 0.83, respectively.  
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Supplementary Fig. 1 | Comparison between USA Trade Online data and Chinese Customs data in 
22 sectors. 

 

2. Ship Database and Verification 

2.1 Ship Technical Specifications Database (STSD) 

As each ship has different technical specification information, a combined Ship 

Technical Specification Database (STSD) from our previous research1 was expanded 

and used in this study. The database combined data from Lloyd’s Register, the China 

Classification Society and technical information included in the static AIS data. The 

STSD provides data that describes ship properties including dead weight tonnage 

(DWT), maximum continuous rating (MCR) of the engine, vessel type, etc. In this 

research, vessel information from the static AIS data was also included in the STSD, 

and it was enlarged to include over 120,000 vessels. Supplementary Table 1 compares 

the ship identified (referring to ships have both AIS data and STSD data) in this study 

and the world vessel fleet data. The number of identified ships was 65,180. Compared 

with the world vessel fleet, the total DWT of identified ships from the STSD for each 

vessel type was similar to that of the world vessel fleet, which means that our STSD 

covered most of the world vessel fleet. 
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Supplementary Table 1 | Ships identified in this study and comparison to the world fleet. 

No. Vessel type 
Ships identified in 
both AIS and 
STSD 

AIS 
messages 
(103) 

Total DWT of 
ships in this 
study (kt) 

Total DWT of 
the world fleeta 

(kt) 

1 Auto Carrier 591 6,882 9,184 - 

2 Bulk Carrier 12,110 1,536,930 744,883 778,890 

3 Container Ship 5,336 950,066 210,142 244,274 

4 Cruise Ship 704 35,684 833 5,950 

5 General Cargo Ship 9,042 721,717 116,995 75,258 

6 Miscellaneous 15,213 1,562,316 118,751 - 

7 Oceangoing Tug/Tow 5,898 559,315 29,118 - 

8 RORO 3,670 467,142 30,677 - 

9 Refrigerated Ship 793 36,836 5,017 - 

10 Chemical Tanker 4,356 400,316 91,581 44,347 

11 Oil Tanker 7,467 585,242 529,029 557,812 

 Otherb - - �� 100,120 
 Total 65,180 6,862,445 1,886,210 1,806,651 

a: Data from the report of the United Nations Conference on Trade and Development 
(UNCTAD)2,which was based on data from Clarksons Research.  
b: Vessel category of “Other”, which was in the UNCTAD report but not in our STSD data. 

 

2.2 Ship Automatic Identification System Data (AIS) 

High quality Automatic Identification System (AIS) data from January to 

December of 2016 was used in this research. AIS was introduced by the IMO for 

safety at sea and provides a message every few seconds to every few minutes. The 

AIS data includes dynamic information can be potentially used for trade transport 

vessel identification, such as the vessel position (longitude and latitude), real-time 

speed, Maritime Mobile Service Identity (MMSI) code and technical information. 

International ships over 300 GT are mandated by IMO to install AIS, so we assumed 

that the AIS data includes most of the ships for US-China bilateral trade transport. 

Supplementary Fig. 2 shows the time interval statistics for our AIS data. In all, 94% of 

our AIS data have a time interval of less than 5 minutes. To identify vessels traveling 

between the US and China, a time interval of less than 5 minutes should be short 
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enough to figure out the continuous position and activity mode of vessels, which 

ensures the accuracy of the identification and emissions calculation results. 

 

Supplementary Fig.2 | Time interval distribution frequency of AIS data. 

 

3. Bilateral Trade-related Vessel Call Identification 

3.1 Voyage Identification Approach 

Trade-related shipping emission was calculated based on trade related vessel 

calls. A non-stop trip directly between the US and China was defined as a vessel call 

(all possibilities on vessel call classification and uncertainties are introduced in the 

next section). The identification standards for the vessel calls from China to the US 

were as follows, and vice versa: (1) the departure point and arrival point were in 

Chinese research domain and the US research domain, respectively; (2) vessels after 

departure did not sail back into the Chinese research domain before arriving in the US 

research domain; and (3) vessel departure was defined as being anchored (with a 

sailing speed less than one knot) in last AIS message and not anchored in current AIS 

message. Vessel arrival was defined similarly to the vessel departure (not anchored in 

last AIS message and anchored in current AIS message). By this identification 

standard, the stopping-over situation was excluded. Here we summarized the 

algorithmic portrayal process of any single vessel i in Supplementary Fig.3. 
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Supplementary Fig.3 | Flowchart for bilateral trade related voyage identification. 

 

We set the ECA region as the US identification domain and the exclusive 

economic zone (EEZ) as the Chinese identification domain. The research domains are 

shown in Supplementary Fig. 4. The reasons for the choice of research domains are as 

follows: (1)  A port-based approach may neglect a lot of vessel calls and cause 

underestimation, since the uncertainty of AIS-data is considered larger than the port 

range (the least research set a �2� error during the AIS-based identification period)3. 

Defining a larger zone could amend the underestimation without increasing the total 
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emission uncertainty. Based on the ship AIS data4,5, the emissions in the whole trip 

were counted, including the voyage to the port. (2) The ECA requires vessels to use 

fuels with lower sulfur content, which is much more expensive than bunker oil; so it is 

reasonable to assume that a vessel would not sail into the ECA unless it has to sail to 

US ports for trade or any other task. EEZs were prescribed by the United Nations 

Convention on the Law of the Sea and represent sovereign rights; so it is reasonable 

to assume that vessels would sail through but not anchor, unless these ships anchor in 

a port for trade or another task.  

 

Supplementary Fig.4 | Research domain in voyage identification. a, US. b, China. 
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When a vessel finished a trip from the US to China or from China to the US, this 

trip was named as a vessel call. 4,482 trade vessel calls between China and the US 

were identified and selected by the above method. When a vessel was identified as a 

trading vessel between China and the US, its AIS data between the starting point and 

destination was extracted and saved. Then, all the identified vessels’ deadweight 

tonnage (DWT) was retrieved from our ship technical specifications database 

(STSD)1, from which the total capacity of vessel transport was estimated. The results 

of vessel calls and the total DWT of each vessel category are shown in Supplementary 

Table 2. 

Supplementary Table 2 | Vessel call identification results 

Trip Vessel category Vessel amount Vessel calls Total DWT/ton 

China to US 

Auto Carrier 17 20 279355 
Bulk Carrier 693 828 57680847 
Container Ship 398 1326 114728922 
General Cargo Ship 115 168 6153310 
Miscellaneous 9 11 323614 
Oceangoing 
Tug/Tow 

1 2 976 

Refrigerated Ship 1 1 5360 
Chemical Tanker 36 41 1645797 
Oil Tanker 38 44 3859791 

US to China 

Auto Carrier 46 53 884029 
Bulk Carrier 608 721 49766364 
Container Ship 373 1041 94062480 
General Cargo Ship 92 138 4630056 
Miscellaneous 10 11 358930 
Oceangoing 
Tug/Tow 

1 1 488 

Chemical Tanker 27 38 1439444 
Oil Tanker 30 38 2643275 

 

3.2 Uncertainty of the Identification Method 

Supplementary Table 3 discusses several possibilities for freight transport and 

their related uncertainties.  
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Supplementary Table 3 | Detailed description and error evaluation of vessel calls considered as the bilateral trade related voyage. 
  Cargo Emission 

calculation 

Error (emissions 

vs. trade) 

Reason Overall error evaluation 

Single-trip 

Voyage 

Non-stop 

(A to B) 

Not empty Yes accurate  Errors were balanced, because: 

Some counted ships are empty and some cargos are 

delivered by uncounted ships. 

The total ship DWT is a little bit higher than the total 

delivered cargos. This is reasonable because ships 

could be not fully loaded. 

empty Yes accurate The emission is accurate, but not 

directly related to trade in count. 

With stop 

(A to C to 

B) 

Not empty No undercount If parts of the cargos are from A to B, 

the emissions were undercounted. 

empty No accurate  

With stop 

(A to B to 

C) 

 Yes Over count Part of the cargos may from A to C, 

but all emissions between A and B 

were counted as A-B trade related. 

Round-trip 

voyage 

A-B-A 

(669 

vessels) 

Not empty Round-trip accurate  Error is small for the following reasons: 

empty return emissions were calculated in this study; 

AIS results show that less than 1/3 of total vessels 

have a direct return voyage. 

Even with a return voyage, the chance for empty 

return was not high, because China and US trade are 

balanced on weight, and our calculation on ship DWT 

matches with cargo weight. 

Return 

empty 

Round-trip Accurate 

emission, but not 

match with 

one-side trade. 

B-A emissions were counted, but was 

related to B-A trade, which is not 

true. That return emissions should be 

related to A-B trade. However, the 

possibility for this is low. 

A-B-C 

(1157 

vessels) 

Second trip 

not empty* 

One way accurate  

Second trip 

empty* 

One way accurate The voyage B-C is not related to A-B 

bilateral trade. 

*Here A and B refer to China or US, and C refer to other countries. 
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Uncertainties may originate mainly from “full loading”, “more-than-bilateral 

trade related voyage”, and “domestic voyage prior to international journeys”. 

The total magnitude of error was evaluated using the identified DWT of vessel 

fleet (388.5 Tg) compared to the realist weight of commodities (224.6 Tg) 

(Supplementary Fig. 5). The utilization rate is 66%, which is close to the results 

reported by IMO MEPC 68/INF 248 (The vessel fleet-wide average utilization rate 

was 73.7% for 2013 and 66% for 2012). This ratio is higher but not too much, than 

the differences between US and China import and export trade weight. This is 

reasonable as some of the returning voyage cannot get cargo due to the trade surplus 

(13% weight difference, see Supplementary Fig. 5), and some of the capacities were 

wasted due to other reasons, e.g. poor dispatch. We also compared our calculated 

capacity utilizations with the payload utilization rates in MEPC 68/INF 24 by each 

vessel category, as shown in Supplementary Fig. 6. The capacity utilizations of the 

bulk carrier, container ship and chemical tanker showed great consistent with the 

MEPC 68/INF 24 report. As the container ship and bulk carrier together constituted 

the majority of the trade (83% in vessel numbers, 87% in vessel calls and 93% in total 

dead weight tonnages), we considered our vessel call identification results reliable 

because our utilization rates for these vessel types were close to reported rates. For 

those vessel categories with only few vessels recognized, they were generally 

assumed full load, e.g., refrigerated ship (2 vessel calls). In addition, inevitable 

discrepancies still exist due to a small proportion of mismatched commodity-ship 

linkage or imperfect identification of vessel fleets, which could be inherent 

uncertainties of this method. By and large, the detailed comparison of the capacity 

utilizations for each vessel category showed our vessel call identification results 

acceptable, and this identification method was generally applicable to other studies. 
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Supplementary Fig.5 | Comparison of transport weight between trade statistics and ship fleet 
identification results.  

 

 

Supplementary Fig.6 | Comparison of utilization rates to MEPC 68/INF 248, by vessel category. 
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For the full loading and empty return voyage issue, the IMO MEPC 68/INF 246 

figured out that certain ships operated some of the voyages loaded and some of the 

voyages in the ballast condition, which meant the ships may be empty and return to 

pick up cargo from another port. If the “return” voyage is a non-stop trip, whether it’s 

empty or not, it was included in our calculation because we calculate based on AIS 

data. In our calculation, we cannot know whether a ship is empty or not, but from the 

statistic results in our study, there are 34% capacity wasted.   

Stop-over situations (i.e., a vessel from China first trades with another country 

and then travels from that country to the US) were excluded from the calculation. 

Although the situation that the vessel carried a part of cargos of US-China trade and 

some cargos of other countries’ trade exists, especially for container ships, the 

proportion of this kind of situation and the proportion of the cargos of US-China trade 

in this situation were both difficult to figure out. To figure out how much would be 

potentially missing or incorrect if the stopping over condition was ignored, we carried 

out another run of model which did not exclude the stopping over situation. This time 

we identified 5,629 vessel calls from US to China and 5,819 from China to US, which 

would be more than twice as much as before. In terms of the total DWT, it would be 

385 and 394 million tons, over three times as big as the weight of trade commodity 

(Supplementary Fig. 5). This means, if all these ship emissions were counted as 

China-US bilateral trade responsible for, it’s highly overestimated. So we keep our 

original identification method to exclude the stopping over ships. The underestimation 

from excluding stop-over ships was balanced by the overestimation from including 

ships which take US or China as interim stop. By excluding these stopping over 

voyage, we could avoid overlap when assess multiple pairs of bilateral trade, which 

make this method applicable globally. Because these stopping over conditions would 

be calculated for each non-stop trip, the total emission would match with global total 

on shipping.  

Another uncertainty here was that we ignored the movements between domestic 

ports prior to international journeys, which may result in a downward bias. The reason 

was that we could not figure out whether a movement was resulted from international 
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trade or domestic trade. But considering the much longer distance between US and 

China than the domestic trip, the downward bias is very small.  

 

4. Linking Trade with Ship Fleets 

4.1 Transport Mode Split 

US-China bilateral trade includes trade in goods, trade in services (in terms of 

tourism, education, movies, technology, cultural products and service outsourcing) 

and two-way investment, in which only trade in goods requires freight transport via 

sea or air. Other than that, it is the weight of goods that determines the amount of 

vessels, not the value of goods. Thus, weight is a much better proxy to build the link 

between trade and ships, by matching the vessel fleet DWT with the commodity 

weight. 

As the geographic position of China and the US is separated by the Pacific, 

US-China trade commodities are mainly transported via sea or air. Our research 

assumed that all weights are transported via sea. USA Trade Online8 shows that 

although commodities transported from the US to China via air account for 29% of 

the total value, they only account for 0.3% of the total weight and vice versa 

(Supplementary Table 4). This is because only high-value low-weight products are 

cost-effective when transported via air. 

Supplementary Fig. 7 shows the detailed breakdown for the mode share by 98 

cargo chapters8. When sorting the commodity chapters by weight (from left to right), 

we found that the weight carried by sea reached over 90% of the top chapters. 

Although in some chapters, the proportion of commodity weight carried by air was 

over 50%, the commodity weights in these chapters were quite low (indicated by 

accumulated weight percentage of vessel). Thus, neglecting the commodity weight 

carried by air was acceptable. 
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Supplementary Table 4 | Transport mode split between sea transport and air transport8 

 Vessel proportion 
(by $) 

Air proportion 
(by $) 

Vessel proportion 
(by kg) 

Air proportion (by 
kg) 

US to China 57.7% 29.0% 99.7% 0.3% 
China to US 64.3% 28.4% 98.2% 1.8% 

 

 

Supplementary Fig. 7 | Transport mode split between sea transport and air transport, broken down 
by 98 commodity chapters.  

 

4.2 Linkage between Transport Vessel Fleets and Commodities 

A report by the International Chamber of Shipping (ICS)9 summarized the 
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characteristics of vessels by category and that the commodities carried by each vessel 

category are diverse. Within different vessel types, the commodity type carried by 

auto carriers, refrigerated ships, chemical tankers and oil tankers was relatively clear 

because of their unique characteristics, wherefore these vessels were matched with 

commodities at first. (Refrigerated ships, for instance, are mainly used to carry 

perishable commodities, which are easy to distinguish from trade data.)  

However, commodity match is difficult for bulk carriers and container ships. We 

collected over 10,000 real logistics information on commodity types carried by bulk 

carriers from the marine logistics information platform website 

(http://company.shipping.jctrans.com/AskOfferList) to summarize the commodities carried 

by bulk carriers (Supplementary Fig. 8). According to Supplementary Fig. 8, ore, 

wood, gypsum, cement, base metals, waste such as steel scrap, and large-sized 

machinery were all matched to bulk carriers. Some commodities with relatively low 

value but high amounts, such as cereals, plastics, steel plates, etc., were matched to 

bulk carriers, container ships and general cargo ships considering the high total 

transport capacity of container ships from the identification results. The remaining 

commodities were matched to container ships and general cargo ships.  

  
Supplementary Fig.8 | Frequency of commodities carried by bulk carriers. 

 

Supplementary Table 5 summarizes the list of matched commodities carried by 

each vessel type, and the attached excel database shows more details on each 
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commodity subcategory and transport vessel type. 

Supplementary Table 5 | Matched commodities with vessel types. 

No. Vessel type Commodity description 
1 Auto Carrier Vehicles, associated transport equipment, parts and accessories thereof  
2 Bulk Carrier Raw materials and primary products without packing, including coal, 

coke, pitch, cereal, mineral, sand, cement, plaster, timber, base metal and 
product thereof, fertilizer, plastic, large machinery and appliances, waste, 
etc. 

3 Container Ship Almost all commodity types, except large machinery and appliances 
larger than the container size,  

4 Cruise Ship No commodities 
5 General Cargo 

Ship 
Mainly carried commodities with packing, also large machinery and 
appliances 

6 Miscellaneous No commodities 
7 Oceangoing 

Tug/Tow 
No commodities 

8 RORO Similar to container ships  
9 Refrigerated 

Ship  
Perishable items that need refrigeration such as seafood, meat, entrails, 
fresh flowers, etc. 

10 Chemical 
Tanker 

Liquid chemical products 

11 Oil Tanker Petroleum and fuel products, liquefied petroleum gas, liquefied natural 
gas 

 

In overlap situations, we assumed that the commodity amount was distributed in 

each vessel category by weighting the total DWT of each vessel category. For 

commodity i, the weight matching vessel categories j, k, and l in an overlap situation 

can be described by the equation below: 

         equation (1) 

where  represents the commodity weight i carried by vessel category jt;  

represents the total weight of commodity i; , ,  represent the 

total DWT of the identified vessel fleets in vessel categories j1, j2,���jn, respectively. 

The details of the connection between each subcategory and vessel types are 

shown in the attached database file.  
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4.3 Uncertainty of ship-commodity matching 

Even though both the ICS report9 and realistic shipping manifest information 

platform were applied for the commodity-ship matching, there are still uncertainties 

on the matching results. The quantitive assessment is difficult when not all shipping 

manifest information is available. However, the total shipping emissions calculation 

was based on AIS data but not the matching process. So the uncertainty in this step 

would not be transferred to the emissions.  

The CO2/$ results could be affected by the commodity-ship matching process. To 

evaluate the impacts from uncertainty on this commodity-ship matching process, a 

comparison between emissions per ton for multiple ship categories was made. The 

largest uncertainty is from the mismatching to bulk carrier, container ships and 

general cargo ships. The difference of CO2 emissions per capacity among these vessel 

categories is small (0.03-0.09 ton CO2/ ton capacity). However, the difference on 

CO2/$ for different commodities is larger by several magnitudes (0.1-2492.7 g/$). 

Thus, even there’s mismatching, it would not influence the relative rank and the 

magnitude of CO2/$. 

Comparing to the latest research about Brazil exports shipping emissions based 

on shipping waybill, the results were comparable3. In the Brazil study, the CO2 

emission per weight is 32,000 to 113,000 g/t, and our results is 36,000 to 173,344 g/t. 

The ratios between the maximum and minimum value were similar (3.53 and 4.82). 

The CO2 emission per tonnage per nautical mile in the Brazil study was 18 to 24 

g/t/nautical mile. The result in our research is 17.1 g/t/nautical mile which is quite 

comparable to the sea-waybill-based study. 

 

5. Emission Modeling 

5.1 Emission Modeling Approach 

In the identification process, we extracted and saved the AIS data between the 

starting point and destination of each vessel trip (Supplementary Fig.3). Then these 

AIS data were applied to calculate shipping emissions by the Shipping Emission 
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Inventory Model (SEIM) established in our previous research1. This model was 

similar to the method used in the Third IMO GHG Study but was updated using a 

time interval calculation to improve the regional accuracy5,10,11. The emissions of 

commodity i carried by vessel category j are described by the equation below: 

                   equation (2) 

where  represents the emissions of commodity i carried by vessel category j; 

 represents the weight of commodity i carried by vessel category j;  represents 

the total emissions of vessel category j; and  represents the total commodity 

weight carried by vessel category j. 

The SEIM model used in this research was a disaggregated bottom-up model to 

calculate shipping emissions1. Basic modeling parameters in SEIM are accordant with 

the IMO 3rd GHG Study. The difference between SEIM model and method used in 

IMO 3rd GHG Study is that SEIM model puts AIS data of one ship together 

according to the time sequence and calculate emissions of each single ship to avoid 

the overestimation due to duplicate AIS data or underestimation due to the loss of AIS 

signal. The advantage of SEIM model on better spatial allocation has been approved1. 

The validation of the SEIM model was also done in previous study1, with global total 

similar to the IMO study. The latest estimate of global health impact of vessels also 

compared their results with the result of SEIM model and found the model is 

reliable10. 

5.2 Detailed Shipping Emission Results Embodied in US-China Trade 

Supplementary Table 6 summarizes the shipping emissions embodied in 

US-China trade. Shipping emissions from China to the US were all higher than those 

from the US to China due to the higher commodity weight exported from China to the 

US.  
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Supplementary Table 6 | Detailed emission results of trade related shipping activities. 

Trip Vessel category PM NOx SO2 CO HC CO2 N2O CH4 

Unit Ton Ton Ton Ton Ton 103 Ton Ton Ton 
China to 
US 

Auto Carrier 132.1  1612.0  970.1  55.7  55.7  66.2 3.4  1.1  

Bulk Carrier 3436.5  39042.2  26177.1  1435.3  1356.8  1776.2 91.8  27.1  

Container Ship 19342.0  216129.0  153488.2  8661.4  7926.5  11415.4 630.0  158.5  

General Cargo 
Ship 

484.9  5520.0  3636.4  206.8  196.9  251.0 13.0  3.9  

Miscellaneous 62.2  669.3  476.2  26.0  24.0  32.0 1.6  0.5  

Oceangoing 
Tug/Tow 

0.3  16.8  0.7  0.7  0.6  0.9 0.0  0.0  

Refrigerated Ship 5.3  56.4  42.6  2.2  1.9  2.8 0.1  0.0  

Chemical Tanker 184.4  2149.9  1402.5  79.1  74.5  98.4 5.1  1.5  

Oil Tanker 229.4  2826.3  1724.8  97.3  96.1  120.1 6.4  1.9  

US to 
China 

Auto Carrier 277.9  3422.9  2066.2  121.8  119.2  147.1 7.6  2.4  

Bulk Carrier 2382.8  26966.7  18090.1  998.2  945.1  1222.7 63.3  18.9  

Container Ship 13585.2  145004.4  108030.5  5955.6  5507.7  7539.6 421.1  110.2  

General Cargo 
Ship 

274.1  3069.5  2109.8  115.5  104.9  144.5 7.5  2.1  

Miscellaneous 24.4  254.0  151.6  12.6  13.8  10.8 0.6  0.3  

Oceangoing 
Tug/Tow 

0.0  0.9  0.0  0.0  0.0  0.0 0.0  0.0  

Chemical Tanker 164.4  1873.8  1250.6  68.2  64.7  84.1 4.3  1.3  

Oil Tanker 136.4  1687.0  1031.8  57.9  56.7  72.1 3.8  1.1  

 

6. Air Quality  

The atmospheric chemical transport model is driven by meteorological data to 

calculate variations in atmospheric concentrations due to emission, chemistry and 

deposition through complex chemical reactions and transport mechanisms. 

GEOS-Chem is one of the most widely used atmospheric chemical transport models 

and is used by research groups around the world to analyze atmospheric composition 

problems, especially in recent years for PM2.5-related research13-17. The model is 

managed and supported by the Atmospheric Chemistry Simulation Team at Harvard 

University and Dalhousie University (http://acmg.seas.harvard.edu/geos/index.html). In this 

work, we used GEOS-Chem model to estimate the impacts of US-China trade 

shipping emissions on the global surface PM2.5 concentration for the base year of 

2016 with a zero-out method. Briefly, the difference between the simulation results 
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with and without US-China-trade shipping emissions with other parameters set the 

same was used in our air quality analysis. The model was run with full 

Ox-NOx-CO-VOC-HOx chemistry and online aerosol calculations18,19, on a 2.5° 

longitude × 2° latitude grid with 47 vertical layers and driven by the 3-D 

meteorological fields assimilated by the Goddard Earth Observing System (GEOS). 

In this work, GEOS-Chem (version 11–01) was driven by MERRA-2, a 

reanalysis data product from NASA/GMAO 

(http://wiki.seas.harvard.edu/geos-chem/index.php/MERRA-2). The global shipping 

emissions for 2016 were calculated using our SEIM model1 and were used as an input 

for the GEOS-Chem. In addition to shipping emissions, the global anthropogenic 

emissions used here were from the Community Emissions Data System (CEDS)20, 

and the latest 2014 emissions were used. For anthropogenic emissions over China, we 

updated the available data, using the Multi-Resolution Emission Inventory of China 

for the year 2016 (MEIC, http://meicmodel.org). In addition, GFED4 biomass burning 

(v4.1)21, sea salt22, MEGAN biogenic emissions23, NOX from lightning24,25, and NO 

from soils/fertilizers26, aircraft27 and the DEAD dust model28 were included in the 

simulation. To generate more accurate initial conditions for simulation, 6 months of 

spin-up time for each case was used. In the model, the sum of sulfate, nitrate, 

ammonium, BC and OC represented PM2.5 and the bottom 24-hour average PM2.5 

concentration from the model was selected to represent the surface concentration. 

We used the surface measurement PM2.5 concentration to evaluate the model 

simulated PM2.5 concentration. Following method of the Zhang et al.12, the average 

annual PM2.5 concentration from the National Air Pollution Surveillance network 

(NAPS, http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx) from Canada and the Interagency 

Monitoring of Protected Visual Environments network (IMPROVE, 

http://vista.cira.colostate.edu/improve/Data/data.htm) from the US were used. The 

comparison of PM2.5 concentrations between the observations and the model 

simulation is shown in Supplementary Fig. 9. Overall, the model simulation was in 

accordance with the US observation, though slightly lower than the Canadian 

observations. This underestimation may be due to an underestimation of the Canadian 
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emission inventory and the coarse model resolution. 

 

Supplementary Fig.9 | Comparison of annual average PM2.5 concentrations simulated by 
GEOS-Chem and observations. a, GEOS-Chem results; b, comparison with surface observations in 
Canada; c, comparison with observations in the US. Red circles and blue triangles represent the 
NAPS and IMPROVE sites used in this study, respectively. 

 

With GEOS-Chem model, Supplementary Fig.10 showed the distribution of 

PM2.5 impacts from vessel emissions embodied in US-China trade. The shipping 

emissions influenced the PM2.5 not only along the sea lanes but also in the inland 

areas due to the air mass from sea to land. The distribution reflected that the 

US-China trade mainly impacted the coastal region of China, Japan and some 

countries in Southeast Asia. The US would avoid the PM2.5 impacts because of the 

low sulphur fuel used within ECA region. On the one hand, low sulphur fuel can 

reduce the new particle formation in the combustion process, causing less primary PM. 

On the other hand, less sulfate in the secondary PM would be formed in the air during 

the oxidation process because of the reduction in SO2 emissions. 
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Supplementary Fig.10 | Impacts on PM2.5 concentrations from US-China trade related shipping 
emissions.  

 

7. Health Impacts 

Changes in health impacts from long-term exposure to PM2.5 due to shipping 

emissions from US-China trade were calculated in this research. In addition to the 

model results obtained above, the integrated exposure-response (IER) function 

developed by Burnett, et al. 29 was selected, which has been widely used, namely, in 

the GBD study, to estimate premature deaths from outdoor PM2.5 exposure. The 

global population data was from the Gridded Population of the World version 4 

(GPWv4) (http://sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/browse) developed by 

NASA’s Socioeconomic Data and Applications Center (SEDAC). The original spatial 

resolution of the population data was 2.5′  2.5′, while the resolution of the 

GEOS-Chem model result was 0.1°  0.1°. Therefore, we downscaled the population 

data to 0.1°  0.1° to enable integration with the estimated PM2.5 result. 

Cause-specific baseline mortality rates and the distribution of different age groups for 

each nation were obtained from Global Burden of Disease Study 2016 (GBD 2016) 

results (http://ghdx.healthdata.org/gbd-results-tool). With these data and results, the 

premature mortality for five leading causes of death: ischemic heart disease (IHD), 

cerebrovascular disease (stroke), chronic obstructive pulmonary disease (COPD), lung 

cancer (LC) and acute lower respiratory (ALRI) were estimated. 



 

 24 

 The grid-based (0.1°  0.1°) premature deaths associated with exposure to 

PM2.5 were calculated with equation 3: 

                 equation (3) 

 where M is the number of premature deaths due to PM2.5;  represents the 

cause–specific baseline mortality rate; P is population; and AF represents the 

attributable fraction of deaths due to PM2.5. AF can be described in terms of the 

relative risk (RR) as below: 

               equation (4) 

In the IER model, RR is expressed by equation 5: 

          equation (5) 

 where C represents the exposure to PM2.5 obtained from the GEOS-Chem 

model;  is the counterfactual concentration below which there is no additional risk; 

and ,  and  are parameters used to describe the different shapes of the 

exposure-response curve for various diseases, which were obtained from Burnett, et al. 
29. Considering the uncertainties of ,  and  in the IER function, 1000 sets of 

these parameters were used in 1000 simulations. The median and 95% Confidence 

Interval (CI) were provided in results. In addition to the IER parameters, the 

uncertainty in linking a given amount of PM2.5 concentrations to premature mortality 

mainly comes from the statistical estimation and limited epidemiological evidence of 

the IER functions29,30. To calculate the premature deaths associated with 

US-China-trade shipping emissions, the annual mean PM2.5 concentrations (on a 0.1° 

 0.1° grid) estimated with and without US-China trade shipping emissions were 

applied to the IER model, respectively. The difference in these two results was the 

premature death associated with US-China trade shipping emissions. The overall 

health impacts of PM2.5 were consistent with other published studies. For example, the 

IER model estimated the total worldwide premature death derived from PM2.5 at 6.1 

million (95% CI, 2.8-7.9 million) in 2016. The result of a recent study in the Lancet 

showed that exposure to PM2.5 resulted in approximately 4.2 million premature deaths 
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in 201531, which falls within the 95% confidence interval of our estimates. 

The linear concentration-response function from Lepeule, et al. 32 was also used 

to estimate PM2.5-related premature death due to two reasons: (1) IER may 

underestimate the excess relative risk over the exposure range experienced in 

developing countries with high exposure to PM2.5, which was reported by a recent 

study based on a large national cohort in China33; (2) this equation provide estimates 

that are comparable with prior research on health impacts from shipping10. We 

focused on cardiovascular and lung cancer mortality corresponding to impacts on a 

population cohort aged 30 years or more. These national data were also from the GBD 

results described above. For our linear function, RR is defined as: 

                  equation (6) 

where C0 and C1 represent PM2.5 concentration levels for different scenario 

(simulations with and without US-China trade shipping emissions), and the 

coefficient  is derived from Lepeule, et al. 32 and Sofiev, et al. 10 ( =0.023111 (95% 

CI, 0.013103-0.033647) for cardiovascular mortality, =0.031481 (95% CI, 

0.006766-0.055962) for lung cancer related deaths). 

The global premature deaths due to shipping in US-China trade reached 5,700 

(95% CI, 2,700-6,600) and 19,500 (95% CI, 9,900-29,400) using the IER model and 

linear model, respectively (Supplementary Table.7). Although the national ranking of 

mortality number was extremely similar in these two methods, the linear C-R function 

produced 3-5 times higher health burden estimates than those using the IER model, 

which was mainly because the linear model produced higher RR values at a high 

PM2.5 exposure level. 

Supplementary Table 7 | IER model and linear C-R function estimates of mortality in the global 
total, China, the US and the other five-highest countries due to US-China trade ships. 

Results from the IER Model Results from the Linear C-R Function 

Country 
Mortality Estimate* 
(thousand, 95% CI) 

Country 
Mortality Estimate* 
(thousand, 95% CI) 

China 3.7 (1.9-4.2) China 16.6 (8.4-24.9) 
United States 0.1 (0.0-0.2) United States 0.3 (0.1-0.4) 
Japan 1.0 (0.5-1.1) Japan 1.2 (0.6-1.9) 
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South Korea 0.2 (0.1-0.3) South Korea 0.6 (0.3-0.9) 
Vietnam 0.2 (0.1-0.3) Vietnam 0.3 (0.1-0.4) 
Thailand 0.1 (0.0-0.1) North Korea 0.2 (0.1-0.3) 
North Korea 0.1 (0.0-0.1) Thailand 0.1 (0.1-0.2) 
Total 5.7 (2.7-6.6) Total 19.5 (9.9-29.4) 
*Values for annual premature mortality are rounded to the nearest 100. 

 

8. QA/QC 

8.1  Summary of Uncertainties 

Supplementary Table 8 provides an overview of uncertainty and descriptions in 

each calculation step. The details are discussed in the previous sections.  

Supplementary Table 8 | Summary of uncertainties in each part. 
Research 
content  

Source of uncertainty Significance of uncertainty component 

US-China 
Bilateral Trade 
Database 

Trade data 
Minor. The data was from Chinese Customs and 
was similar to the data from the US Census 
Bureau.  

Transport 
Mode Split 

Neglecting the commodity 
weight carried by air 

Minor. In US-China trade, only 0.9% of the 
commodity weight was carried by air. 

Ship Technical 
Specifications 
Database 
(STSD) 

Assumption that the STSD 
represents most trade 
vessels 

Minor. Compared to the total DWT of the world 
vessel fleet of each vessel category, the STSD 
showed nearly complete coverage.  

Ship 
Automatic 
Identification 
System Data 
(AIS) 

Quality of AIS data 

Minor. In all, 94% of our AIS data had a time 
interval of less than 5 minutes, and this was 
enough for trade vessel identification. The 
coverage of AIS data was tested in our previous 
research1 

Identification 
of Bilateral 
Trade Related 
Voyages 

Excluding the stop-over 
situation 

Minor. The comparison of total cargo weight with 
ship DWT is in a reasonable ratio as reported by 
IMO report6. This excluding can also avoid 
double counting for global level calculation. 

Ignoring the movements 
between domestic ports 
prior to international 
journeys 

Minor. Domestic voyage could be related to 
domestic trade. Even part of the domestic voyage 
is related to US-China trade, compared to the long 
distance between the two countries, it’s not 
significant on total emissions. 
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Emission 
Modeling 
Approach 

Emission factors 
Minor. The SEIM model was the latest model 
based on AIS data which reflected the actual 
sailing process of ships.  

Air Quality  

Uncertainties in 
anthropogenic emissions, 
meteorological prediction 
and chemical mechanisms 

Minor. The comparison between the simulated 
results and the observation showed our predicted 
PM2.5 was reliable. 

Health Impacts 
Uncertainties in selected 
parameters and limited 
epidemiological studies 

Large. Health impacts are quite different using 
these two methods, the range of 95% CI were 
provided for each method based on the estimation 
of uncertainties in their parameters.  

 

8.2  Summary of Results Validation  

Besides the bottom-up uncertainty analysis, SI-Table 9 provides a top-down 

validation from three aspects: transported weight (ship fleet capacity vs. trade 

commodity weight), trade value (Chinese data sources vs. US data sources), and the 

share of US-China trade in the global total (from trade value, shipping emissions, and 

shipping emission-related premature deaths). 

Supplementary Table 9 | Summary of results validation. 

Content Results Comparison data Difference  

Identification of 
vessels  

Fleet capacity (Tg) Trade commodity weight (Tg) 
33.6% 

388.5 224.6 

Trade database 
Value from BTD (billion $) 

Value from USA Trade Online 
(billion $) 10.2% 

519 5788 

Proportion of 
US-China 
bilateral trade in 
the global total 

3.4% (519/15460 billion $) Trade value 

 
2.5% (23/938 Tg) Vessel CO2 emissions 
4.8% (19475/403300 
premature deaths) 

Premature deaths 
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