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2 MeMi Models in Short 

1 MeMi Models in Short  

The model concept of the Mesoscale and Microscale Model Family METRAS, MITRAS, 

MECTM and MICTM is based on the primitive equations, ensuring the conservation of 

mass, momentum and energy. The equations are solved three dimensional in a terrain-

following coordinate system. The approximations applied ensure a wide range of model 

applications. The simplifications used are the anelastic assumption and the Boussinesq 

approximation. Additionally, the Coriolis parameter may either be constant in the model 

area, or depend on each grid point's latitude. There are no principal restrictions to the time 

and spatial variability of the synoptic fields. The use of a non-uniform grid allows a higher 

resolution in interesting model areas. Wind, temperature, humidity, cloud- and rain-water-

content as well as concentrations are derived from prognostic equations, whereas density 

and pressure are calculated from diagnostic equations (Schlünzen, 1988, 1990). 

The models have successfully been applied in the mesoscale-, and microscale-β-ranges; 

to estimate atmospheric trans-coastal fluxes of pollutants; to study transports of air pollu-

tion with passive tracers and of reactive tracers. 

Sub-grid scale turbulent fluxes are parameterized by first order closure theory, using dif-

ferent formulations for the exchange coefficients. For the calculation of surface fluxes a 

blending height concept can be applied or mean parameters are calculated. Both 

schemes allow takeing into account sub-grid scale surface characteristics. The roughness 

length z0 over water depends on the wind velocity using Charnock's formula. A Kessler 

type of cloud microphysics allows the formation of clouds and rain. The radiation balance 

in the atmosphere is calculated by a two-stream approximation that takes into account 

transmission and refraction by water vapor and hydrometeors. Pollutant dispersion is cal-

culated with inclusion of dry and wet deposition processes as well as with consideration of 

chemical transformations. METRAS/MECTM fulfils all demands on an "'up-to-date'" 

mesoscale meteorology, chemistry and dispersion model. 

In Chapter 2 and 3 of this model description the basic ideas of the model, including all 

equations and parameterizations, are described. Chapter 4 focuses on pollutant process-

es, including chemical transformations and deposition. In Chapter 5 the used discretiza-

tion and the numerical schemes and in Chapter 6 the boundary conditions used in the 

model are presented. In Chapter 8 the initialization of the model is described. Appendix A 

includes some details on the coordinate transformation and model physics. The discrete 

form of the model equations is given in Appendix B. The implemented parameter values of 

surface characteristics and deposition modelling, a symbol table and hints for model users 
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including the modelling system, processing of data, details on the model use and its reali-

zation etc. are given in Schlünzen et al. (2018). 

The current model description corresponds mainly to the mesoscale model METRAS Ver-

sion 5.0 and the microscale model MITRAS Version 2.0, as well as the LES version of 

METRAS. 



4 Derivation of Model Equations 

2 Derivation of Model Equations 

This chapter contains a derivation of the basic equations and the used approximations. 

2.1 Basic Equations 

The basic prognostic equations of the model are given by the equation of motion (2.1), the 

conservation of heat, water or other materials (2.2) and the continuity equation (2.3).  

They are completed by the ideal gas law (2.4) and the definition of potential temperature 

(2.5) as diagnostic equations. The basic equations within a coordinate system rotating 

with the earth can be written (e.g. Dutton, 1976): 
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The three-dimensional velocity vector is described as v , the Nabla operator as  , densi-

ty as  , pressure as p  and time as t .   is the earth's angular velocity,   the geopotential 

and F  are molecular forces, which are neglected within the model.   stands for any sca-

lar quantity including potential temperature  , concentration jC  of a pollutant j  or con-

centration of atmospheric water k
1q , where k  = 1, 2, 3 means vapor, liquid and solid phas-

es. Sources and sinks of a scalar quantity   are described by Q , e.g. the processes of 

condensation and evaporation for water vapor. The specific volume jv  stands for dry air 

0)=i(  and water 1)=i(  and iR  for the individual gas constant. pc  is the specific heat at 

constant pressure and T  the real temperature. 

The equations above are not solved in the Cartesian but a terrain-following coordinate 

system. Thus the lower boundary conditions can be calculated easier for model applica-

tions over complex terrain. 

2.2 Transformation to Terrain-following Coordinates  

The transformation of the model equations from a Cartesian system to a non-orthogonal 

coordinate system is described in Appendix A.1 in detail. Within this coordinate system 
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the vertical coordinate   becomes zero at the ground )y,x(z=z s  and tz=  at the top of 

the model tz=z : 

)y,x(zz

)y,x(zz
z=

st

s
t




  (2.6) 

  -coordinates of this or a similar type are often used in mesoscale models (Pielke, 1984; 

Schlünzen and Schatzmann, 1984). Figure 2.1 schematically illustrates the location of co-

ordinate surfaces   = constant for a horizontal uniform grid. Included are the basis vec-

tors k,i  of a Cartesian system X  and the covariant )q( i
  and contravariant )q( i  basis vec-

tors of a terrain-following system X . 

The model METRAS can be used for simulations of wind, temperature and concentration 

fields over areas of up to 2000 x 2000 2km . Processes limited to relatively small areas 

(e.g. sea-land breezes) are not parameterized but solved explicitly by the model. In some 

cases it is necessary to resolve the interesting areas by a fine grid. However, even with 

today's computer resources it is impossible to obtain high grid resolutions for the entire 

model area. In METRAS this problem is avoided by use of a non-uniform but horizontal 

orthogonal grid with minimum grid increments of about 10 m and maximum increments of 

about 5 km. The restrictions are caused by the numerics and parameterizations used (see 

below). 

 

Figure 2.1: Schematic illustration of mountains, coordinate surfaces of  -coordinates, ba-

sis vectors i , k  of a Cartesian coordinate system X  and 1q , 3q , 1q , 3q  of a ter-

rain-following system. 

To reduce the number of grid-points, the coordinate system can be rotated against North 

in any desired angle (Niemeier, 1992). This rotation, as well as the varying north direction 

within the model domain has to be taken into account when calculating the Coriolis force 

(Appendix A.3). 



6 Derivation of Model Equations 

As mentioned above, the model equations are not only transformed to a terrain-following 

but also from a uniform to a non-uniform grid (Appendix A.2). Figure 2.2 schematically il-

lustrates a possible grid structure for the area of the German Bight. 

 

 

Figure 2.2: Schematic illustration of a Cartesian grid fitted to a coastline. 

The prognostic model equations (2.1) - (2.3) are transformed to the described coordinate 

system X  (Appendix A.2). The equations of momentum are given by  
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(2.7) 

The components of the wind vector v  in Cartesian coordinates are named w,v,u  corre-

sponding to the  z,y,x direction. The variables sin=d  and cos=d'  characterize the 

influence of a rotation of the coordinate system by an angle   against North. In the non-

rotated case 0)=(  the components of the wind vector characterize the west-east, south-

north and vertical winds. 
*  denotes the grid volume. 321 x,x,x   and z,y,x  are the coordi-

nates of the used coordinate system X  and the Cartesian system X , respectively. The 

Coriolis parameters  sin2=f  and 𝑓′=2Ω cosφ  are calculated for the geographic lati-

tude   of either a reference point or the local grid point, and g  is the acceleration of gravi-

ty. 

The surface-boundary normal wind component 
3u  can be calculated from w,v,u  by:  
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The transformed continuity equation is given by: 
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The conservation of a scalar quantity   can be written as:  
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where Q  is the production term of  . 

2.3 Filtering the Basic Equations and Introduction of Basic State 

The system of equations (2.7) - (2.10) can be solved directly, as long as the spatial deriva-

tives ix/   of a variable   can be assumed as being constant over a spatial scale 
ix  

and a time scale t . In the atmosphere this assumption is valid for spatial scales of about 

1 cm and time scales of about 1 sec (Pielke, 1984). If one tries to solve the system (2.7) -

 (2.10) for typical mesoscale or microscale phenomena of a horizontal scale of about 

100 km or 1 km and a vertical extension of about 10 km or at least 1 km, it would be nec-

essary to calculate solutions at about 1019-1020 grid points. Since this exceeds the capaci-

ty of existing computers by far, the equations have to be averaged (filtered), i.e. they are 

integrated in time and space. 

Each dependent variable   is decomposed into an average   and a deviation  ' from 

the average.   represents the average of   over the finite time increment t  and a sur-

rounding volume zyx   (Pielke, 1984):  

zyxt

dtdzdydx
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tt

t
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:=  (2.11) 

Replacing   by '  and integrating the model equations over the grid volume 

zyx   and time interval t  corresponding to (2.11), the filtered model equations re-

sult. 

The averaging is done by assuming that  = , 0=' , t/=t/  , ii x/=x/    etc. 

Additionally, for the metric tensor and the Christoffel symbol ijij g=g   and 
i
jk

i
jk =    is as-

sumed. Because of these assumptions the surface heights have to be considered as line-

ar within the averaging interval. Microscale pressure and density variations are neglected 

due to the Markovian hypothesis (Rotta, 1972). In other words, it is assumed that small 

turbulent pressure fluctuations p  cause only small density variations  . 

In the filtered equations the averages   of temperature, humidity, concentrations, 

pressure and density are further decomposed into a deviation part ~  and a large-scale 

part o . The large-scale part represents the basic state in an area yx   larger than the 

phenomena of interest. In the MeMi models always the model area is used here, thus o
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represents a domain average value which is only height dependent and not time 

dependent. 
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 (2.12) 

For numerical reasons the deviation pressure p~  is additionally decomposed into 1p  and 

12 pp=p ~ . Their definition and calculation is described in Sections 2.4 and 2.5. In sum-

mary the meteorological variables are composed by: 
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

 (2.13) 

In the next section the approximations applied to the model equations are described. 

2.4 Approximations  

The model may be applied to large areas with higher resolution in subareas of special in-

terest. To calculate pollutant concentrations with respect to the existing meteorological 

conditions, the model has to take into account the phenomena of the so-called 

mesoscales   and   (METRAS) or of the microscale (MITRAS). The chosen approxima-

tions should not restrict the applicability of the model within these scales. The scales typi-

cally simulated by the models are sketched in Figure 2.3. The hatched areas in Figure 2.4 

illustrate the scales of validity of approximations typically applied in atmospheric models. 

They are based on scale analysis of the individual terms in the equation of motion and 

continuity equation, published by Businger (1982), Martin and Pielke (1983), Schlünzen 

and Schatzmann (1984) and Wippermann (1981). 



10 Derivation of Model Equations 

 

Figure 2.3: Scales of atmospheric phenomena (left) and phenomena simulated, parame-
terised or to be prescribed by mesoscale and microscale models (from Schlünzen 
et al., 2011). 

The hydrostatic approximation )g=z/p(   can be applied to phenomena of more than 

10 km characteristic horizontal scale sL . The anelastic approximation  

  0=vo  (2.14) 

is valid within the entire mesoscale and microscale, while the incompressibility assumption 

can only be applied to horizontal scales smaler than 20 km. The validity of the geostrophic 

approximation )V=v( g  can be assumed only in the macroscale. For phenomena with hor-

izontal scales up to sL  = 1500 km it is allowed to take the Coriolis parameter f  constant. 

For smaller scales (up to about 20 km) the Coriolis force can be totally neglected. This is, 

however, not true in the vertical, where Coriolis force effects need to be considered above 

the surface layer. 
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 Scale Micro Meso γ Meso β Meso α Macro … 
 Ls (km) <2.5 2.5 25 250 >2500 

 Approximation      
 vertical 

wind eq. 
continuity 
equation 

     

I 





g

z

p
 

0 v  
       

II 0 v  
        

III           

IV  0 v  
       

V  0 v          

VI            

Figure 2.4: Validity range (grey areas) of approximations (Schlünzen et al., 2010) 

Due to the described validity of approximations and the intended application of METRAS 

to maximum areas of about 2000 km x 2000 km, and of MITRAS with horizontal grid in-

crements of about meters, the models use the anelastic approximation. The Coriolis pa-

rameter may be held constant in smaller domains (MITRAS, small mesoscale domains) 

but can also vary with each grid point's latitude (large mesoscale domains). The hydrostat-

ic and geostrophic approximations as well as the incompressibility assumption are not val-

id for this range of application. 

The anelastic approximated continuity equation is given in our coordinate system as: 
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 (2.15) 

Assuming the validity of the Boussinesq approximation; deviations from the density o  are 

neglected except in the buoyancy term. Elsewhere the density is replaced by the basic 

state density. 

o

0

0 1= 















~
 (2.16) 

Corresponding to equation (2.13) the pressure is decomposed into a large-scale and two 

deviation parts. The large-scale basic state pressure op  is assumed to fulfil the hydrostatic 

approximation: 

3o3

o

x

z
g=

x

p

 







 (2.17) 

The large-scale basic pressure gradients are shortened in the equations by using the ge-

ostrophic approximation. This improves the accuracy and reduced the computing time of 

the model. With respect to the used coordinate system X  the horizontal basic state pres-

sure gradients are prescribed as: 
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 (2.18) 

The pressure 1p  is calculated by assuming 1p  is in hydrostatic balance with the average 

density deviation: 

3
0
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1

x

z
g:=

x

p

 






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

 ~
 (2.19) 

Thus, 1p  can be interpreted as the hydrostatic component of the pressure deviation p~ . 

The density deviation ~  for a humid atmosphere can be derived from the linearized gas 

law (2.20). It depends on the potential temperature deviation 1
1o

1
1

1
1 qq=q ~ , and liquid wa-

ter deviations 2
1

2
1

2
1 =~

oqqq   (Schröder, 1987):  
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qq1
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= ~~
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
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
 (2.20) 

vc  and pc  denote the specific heat of dry air at constant volume and at constant pressure, 

respectively. The large-scale potential temperature o  is calculated from 

p
c/R

o

oo
p

100000
T= 










  (2.21) 

The temperature deviation 
~

 is calculated from the temperature deviation T
~

 and in-

cludes influences of the pressure deviation p~ : 

pc/R

21o ppp

100000
T= 














~~
 (2.22) 

1
1R  and oR  are the gas constants of water vapour and dry air.  

Note that in a neutral case, ~  is zero since there are no temperature deviations and from 

(2.19) it can be derived that 1p  remains constant. Furthermore, be aware that the formula-

tion used makes the model results dependent on the chosen basic state. If this is not 

somewhat representative for the situation simulated, the density deviation abs(~ ) might 

be very large and thus the Boussinesq approximation no longer fulfilled. If this is the case 

it might be worthwhile to recalculate the basic state from horizontally averaged basic pro-

files. 
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2.5 Filtered Model Equations 

Using the approximations mentioned in the previous section and the transformation rules 

of Appendices A.1 and A.2, the filtered model equations read as follows. 
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(2.23) 

The terms 1F , 2F , 3F  are obtained from averaging the equations and describe the sub-grid 

scale turbulent momentum fluxes. In Chapter 3 their parameterization is given for the 

Reynolds averaged and the Large-Eddy simulation versions of the MeMi models. The 

pressure 1p  is computed from (2.19), the density ~  from (2.20). 

2.5.2 Dynamic Pressure 

An equation for the dynamic pressure p2 can be derived which is based on the following 

ideas: 

- The anelastic approximation (2.15) has to be fulfilled at every time step. 
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- The complete equations of motion (2.23) can be integrated forward in time by using 

the pressure values at the previous time step. This results in so named preliminary 

velocities ,ˆ,ˆ,ˆ wvu  which do not fulfil the anelastic approximation (2.15). The numer-

ical schemes as described in Chapter 5 need to be used for this integration.  

- The final velocities 
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 (2.24) 

Using equation (2.24) in the anelastic approximation (2.15) results in a diagnostic elliptic 

equation for the pressure deviation 2p̂ dependent on the preliminary velocities ,ˆ,ˆ,ˆ 3uvu   

where 2p̂  denotes the pressure change within the time step t : 
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Following equation (2.8), the vertical velocity w  can be calculated from 
3u,v,u  : 
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Since 2p  can be different from zero even in a dry atmosphere without temperature devia-

tions, it is often called the dynamic pressure. 

2.5.3 Prognostic equations for scalar quantities 

In the coordinate system X  the prognostic equation of the potential temperature   can 

be written as: 
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(2.27) 

Simulations of a humid atmosphere require additional prognostic equations for water in 

the different phases. The balance equation of specific humidity 1
1q~  can be written as: 
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(2.28) 

Replacing 1
1q  by 2

1q  yields the balance equation of liquid water 
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(2.29) 

where 2
1q  can be cloud water as well as rain water (see Section 3.4 for details on the pa-

rameterization of cloud microphysics). 

An analogous equation describes the balance of pollutant concentrations 
jC : 
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(2.30) 

The terms 
Q  contain the specific sources and sinks for temperature, humidity, liquid wa-

ter and pollutant concentration as well as their large-scale tendencies compiled in (2.23)-

(2.25). The turbulent flux divergences of   are summarized in the terms 
F  (Chapter 3). 

In METRAS/MITRAS the sub-grid scale fluxes that include   are derived from the filtered 

values  . 
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3 Parameterization of sub-grid scale processes  

In this chapter the parameterization of meteorological sub-grid scale processes including 

turbulent fluxes, cloud microphysics and radiation is described. Parameterizations applied 

only to pollutants are described in Chapter 4. 

3.1 Sub-grid scale fluxes of momentum 

Most sub-grid scale turbulent transport terms in the model equations are parameterized by 

a first order closures. Additionally closures based on one or two additional transport equa-

tions so called 1.5 order closures are available. It is possible to choose between different 

approaches to determine the exchange coefficients above the Prandtl-layer. 

The diffusion terms iF  in the prognostic equations for momentum can be written as: 
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 (3.1) 

The sub-grid scale turbulent fluxes, which include w,v,u  , can be obtained either by 

formulating prognostic equations (second order closure) or by deducing them by using the 

filtered velocities. In order to minimize the integration time the turbulent fluxes in METRAS 

are derived from a first order closure (e.g. Etling, 1987, Detering, 1985): 
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It should be noted that the reduction of the diagonal fluxes due to pressure (turbulent ki-

netic energy term) is neglected in METRAS at present. The wind components u, v, w in 
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the Cartesian coordinate system  are indicated by ui. In the terrain-following coordinate 

system X , equation 3.2 can be written as 
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Here the Einstein summation is used for 1,2,3)=k(k , but not for i  and j . It can be as-

sumed that the fluxes i j  and the exchange coefficient tensor ijK  are symmetric, hence 

that 2112 =  , 2112 K=K  etc. Besides, identities are assumed for all horizontal and all ver-

tical exchange coefficients: 
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This reduces the number of exchange coefficients to be calculated to two values. There-

fore, the components i j  of the turbulent stress tensor can be derived from the gradients 

of the average variables as follows: 
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Note that 
x

x
,

y

x 21


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

 
 etc. are zero, equation (A.7). These formulations are used in both 

types of turbulence parameterizations. 

3.2 Sub-grid scale fluxes for scalar quantities 

The sub-grid scale turbulent transport terms of any scalar variable   (e.g. potential tem-

perature   in the coordinate system X  can be written as  
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The sub-grid scale turbulent fluxes 
iu  are also parameterized by use of a first order 

closure: 
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The countergradient term   is only considered in the vertical flux and if selected for a 

convective situation. 

Similar assumptions as already described for the exchange coefficients of momentum 

yield: 
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In case of using the non-local scheme equation (3.8c) results in 
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where   and q  are the corresponding countergradient transport terms. The determina-

tion of exchange coefficients and countergradient terms is described in Section 3.4. 

3.3 Surface fluxes 

To calculate sub-grid scale turbulent fluxes below the first scalar grid level (usually set to 

m101 kz  in METRAS and to 2-5 m in MITRAS), the validity of surface layer similarity 

theory is assumed. The grid box averaged values of *u , *  and *q  can be calculated with 

two different methods. 

It should be noted here that the turbulent fluxes of momentum, heat and humidity are not 

pre-defined by the model-users, but diagnostically derived from prognostic model varia-

bles. Therefore the friction velocity *u  given by METRAS can be used as input data for 

oceanographic simulations. 

3.3.1 Parameter averaging 

The parameter averaging method assumes grid box averaged roughness lengths 0z : 



20 Parameterization of sub-grid scale processes 

j
0j

j

0 zf=z   (3.11) 

jf  is the fraction of the sub-grid scale surface class j  within the surface grid box and j
0z  the 

roughness length of the sub-grid scale surface class j . 

*u  results from the following equation: 
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where 1=kz  is the height of the lowest model level above the ground. The velocity is the 

surface parallel component of the wind velocity vector. For the calculation of *u  a mini-

mum value of 0.1 m is assumed for )z(V 1=k . The integral stability function for momentum 

)L/z(m  is calculated according to Dyer (1974) as  
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with .4.0 The stability function for heat is given by 
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The similarity function of heat is assumed as 
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In the model code the similarity functions are sometimes given as functions of Ri using the 

relation 
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together with the assumption (3.15) for the stability function the relation is: 
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The stability function h  for heat is calculated as: 
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Equations 3.13 to 3.20 are assumed to be valid in the stability range 1L/z2   for the 

Dunst (1982) scheme described in Section 3.4.1. 
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The Monin-Obukhov-Length L is defined by equation (3.19). The values are limited to 

m,200  resulting in 
3103Lz   to be treated as neutral. 
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The scaling value for temperature is calculated (e.g. Pielke, 1984) as 
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For the calculation of surface fluxes of other scalar quantities 
 
the similarity functions of 

heat are used and the scaling values are given by 
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3.3.2 Flux averaging 

The second method for the calculation of the near-surface turbulent fluxes is the so-called 

flux averaging method, which is implemented in METRAS according to Claussen (1991), 

Herrmann (1994) and von Salzen et al. (1996) using the concept of blending heigth. As a 

first step, sub-grid scale surface fluxes of momentum (~ 2
* ),( ju ), heat (~ ),,( ** jju  ) and 

moisture (~ ),,( ** jj qu  ) are calculated for each surface class j . Second, the total flux re-

sults as an average of these individual fluxes, weigthed by the respective surface fraction 

fj. Thus the mean scaling values *u , *  and *q  follow as: 
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The scaling values ju ,*  and j,*  of the sub-grid scale surface fluxes are defined as: 
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Ch and Cm are the near-surface transfer coefficients of momentum and heat, respectively. 

The temperature ),( 0 jj z  of the sub-grid scale surface class j  is calculated from a 

surface energy budget equation (Section 7.1.2). 

The transfer coefficients are determined as a function of the blending height lb, which is 

defined as the height in which the flow is assumed to become homogeneous within a grid 
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cell with nonhomogeneous surface. lb depends on the effective roughness z0 and the de-

gree of sub-grid scale heterogeneity of the terrain. The effective transfer coefficients jmC ,ˆ  

and jhC ,ˆ  are approximated as: 
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In contrast to the definition of 0z  as an average of the roughness lengths jz ,0  of the sub-

grid scale surface classes (3.11), the effective roughness length 0z  is now obtained by 

solving the equations 
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and 
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by iteration. l* is the characteristic length of sub-grid scale surface elements of even 

roughness. 

The roughness length 
jz ,,0 
 for heat of the sub-grid scale surface class j  and the effective 

roughness length ,0z  for heat are calculated from equation-Fehler! Verweisquelle konn-

te nicht gefunden werden., the Monin-Obukhov-Length jL  of class j  from equation 

(3.19). 

3.3.3 Roughness length adjustment for special surface types 

Several surface types (‘ice’, ‘urban’ and ‘water’) require specific adjustments to the pa-

rameterizations to best represent certain physical processes. These special surface types 

are defined below. Here, we introduce adjustments made to roughness lengths (both mo-

mentum and scalar) as a function of surface type. For all surface classes not designated 

as a ‘water’ surface type, the momentum roughness length, 
jz ,0
, is set to a constant val-

ue according to Section 3.2.3 of Schlünzen et al. (2018). 
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To take into account the difference in exchange processes of momentum and scalar 

quantities   (e.g., moisture and heat), the scalar roughness lengths of all surface classes 

not assigned to any special surface type are calculated according to Hicks (1985):  

10.=
z

z

0

0



 (3.30) 

Equation (3.30) assumes a surface consisting of dense, permeable roughness elements 

(vegetation). 

Over water, the momentum roughness length depends on the wind velocity. The relation 

by Charnock (1955) is used. For small friction velocities (𝑢∗ < 0.146) the calculation fol-

lowsClarke (1970); for large friction velocities (𝑢∗ > 0.190) the calculation follows Wu 

(1980); in between 7 ⋅ 10−5 is used.: 
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(3.31) 

For scalar roughness length, water is assumed to be a hydrodynamically rough surface 

(a.k.a bluff-body), whose roughness elements have a width normal to the mean flow that 

exceeds their height. For water, the scalar roughness length is calculated according to 

Brutsaert (1975; 1982) as: 
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where /zu=Re 0**  is the roughness Reynoldsnumber. 

Urban surfaces are also treated as hydrodynamically rough surfaces. For all urban sur-

face types, the model follows the approach of Kanda et al. (2007) for scalar roughness 

lengths 
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which is fitted for urban canopies (combined buildings and street canyons) devoid of vege-

tation. Here, the surface type ‘urban’ refers to any surface consisting only of structures 

and their adjacent sealed surfaces (devoid of vegetation).  
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In grid cells containing a mixture of sea ice and water an additional form drag term (10.12) 

contributes to the momentum flux, whereas no (special) modifications of the roughness 

lengths are done. 

3.4 Exchange coefficients 

The exchange coefficients below m10za   are always calculated from surface layer simi-

larity theory by using the following equations, with m  and h  given in equation (3.13) 

and (3.14): 

m*vert /zu=K   (3.36) 

h*q,vert,vert /zu=K=K   (3.37) 

The determination of exchange coefficients above az = 10 m depends on the type of pa-

rameterization used. METRAS uses alternatively a local mixing length scheme (Section 

3.4.2), a scheme similar to that given by Dunst (1982) (Section 3.4.1), a non-local scheme 

given by Troen and Mahrt (1986) (Section 3.4.3) and a non-local scheme given by Lüpkes 

and Schlünzen (1996) (Section 3.4.4). 

3.4.1 Scheme based on Dunst (1982) 

The exchange coefficient determined after Dunst (1982) is similar to that used by Dunst 

and Rhodin (1990), with some modifications concerning the determination of the parame-

ters   and A  (Schlünzen, 1990). vertK  reads: 
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The local gradient Richardson number Ri  is calculated as follows: 
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The value )z/10( 28    is added to ensure a nonzero denominator. The height sH  of the 

planetary boundary layer (PBL) is calculated depending on stability: )Ri(1H=H ns   with 

m1000=Hn . This value corresponds with the characteristic scale height of the PBL de-

fined as |f|/u=H *n   (e.g. Etling, 1987). 
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To calculate 5.1=,Hs   is used for stable stratification, whereas 1.5=  is used for un-

stable stratification. These values have been estimated for typical atmospheric conditions 

and ensure PBL heights between 150 m and 2500 m. With these values for   the free 

constant A  is estimated. It is determined to ensure the equality of the vertK -values at 

height az  for values calculated from equation (3.38) and derived from the surface layer 

similarity theory equation (3.36). Additionally it is ensured that the derivatives of functions 

(3.36), (3.38)with respect to stability result in similar values. For stable stratification, this 

results in Ri9.3192.7058=A   and for unstable stratification Ri0.40.79=A   is used. 

The exchange coefficient ,vertK for scalar quantities (e.g. temperature, water vapour, pol-

lution concentrations) is calculated from the relation: 
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3.4.2 Mixing length scheme 

The mixing length scheme used in METRAS is based on Herbert and Kramm (1985). The 

surface layer functions proposed by Dyer (1974) are used in the whole boundary layer 

while z/L is replaced by the local Richardson nuber using equation (3.16). This results in: 
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nl  is the mixing length for neutral stratification, which is specified according to Blackadar 

(1962) as 
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(3.43) 

3.4.3 Countergradient scheme of Troen and Mahrt (1986) 

Lüpkes and Schlünzen (1996) showed that for stable stratification the local mixing length 

scheme gives reasonable results. However, for unstable situations the eddy diffusivities 

are considerably underestimated. Higher values of vertK are achieved by the scheme of 

Troen and Mahrt (1986), where the eddy diffusivities are independent of local properties of 
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the atmosphere. Instead of eq. (3.44) eq. (31) of Lüpkes and Schlünzen (1996) is used. In 

the AWI version of METRAS, eq. (32) of Lüpkes and Schlünzen (1996) is implemented to 

ensure continuous vertical fluxes at z = z(jk=1), as found out by Luepkes and Schluenzen 

(1996). For unstable stratification the exchange coefficients are given by 
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The countergradient transport term (equations(3.9), (3.10)) for heat is parameterized by 

izsw

s|w
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
  (3.46) 

Herein s|w  is the turbulent heat flux in the surface-layer. sw  is a convective velocity 

scale, defined by 
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1jkz denotes the surface-layer height, iz is the height of the convective boundary-layer 

and fw another convective velocity scale given by 
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The parameterization for q can be derived as 

*
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*
q

q
=  (3.49) 

The mixing layer height iz is determined as the level, where the heat flux attains a mini-

mum. 

3.4.4 Countergradient scheme of Lüpkes and Schlünzen (1996) 

The nonlocal closure for unstable stratification proposed by Lüpkes and Schlünzen (1996) 

is partly based on the scheme given in the previous section. Troen and Mahrt (1986) use 

more or less empirical formulations for the countergradient terms and the diffusivities. In 

contrast, the following scheme includes parameterizations, which are based on the prog-

nostic equation of heat flux and on large-eddy simulations of Holtslag and Moeng (1991). 

These parameterizations have been modified to ensure continuity of the turbulent fluxes 

with respect to height and stratification at the first grid level. This requirement results in 

the following parameterization: 
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pz is the height of the first grid level. 
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Herein the characteristic convective temperature scale is defined by 
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The variance of the vertical velocity 
2w   is parameterized by 
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This formulation is also based on large-eddy simulations for convective flow. The second 

term describes the effect of convection and the first one includes mechanical shear turbu-

lence induced by the surface. q  is again given by eq. (3.49) The mixing length scheme is 

taken for stable stratification. iz
 is determined as described in Section (3.4.3). 

The application of this scheme results in higher values of the mixed layer height, because 

the eddy diffusivities are even higher than those resulting from the scheme of Troen and 

Mahrt (1986). However, the values for  calculated from eq. (3.52) are lower than those of 

the Troen and Mahrt scheme. 

3.4.5 Prandtl-Kolmogorov-closure (TKE)  

This closure solves a prognostic equation for the sub-grid scale turbulent kinetic energy e . 

Local gradients are considered in local Richardson numbers Ri, non local transports are 

represented by countergradient terms. The exchange coefficients are calculated as 
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(3.55) 

The proportionality constant 1c  is set to 0.5 and the mixing length (Blackadar, 1962) is 

calculated similar to (3.43) as 
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The pz  (height of the first grid level) term is needed to assure a steady flux at the lowest 

atmospheric model level (Prandtl-Layer). The eddy size   is set to fu0220 /. *  for 

stable and to jz080  .  for unstable stratification. Further modifications of the diffusion 

coefficients are caused by the Ri-Terms which can be interpreted as an adjustment of the 

mixing length to the atmospheric stability. With (3.16) it can be seen that the Ri terms are 

the same as the stability functions (3.14) - (3.15).The Richardson number is approximated 

as: 
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 (3.57) 

Some further remarks on limitations of this approximation can be found in Fock (2007). 

Molecular and pressure diffusion terms are neglected in the prognostic equation for the 

sub-grid scale turbulent kinetic energy. Counter gradient fluxes can modify the local buoy-

ancy production term: 
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The dissipation   is calculated as 
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/  (3.59) 

The characteristic dissipative length scale l  is calculated according Therry and Lacarrère 

(1983) in dependence of the atmospheric stability. 

At the first atmospheric model level (e.g. at the height pz ) the turbulent kinetic energy is 

calculated as 

2
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2

p
c

u
e *  (3.60) 

to guarantee a matching of the turbulent fluxes. This means that if the fluxes at pz  were 

calculated with the diffusion coefficients (3.36) - (3.37) they need to be the same as if they 

result from the diffusion coefficients (3.55). The absence of any stability term in equation 
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(3.60) is not a limitation to neutral stratification. Instead it is the result of using the stability 

functions (3.14) - (3.15) for the definition of equations (3.55). 

3.4.6 TKE-Epislon-closure 

The TKE-Epsilon closure is similar to the Prandtl-Kolmogorov-Closure but an additional 

prognostic equation for the dissipation   is solved. 

3.4.7 LES subgrid scale model 

The model METRAS-LES is suitable for large eddy simulation and includes a special clo-

sure for subgrid scale turbulence. Due to the conceptual difference between RANS and 

LES applications of the model METRAS this closure needs to be different from the RANS 

closures as only a part of the turbulent exchange is treated as a subgrid scale process. 

The implemented closure is the Deardorff (1980) closure, which shows some formal simi-

laties with the Prandtl-Kolmogorov-closure (Section 3.4.5) as it also applies a prognostic 

equation for subgrid scale turbulent kinetic energy. One of the main difference is in the 

used length scale, which is the characteristic grid length scale 3/1)( zyx   in the 

LES model. Further details can be found in Fock (2007). 

3.4.8 Horizontal exchange coefficients 

The horizontal exchange coefficient horK can be derived from the vertical exchange coeffi-

cient dependent on the grid increment (Dunst, 1980): 

vert

22

hor K
z

yx
r=K




 (3.61) 

The parameter r can be chosen between 0.4 and 0.8. In METRAS r = 0.71 is used, result-

ing in 12
hor sm50K   for a typical 12

vert s10K  , horizontal grid intervals of 

m500yx   and a vertical grid interval of m100z   equation (3.61) is based on 

the assumption that the ratio of horizontal and vertical exchange coefficients is independ-

ent from the stability but proportional to the ratio of the horizontal  y,x   and vertical  z  

scales of the smallest eddies resolved by the grid. It is only applied in METRAS for grid 

sizes below 1000 m. 

3.5 Parameterization of cloud microphysics 

Microphysical processes of cloud and rain formation are parameterized in METRAS by 

following the suggestion first presented by Kessler (1969). The Kessler scheme is based 

on the idea that the liquid water in the atmosphere can be classified in cloud water with a 

mean droplet radius of about 10 m and rain water with a mean droplet radius of about 
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100 m . Both classes are separated by m40r  . The size distribution of the rain water 

can be described by the Marshall-Palmer distribution (Marshall and Palmer, 1948). 

The parameterization scheme includes  

- condensation of water vapor to cloud water  

- evaporation of cloud water to water vapor  

- auto conversion of cloud water to rain water by collision of cloud droplets  

- conversion of cloud water to rain water by collection of cloud droplets (accretion)  

- sedimentation of rain water  

- evaporation of falling rain drops in sub-saturated layers below clouds  

Since rain-drop-growth by condensation and sedimentation of cloud droplets is of minor 

importance, these processes are neglected in the parameterization scheme. With this pa-

rameterization it is only necessary to solve two additional prognostic equations of the type 

(2.29), one for cloud water and one for rain water. Both equations and the prognostic 

equations for specific humidity and potential temperature are coupled by source/sink 

terms that include the processes listed above. 

Due to the restriction to only two additional prognostic equations and the comparatively 

simple representation of cloud microphysics this parameterization requires an acceptable 

amount of computer resources, which still is a limitation factor in high-resolution model-

ling. Nevertheless, it describes the most important processes of cloud and rain formation 

in a satisfactory way. It is well known, however, that the Kessler scheme tends to overes-

timate the auto conversion and accretion processes in the early stage of cloud formation 

resulting in overestimated initial rain rates (e.g. Lüpkes, 1991). 

The phase changes of water vapor to cloud droplets and reverse due to condensation and 

evaporation are calculated by the method of saturation adjustment (Asai, 1965). The val-

ues of a variable   at the next time step 1n   are obtained by   1n1n
= ˆ , where 

1n̂  denotes a `preliminary' value between time step n  and 1n  due to advection and 

diffusion only. The temporal changes of specific humidity 1
1q , cloud water content c2

1q  

and potential temperature   are given by  
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1
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2
1 = qq c   (3.63) 
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The auto conversion of cloud droplets to rain drops starts when the cloud water content 

exceeds the critical value 332
1 mkg10 

c
criq . For larger values the auto conversion rate 

rises linear with the cloud water content: 
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 (3.65) 

r2
1

c2
1 q=q   (3.66) 

The time constant in (3.65) is set up to 
13 s10=k 
 

The accretion rate depends on the probability that rain drops `catch' cloud droplets during 

their fall through cloud layers. This probability can be expressed by the so-called collec-

tion efficiency. Within the considered concept of warm rain, the assumption of a constant 

collection efficiency 1=E  is justified (Doms and Herbert, 1985). The changes in rain and 

cloud water content per time step can then be written 
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1 q=q   (3.68) 

where the term os/ with a reference density 
3mkg1.29= s  ensures the applicabil-

ity of equation (3.67) also to deep convection. 

With the assumption of a Marshall-Palmer rain drop size distribution the sedimentation 

flux of rain is taken into account by 
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where 
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o

s
TR )q29.13(10=V ˆ



   (3.70) 

denotes the terminal velocity of rain drops. In equation (3.70) os/ represents the 

height dependence of TRV  due to density changes with height. 

When rain drops fall through subsaturated layers below clouds they may evaporate again. 

This process depends on the subsaturation as well as on the rain drop size distribution 

and their terminal velocity, expressed in the term tA and a ventilation factor vF , respective-

ly: 



32 Parameterization of sub-grid scale processes 













  SFq10A

t10
qmax=q v

r2
1o

3
t

o

3
r2

1
r2

1
ˆˆ  (3.71) 

r2
1

1
1 q=q   (3.72) 

r2
1

op

21 q
c

l
= ˆ


  (3.73) 
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characterizing the rain drop spectra and 
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3
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The subsaturation is given by 
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It should be pointed out that, unlike to this chapter, most literature on cloud physics give 

the formulas in cgs-units. For clarity, all equations listed above refer to SI-units, resulting 

in a number of additional factors 
310
. Further details on the parameterization of cloud 

microphysics in METRAS are given by Köhler (1990). 

3.6 Parameterization of radiation 

Two different parameterizations for radiative fluxes are implemented in METRAS to take 

into account the heating and cooling of the surface and atmosphere due to the net radia-

tion. If a simulation without microphysics is performed, only the longwave and shortwave 

radiation balance at the earth's surface is computed. This computation is carried out with 

respect to the geographical position, date and time, rotation of the used coordinate system 

against North, inclined surfaces and shading of areas due to neighboring hills. Details on 

this parameterization are given in Section 7.1.2 and Appendix A.5. 

In case of model calculations with the formation of clouds, the radiation fluxes at the 

earth's surface and in the atmosphere are parameterized by use of a two-stream approxi-

mation scheme. This scheme takes into account absorption and reflection of longwave 

and shortwave radiation by water vapor and liquid water and leads to cooling or heating 

not only at the surface but also at each grid point above. Here only the basic ideas of the 

scheme are described, details are given by Bakan (1994). 

The cooling rate at a grid point k  (counting in vertical direction) due to longwave radiation 

flux divergences is given by 
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with the radiation flux 
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where "+" and "-" denote locations at the upper and lower boundary of the grid volume k

respectively. With B  the Planck function,   a volume absorption coefficient and  =1.66 

a diffusivity parameter, the up- and downward fluxes can be written as 
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 (3.79) 

For shortness zB  means the vertical gradient of B  equations (3.79) are separately solved 

for different spectral ranges. 

Within the atmospheric window  m11.1133.8   absorption by liquid water is the domi-

nant process. The absorption coefficient for liquid water is taken following Buykov and 

Khvorostyanov (1977) 
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and for water vapour 
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where op/p takes into account the pressure dependency of the absorption. The Planck 

function can be written as 

)]T0.002851(1T0.9706[88.75=Bwin   (3.82) 

Instead of a detailed description of 2CO absorption between 13 and 18 m the black body 

irradiance of 2CO is parameterized by 

)]T0.004025(1T0.1679[10.63=B
2CO   (3.83) 

Outside of the 8.33 – 11.11 m and 13-18 m range, spectral absorption by water vapour 

is dominant. Since it strongly depends on the wavelength, the transmission function is ex-

panded into a sum of exponential functions with separate absorption coefficients of differ-

ent weights 
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Where v
~  denotes the volume absorption coefficient of water vapor as given in Table 3.1. 

 i    i
v

~  [m 2 /kg]  

 1   4.285 
110   

2  6.053 
010   

3   8.550 
110   

4   1.208 
110   

5   1.706 
210   

6   2.410 
310   

7   3.404 
410   

8   4.808 
510   

Table 1: Volume absorption coefficients of water vapour. 

In practice the range 8i   can be neglected due to its minor weight. 

Subtracting the Planck function for the atmospheric window and the 2CO range yields 

2COwin
4

out BBT=B   (3.85) 

where 428 KWm105.67032=   is the Stefan-Boltzmann constant. 

The downward solar radiation flux can be written as a product of several transmission fac-

tors: 

ALDVEo fTTTTE=E   (3.86) 

where oE  denotes the solar constant, )t(Z= cos  with )t(Z  the zenith angle (Appendix 

A.5), Af  is a function of albedo and T are transmission factors due to Rayleigh scattering 

)T( E , absorption by water vapor )T( V , absorption and scattering by aerosols )T( D and liq-

uid water )T( L . (3.86) is separately calculated for the visible range 1 ( m0.75<  ) and a 

near infrared range 2 ( m0.75>  ). Within the radiation module of METRAS 

1=f=f=T=T=T 2A1A1D1V2E  is assumed. The solar constants of both ranges are taken as 

1oE = 707 W/m² and 2oE =660 W/m². 

The transmission factor for Rayleigh scattering is derived from a suggestion of Atwater 

and Brown (1974) (Bakan, 1994) 






0.051/0.962
0.161.041=1

o
E

pp
T  (3.87) 

and scattering by liquid water is parameterized following Stephans et al. (1984) 
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where  0.08=1 is the backscattering fraction, 3.963
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 the liquid water mass above 

the location under consideration. 

In the near infrared, absorption by water vapor is given by  
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the mass of water vapor analogous to LW . As in (3.81) and (3.84) the factor opp/ takes 

the pressure dependency of the absorption into account. The transmission factor for liquid 

water is formulated following Stephans et al. (1984): 

R/4=T 2L   (3.91) 
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The corresponding reflectivity is calculated from 
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For further details especially on the vertical integration of the radiation fluxes, their trans-

mission and reflectivity Bakan (1994). 
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4 Pollutant processes 

4.1 Chemical transformations 

4.1.1 Gas-phase-reactions systems 

Besides calculating passive tracer transport, chemical reactions can also be calculated 

with M-SYS. Both, transport and reactions-, are included in the model system. Thus at 

each timestep the new wind, temperature, and humidity fields are available for the 

transport and also for the calculation of the reaction rates. 

The photolytic reactions are solved with 


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



 
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)(cos
exp 2

1
tZ

D
Dkhv

 (4.1) 

where 1D and 2D  are constant values given in Chapter 6 of Schlünzen et al. (2018) and 

)t(Zcos  is the cosine of the zenith angle of the sun. The changing of the photolytic rate 

with height or due to clouds are not considered. 

All non-photolytic reaction constants are solved with 








 
 T

R

D
Dk 4

3 exp  (4.2) 

3D  is a factor depending on the reaction, 4D  the activation energy and R the gas con-

stant. The values for 3D
 and RDD /= 45 are given in Chapter 6 of Schlünzen et al. (2018). 

The rate constants have to be in s ,m mol, 3
 units to be consistent with the reaction 

scheme. 

4.1.2 Formation of ammonium aerosols 

The formation of ammonium aerosols can be added to the gas phase reactions. The two 

reactions are gas-to-particle reactions, where ammonium nitrate and ammonium sulfate is 

formed. These reactions cannot be solved in the same way as the gas phase reaction with 

the QSSA-algorithm. In a very fast reaction ammonium sulfate is formed from sulfate and 

ammonium (Seinfeld (1986)) 

424
2
43 SONHSO2NH3 )(   (4.3) 

The rest of ammonia reacts with nitric acid )HNO( 3  to ammonium nitrate 

3433 NONHHNONH   (4.4) 

This reaction depends on the dissociation constant K, which is for the solid ammonium 

nitrate only a function of temperature. 



Pollutant processes 37 

 

 2ppb
293

ln1.6
24220

6.84ln 









T

T
K  (4.5) 

For a humidity above the of deliquescence value, ammonium nitrate will be in the aqueous 

state. A dissociation constant comparable to equation (4.5) but involving aqueous ammo-

nium nitrate can be found. It is a function of temperature and relative humidity (Seinfeld, 

1986). As simplification of the equations described in Seinfeld (1986) a formula of the 

EMEP-model is used (Thehos, 1991; Sandnes and Styve, 1993). 






















d

ds
s

r

rr

r

K
KK

101101

ln75.20
lnln  (4.6) 

with r = relative humidity and dr  = relative humidity at deliquescence 
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The concentration of ammonium nitrate can be determined by the use two of conservation 

equations 
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where (eq) means the equilibrium concentration and (neq) the non-equilibrium concentra-

tion. Now the equilibrium concentrations can be calculated as 
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(4.9) 

Ammonium nitrate is formed for 

KHNONH neqneq  )(3)(3 ][][  (4.10) 

and decomposed for 

KHNONH neqneq  )(3)(3 ][][  (4.11) 

The calculation of ammonium nitrate and -sulfate depends on the gas-phase reaction sys-

tem. It can be used with both EMEP and CHEMSAN provided that 3NH is emitted. 

4.2 Parameterization of dry deposition 

In METRAS the dry deposition flux F of a species towards a unit surface area is comput-

ed by multiplication of the deposition velocity DV  with the pollutant concentration )z(C 1  at 

a reference height 1z (=10 m) close to the ground (Chamberlain, 1975): 
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)(= 1zCVF D   (4.12) 

The calculation of the deposition velocity DV  is based on a resistance model, which 

means that DV is calculated as a reciprocal value of the sum of three characteristic re-

sistances (e.g. Chang et al., 1987): 

1)(=  smaD rrrV  (4.13) 

The intensity of turbulent mixing in the surface layer controls the aerodynamic resistance 

ar . The following parameterization, used for instance also by Sheih et al. (1979), has 

been employed: 
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Here it is assumed that the turbulent transport of pollutants is similar to the transport of 

heat in the surface layer (e.g. Pielke, 1984) and the stability function h is calculated ac-

cording to Dyer (1974) as given in Section 3.3, but taken as h for 01.0/01.0  Lz . 

For parameterization of the sublayer resistance mr different formulas are used for the 10 

different land-use types considered in the model. Over a water surface the formula dis-

cussed by Brutsaert (1975) and Garrat and Hicks (1973) are used: 
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with cD the molecular diffusivity of the trace gas in air, cDSc /=  the Schmidt number and 

Re the turbulent Reynolds number. Due to investigations performed by Garrat and Hicks 

(1973) mr is calculated over vegetation by (Wesely and Hicks, 1977): 

2/31
* 2)(= Scurm    (4.16) 

 

Over urban land types (bluff bodies) the formula pointed out by Brutsaert (1975) is ap-

plied: 

5)(7.3= 1/21/41
*  ScReurm  (4.17) 

The surface resistance sr  depends on the stomata, cuticular and mesophyll resistances, 

and on the solubility or reactivity of a given trace gas (Walcek et al., 1986). For surfaces 

covered by vegetation the surface resistance is a function of season and insulation, and 

their influence on the stomata activity of the vegetation. Following Arritt et al. (1988), sr  is 

assumed to depend on the land-use type. The influence of insulation and relative humidity 

at the surface rsq  on the surface resistance sr  is included in the following way: 
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(4.18
) 

The solar irradiation SWR  is calculated in the model METRAS as described in Section 3.6. 

For the values of min,swet,s r,r , and max,sr used in METRAS see Section 7.1 in Schlünzen et 

al. (2018). 

In METRAS the concept of the resistance model is also applied to some aerosols 

( Pb,NO,SO 3
2
4



 ). The surface resistance sr for aerosols smaller than 10 m  is about ze-

ro, the deposition only depends on the molecular resistance and the size of the aerosols. 

For aerosols larger than 0.2 m  the deposition velocity increases with increasing diame-

ter of the particle. 

2
4SO and 

3NO  ions are transported on other larger particles. The mass size of the parti-

cles bearing 2
4SO  or 

3NO  varies with source, season, region and humidity. In general, 

2
4SO  is dispersed in the m1.00.1  diameter range and nitrates are bimodally dispersed 

with one mode in the m1.00.1  range and the other in the m10.02.0  range (Voldner 

et al., 1986). Since large particles have higher deposition velocities, br  for 
3NO  is more or 

less arbitrarily chosen as 50% of that for 2
4SO . The time dependency of br  for aerosols is 

solved in the same way as sr  for gaseous substances. Further details on the dry deposi-

tion module of METRAS are given in Pahl (1990), Pahl and Schlünzen (1990) and 

Schlünzen and Pahl (1992). 

4.3 Parameterization of wet deposition 

In METRAS the rate of removal of gases and particles by wet deposition is represented as 

a first order process and can be parameterized, therefore, by ),,,(),,,( , tzyxCtzyxdpp 

and ),,,,(),,,,( tzyxdntzyxd ppp   (e.g. Seinfeld, 1986). C  is the gaseous concentration 

in air, n  the particle size distribution function and   and p  the gaseous and particulate 

washout coefficients, respectively, each one dependent on location and time. The as-

sumption of a first order process is valid if the scavenging is more or less irreversible. In 

contrast to particle scavenging this assumption fails for some gases with reversible solu-

bility. In METRAS, however, only the scavenging and wet deposition of irreversible soluble 

gases is implemented. 

With the further assumption that all scavenged material reaches the surface, the wet flux 

to the surface can be written 
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It should be stressed here that the concept of a washout coefficient ),,,( tzyx differs from 

the often used concept of a washout ratio  

 
surfacenearairinionconcentrat

ionprecipitatinionconcentrat
=rW  

which ignores vertical inhomogeneities in concentration and precipitation. Although the 

relations (4.19) and (4.20) are a considerable progress in taking into account vertical in-

homogeneities, their weakness lies in the fact that all once scavenged material is deposed 

at the surface immediately. The release of scavenged material by evaporation of rain 

drops in subsaturated layers is ignored. The difference form of (4.19) in the model 

METRAS is given by 
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where wet
j,iD denotes the flux of wet deposition ]sm[kg 12 

 to the surface during one time 

step of length t . Indices k,j,i  denote grid points in x -, y - and z -direction, respectively. 

In (4.21) compared with (4.19) the density o  has been added due to the fact that in 

METRAS concentration units are given in ]kg/kg[ . Since scavenging removes material 

from the gaseous phase the change in concentration per time step is computed by 

tCC kjikjikji  ,,,,,, =  (4.22) 

According to Tremblay and Leighton (1986) the washout coefficients depend on the local 

rainfall rate kjiR ,, by 

s
c

kjiss
s

kji Rba )(= ,,,,   (4.23) 

where s  refers to the pollutant species under consideration. The values of ss b,a  and sc  

implemented in METRAS for several species are listed in Section 7.2 of Schlünzen et al. 

(2018). The local rainfall rate is a function of rain water content and terminal velocity and 

has to be given in [mm∙h-1] : 

i,j,kTR
r

wi,j,k ]Vq)[(ρ(ρ=R  2
1

3103600  (4.24) 

With TRV  from equation (3.70). 

4.4 Parameterization of ship emissions 

Ship emissions are parameterized in METRAS depending on ship type and engine type. 

Fuel consumption is estimated by Trozzi and Vaccaro (1998) for several ship types de-

pending on their net tonnage using linear regressions. Trozzi and Vaccaro (1998) also 
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give emission factors for nitrous oxides NOX, carbon monoxide CO, volatile organic com-

pounds VOC and particulate matter PM10 depending on the engine type. For the mapping 

of these species groups to METRAS-known species a volume fraction NO2/NOX of 5% is 

assumed, which corresponds of a mass fraction of 7.47%. For VOCs no mapping to 

METRAS species is known, for PM10 Bond et al. (2004) uses a mass fraction soot/PM10 of 

56.7% to estimate the global soot emissions from ships. Further details on the implemen-

tation are given by Spensberger (2010). 

4.5 Parameterization of aircraft emissions 

Similar to ships, emissions by aircraft are calculated from the fuel consumption of an air-

craft type and the emission factors for several species dependent on the engine used. Fol-

lowing the ICAO touch-down to take-off cycle which defines the flight states (1) approach 

flight and take-down, (2) taxiing, (3) take-off and (4) climb-out Uphoff (2008) collected 

these data for several aircraft and several engines. The fuel flow during the flight states is 

assumed to be 30%, 7%, 100% and 85% of its maximum (Uphoff, 2008). The time spans 

that an aircraft typically spends in each flight state are also calculated by Uphoff (2008) 

from its aerodynamical properties. The maximum height to which aircraft emissions are 

calculated is 915 m (3000 ft). 
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5 Treatment of obstcales 

5.1 Buildings 

For treating buildings in the obstacle resolving model MITRAS in the 3-D model, the con-

cept of the mask method (Briscolini and Santangelo, 1989) is employed in MITRAS. This 

method is based on the immersed boundary method (e.g., Mittal and Iaccarino 2005), 

which allows flow simulation in the vicinity of complex geometries that do not conform on 

Cartesian grids. Impermeable grid cells are defined at the buildings positions using 3-D 

fields of weighting factors, vol(x,y,z), that are defined at each grid cell. The weighting fac-

tors include the information whether a grid cell is in the atmosphere cell or in a building. 

The last can be completely or mostly inside a building. Any faces of a grid volume that in-

clude a building and are a wall or roof are marked using additional arrays denoting the dif-

ferent faces. This means that the grid cells in a domain are divided into three groups: grid 

cells in the free atmosphere that are surrounded by atmosphere and have no adjacent 

building, grid cells next to building surfaces, and grid cells within buildings (Figure 5.1). 

This destinction of the different grid cell qualities is used in the model coding. The mask 

method economizes the computation, since the equations can be timedependently solved 

throughout the whole 3D arrays. The masking data are prepared by the preprocessor 

GRIMASK (Section 3.2.6 of Schlünzen et al., 2018). In the model, e.g. the wind velocity 

components vanish at the building boundaries by multiplying the fluxes at the grid volume 

faces with the face markers (impermeable walls). Wall functions are additionally included 

to address friction effects properly.  

 

Figure 5.1: Masking concept in MITRAS. 

The aair temperature is influenced by changes of the surface temperature at building sur-

faces. Their effect is taken into account by simulating the sensible heat flux. In grid cells 
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that are adjacent to building surfaces, the term Q is added to the turbulent fluxes of heat 

(Eq. (5.3)). 

Qθ=-ub*θb* (5.1) 

Qθ represents the sensible heat flux, which is calculated from the friction velocity at build-

ings, ub*, and the scaling value for potential temperature, b*. ub* is calculated following the 

approach of Lopez (2002) as 

ub*=κ
|v⃗ b|

ln (
db

zb,0
)
 (5.2) 

A logarithmic wind profile with neutral stratification is assumed normal to each of the build-

ing surfaces. |𝑣 𝑏| is the wind speed parallel to the building surface at the first scalar grid 

cell next to the building surface, i.e. in the distance db, whith its value depending on the 

grid size. Typical values for db are thus several decameters to very few meters. zb,0 is the 

roughness length of the building surface. The scaling value for potential temperature at 

buildings’ surfaces is calculated as 

θb*=κ
(θd,b
̅̅ ̅̅ ̅-θb)

ln (
db

zb,0,θ
)
 (5.3) 

and thus depends on the difference of the building surface temperature, b, and the air 

temperature at the first grid cell next to the building, d,b. The roughness length for tem-

perature at the building (𝑧𝑏,0,θ) depends on the roughness Reynolds number, Re. Follow-

ing Brutsaert (1975). The roughness length ratio is calculated as: 

zb,0

zb,0,θ

=exp (k(7.3Re
1 4⁄ √Pr-5)) (5.4) 

with the Prandtl number (Pr) set to 0.71. 

This concept allows considering not only surface-mounted buildings but also overhanging 

obstacles such as bridges and overpasses or pathways to courtyards. They can all be 

considered in complex urban geometries. 

5.2 Building surface temperature 

In order to obtain an accurate surface temperature of the buildings (obstacles), Tb, a num-

ber of surface fluxes are considered at the building surfaces in MITRAS, including turbu-

lent and radiative processes (Gierisch 2011). Thus, the physical properties of the façade 
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and walls’ materials are needed in the model, including reflectivity, emissivity, heat trans-

fer coefficient, and specific heat capacity of the walls. 

The surface temperature of a building surface, Tb, is calculated from the energy budget 

assuming an infinitely thin outermost slab of the building façade. The slab is heated or 

cooled from outside by a heat source, H, and supported from inside by the rest of the fa-

çade that is connected to the building interior. The latter is assumed to be maintained at a 

constant temperature, Tin. The rate of temperature change of the slab is governed by the 

imbalance between the forcing term H and a restoring term: 

cwallD
∂Tb

∂t
= H-

λ

D
(Tb-Tin). (5.5) 

The forcing term H is calculated from 

H = RSW,abs+RLW,abs-εσTb
4
+QS+QL. (5.6) 

RSW,abs and RLW,abs denote the absorbed incoming short wave and long wave radiation, re-

spectively. QS and QL are the sensible and latent heat fluxes at the surface, respectively. 

These are calculated from the local friction velocity and the local scaling values for tem-

perature and humidity using eq. (5.1) (Gierisch 2011).  is the thermal conductivity, D is 

the wall thickness, and cwall is the wall volumetric heat capacity. 

The surface energy balance for the inside of the wall surface can be written as 

QC-hi(Tin-Troom)=0. (5.7) 

hi is the heat transfer coefficient for the internal wall, and QC the heat conduction flux 

through the wall calculated as QC= λ 𝐷⁄ (Tb-Tin) and Troom is the room temperature. Using 

eq. (5.7), the relation between Tin and Tb results in 

Tin=
hi

hi+
λ
D

Troom+

λ
D

hi+
λ
D

Tb 
(5.8) 

Substituting H and Tin in Eq. (5.5) yields, 

∂Tb

∂t
=

1

cwall D
[H-C(Tb-Troom)] (5.9) 

The right-hand side of eq. (5.6) is a function of Tb. Thus 
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∂Tb

∂t
=F(Tb) (5.10) 

Solving eq. (5.10) numerically, 

F(Tb
t+Δt)=F(Tb

t )+
∂F

∂Tb

|
Tb

t
(Tb

t+Δt
-Tb

t ) 
(5.11) 

and rewriting eq. (5.11) for Tb
t+t gives the time dependent equation for the surface tem-

perature: 

Tb
t+Δt

=Tb
t
+

F(Tb
t )

1
Δt

-
∂F
∂Tb

|
Tb

t

 
(5.12) 

5.3 Wind turbines 

As other solid obstacles the tower and the nacelle of a wind turbine are represented in 

MITRAS by impermeable grid cells, therby assuring for example a vanishing wind speed 

and zero turbulent kinetic energy at grid points within the tower and nacelle. The orienta-

tion of the nacelle changes time dependent in relation to the incoming wind direction in the 

model simulation. The wind turbine rotor is parameterized by using the actuator-disk con-

cept (Molly 1978; Mikkelsen 2003; El Kasmi and Masson 2008). In this concept the rotor is 

replaced by an im aginary permeable disk subjected to a distribution of forces which acts 

upon the incoming flow at a rate defined by the period-averaged kinetic energy that the 

rotor extracts from the atmosphere. According to the actuator-disk model, the reduction of 

the wind speed is caused by the rotor thrust, T, which is formulated as. 

T=
1

2
cTρAV1

2
. (5.13) 

V1 denotes the speed of the approaching flow at wind turbine level, A is the rotor area,  is 

the air density, and cT is the non-dimensional thrust coefficient for the corresponding wind 

speed. The energy removal is limited to those cells located at the actual rotor position. 

The speed of the approaching flow is calculated with respect to the orientation of the rotor 

which depends on wind direction and changes direction during the simulation. The thrust 

coefficient T depends on wind speed and therefore wind turbines in MITRAS automatically 

switches on at the cut-in and automatically off at the cut-off wind speed. 
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The wind turbine rotor blade creates wake vortices of the wind turbines, which are associ-

ated with increased turbulence intensity. The turbulence generation in the wake is param-

eterized in MITRAS by adding an additional term, Qwt, to the turbulence mechanical pro-

duction, PM, in the turbulent kinetic energy equation to account for the turbulence genera-

tion at the rotor position. This term is formulated in dependence of the scale velocity uwt 

used to characterize the turbulence as: 

Qwt=
1

2
cwtuwt

2 (5.14) 

The factor cwt [s-1] includes the wind turbine characteristics that govern the amount of pro-

duced turbulence, namely the rotor size, the number of blades and the rotational speed 

The rotation of the rotor induces a tangential velocity, v. In MITRAS we use the scale ve-

locity that is typically used to parameterise a vortex developing behind an aircraft. The 

Rankine vortex model (Gerz et al. 2001) is applied here to calculate v: 

vθ=
ΓO

2πrc

 (5.15) 

rc is the vortex core radius and O is the rotor circulation, which is related to the rotor rota-

tional speed, lift coefficient, and aspect ratio. More details about modelling the wind tur-

bines in MITRAS are given in Linde (2011). 

5.4 Vegetation 

Two modes of vegetation treatment are used in MITRAS. In the implicit mode, the effect of 

the vegetation (grass, bushes, trees, etc.) is implicitly considered in the surface parame-

terization, using the roughness length. This is done in the same way as in the mesoscale 

model METRAS (Section 3.3) by allocating the vegetation surface cover class for the cor-

responding surface grid cells and using the corresponding input parameters (e.g. rough-

ness length, soil water content etc.; Section 3.2.6 of Schlünzen et al., 2018). 

In the explicit mode, the vegetation effects are explicitly resolved. These effects include 

the wind speed reduction (Schlüter 2006), turbulence dissipation due to drag forces from 

plant foliage-atmosphere interaction (Salim et al. 2015), and radiation absorption and 

shading. 

The wind speed reduction is parameterized by introducing a local three-dimensional sink 

term, Sui
 with i=1, 2, 3 for the u-, v, w- component. Sui

 is added to the momentum equa-

tions (2.23). Following Liu (1996), the sink term is calculated as: 
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Sui
 = - cd LAD(ẋ

3
)∙U∙ui (5.16) 

Here cd is a drag coefficient, U is the mean wind speed at height ẋ
3
, and LAD(ẋ

3
) is the 

equivalent leaf area density of the plant at height ẋ
3
. The value of cd = 0.2 determined by 

Katul (1998) is chosen here. Sui
 represents a source of turbulence resulting from the ex-

traction of mean kinetic energy, E, from the flow. However, the typical effect of vegetation 

is to reduce the overall turbulence by enhancing the dissipation of turbulence. To parame-

terize the additional turbulence creation and dissipation, additional source terms are add-

ed to the turbulent kinetic energy and dissipation equations. Following Wilson (1988) and 

Liu et al. (1996) these terms read: 

Qveg,E=cdLAD(ẋ
3
)∙U

3
-4cdLAD(ẋ

3
)∙|U|∙E (5.17) 

Qveg,ϵ=1.5cdLAD(ẋ
3
)∙U

3
-6cdLAD(ẋ

3
)∙|U|∙ϵ (5.18) 

The reduction of the shortwave radiation flux is considered by including a hight dependent 

local reduction coefficients (ranging from 1 to 0. The reduction coefficients depend on the 

height dependent leaf area index, LAI, of the plant (see Section 3.5.3 of Schlünzen et al. 

(2018)) 

σSW(ẋ
3
)=exp (F∙LAI(ẋ

3
)) (5.19) 

 



48 Numerical treatment 

6 Numerical treatment 

In this chapter the numerical schemes used for solving the discretized model equations as 

well as the used grid and the initialization of the model are presented. The discretized 

model equations are summarized in Appendix B. 

6.1 Non-uniform grid 

The model equations are spatially discretized on an ARAKAWA-C-grid, which represents 

gravity waves better than other grids (Mesinger and Arakawa, 1976). 

From Figure 5.1 it can be seen that the components of the velocity vector are defined at 

grid points which are separated in all directions from the grid points for scalar variables. 

This increases the accuracy of the used numerical methods for the computation of diver-

gences. Some of the transformation coefficients A  to G , used to discretize the equations 

(Appendix A), are defined at scalar grid points, others are defined at vectorial grid points. 

 

Figure 6.1: Three-dimensional grid representation in METRAS/MITRAS (ARAKAWA - C) 

Figure 5.2 shows a projection of scalar and vectorial grid points to the horizontal 
21 x,x   

plane (left) and the vertical 
31 x,x  plane (right). The lateral boundaries of the model area 

are defined at 0.5=j=i , corresponding to the index 0 of the vector field, and 0.51NX=i  , 

0.52NX=j  , corresponding to the index NX1 and NX2 of the vector field. The surface 

lies at 0.5=k and the top boundary at 0.53NX=k   The velocity components are defined 
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at the boundaries with respect to the direction they represent (u  at 1x -boundaries, v at 2x -

boundaries, w at 3x -boundaries), whereas the boundary values of scalar variables are 

defined at half a grid width outside of the model area. The same holds for velocity compo-

nents in those directions, where they are defined at scalar grid points. This grid represen-

tation enables the coupling of velocity and pressure arrays at the boundaries (Section 

7.3). Figure 5.3 shows the grid representation for a non-uniform grid. 

 

 

Figure 6.2: Grid representation in a 
21 x,x   plane (left) and 

31 x,x   plane (right) 

  

Figure 6.3: Grid representation in 1x -direction displaying the position of different grid 
points in a nonuniform grid 
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The model equations are solved in a uniform grid (Appendix A.2) with uniform grid incre-

ments 1=== 321 xxx    (
321 x,x,x    without unit). The coordinates of scalar grid 

points in the coordinate system X are defined as follows: 

 ix 1   with 0,1,=i  NX1 + 1, resulting in NX1+2 grid points  

jx 2   with 0,1,=j  NX2 + 1, resulting in NX1+2 grid points  

kx 3   with 0,1,=k  NX3 + 1, resulting in NX1+2 grid points  

The vectorial grid points are defined in a similar way. It follows that there are 11NX   vec-

torial u -points in direction 1x , 12 NX  vectorial v -points in direction 2x and 13NX   vec-

torial w -points in direction 
3x . 

6.2 Temporal integration scheme of the model 

The solving of the model equations follows the temporal integration scheme given in Table 

2. Details of the integration are given in Chapter 8 of Schlünzen et al. (2018). 

 Model Initialization  

 Time Integration Loop  

   Calculation of Corresponding Time  

   If specified: Topography 'Diastrophy'  

   Calculation of exchange coefficients and surface characteristics  

   Calculation of Wind Field, Pressure 2p   

   If specified: Calculation of Scalar Quantities ( j
2
1 C,q,

~~~
 )  

   Calculation of Density ~   

   Calculation of Pressure 1p   

   If Specified: OUTPUT of Selected Values  

 End of Simulation  

Table 2: Integration scheme of model METRAS 

After specifying initial values for all variables the integration within the time loop starts with 

the computation of new surface heights, if necessary (diastrophism). As a next step the 

friction velocity *u , flux temperature *  and flux humidity *q  are determined by iteration. 

Now the exchange coefficients can be derived and the wind components and pressure 2p  

are computed for the new time step. With the new dynamic fields the equations for the 

scalar variables temperature, humidity, liquid water and pollutants can be solved in a 

semi-implicit manner. Finally the density p~  and pressure 1p  are derived from diagnostic 

equations. 
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Without using the new dynamic fields for solving the equations of temperature and humidi-

ty it would be necessary to adapt the time step to the velocity of gravity waves which can 

reach 300 m s-1. The use of huge amounts of computation time can be avoided by using 

the semi-implicit integration scheme (Pielke, 1984). The balance equations of liquid water 

and pollutants are also solved semi-implicit, which is not necessary but reduces memory 

resources because no additional auxiliary arrays for preliminary velocity fields are re-

quired. 

6.3 Numerical schemes 

The numerical schemes implemented in METRAS have been chosen with regard to the 

requirements that they 

- require a minimum of computer memory 

- can easily be vectorized for optimization 

- supply convergent and stable solutions and 

- have low numerical diffusion. 

Due to nonlinear instability of the model equations the solutions can be disturbed by the 

formation of x2 -waves (Haltiner and Williams, 1980). To avoid such instabilities, three 

kinds of filters are implemented in METRAS to damp x2 -waves (Shapiro, 1971). 

Level 1 (3 point): 

 11 2
4

1
=   iiii

  (6.1) 

Level 2 (5 point): 

 21121 4104
16

1
=   iiiii

  (6.2) 

Level 3 (7 point): 

 321123 61544156
64

1
=   iiiiiiii

  (6.3) 

  represents unfiltered values and   filtered values. Boundary values remain unfiltered. 

In most model runs the 7 point filter (6.3) is applied, resulting in low damping. 

When using higher level filters the values close to boundaries are calculated with the low-

er level filters. The filters are only used in horizontal direction, at first in x- and at second in 

y-direction. For radiational heating and cooling, calculated as described in Section 3.6, the 
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filter (6.1) is used in vertical direction. This considers implicitly intense vertical mixing pro-

cesses occurring in clouds. 

6.3.1 Solution of the equation of motion 

The discretized equations for momentum are listed in Appendix B.1.1. For the temporal 

integration of the advection terms the Adam-Bashforth scheme is used, with the spatial 

derivatives approximated by centered differences. This scheme is slightly instable, but the 

typical computational mode of 3-level-schemes is damped (Mesinger and Arakawa, 1976). 

Following Schumann (1983), this scheme is stable for solving the equations of motion, if, 

as it is done in METRAS, the diffusion terms are also calculated with this scheme. To in-

crease the time step for vertical exchange processes an implicit scheme (Crank Nichol-

son) is implemented to derive vertical diffusion terms. 

The Coriolis and gravity terms of the equation of motion are discretized forward-in-time 

and centered-in-space. Although forward-in-time differences of the Coriolis terms may 

lead to instabilities (e.g. Kapitza, 1987), this method can be used due to the very small 

amplifying of the solution, when time steps shorter than 100 s are used (Pielke, 1984). In 

METRAS time steps are limited to 60 s. 

The gradients of the pressure 2p  are solved implicit with backward differences. By doing 

so the anelastic assumption (2.15) is achieved at every time. The pressure gradients are 

discretized centered-in-space, as is done with all other gradients not mentioned here. All 

variables which are not defined at the grid points where they are used, are taken as an 

average from the neighboring grid points. 

6.3.2 Solution of scalar equations 

The discretized balance equations for scalar quantities are given in Appendix B.1.2. The 

advection terms are discretized by the well known upstream scheme. The exchange pro-

cesses can be solved forward-in-time and centered-in-space or, alternatively, for the verti-

cal direction with the Crank-Nicholson-scheme. 

6.3.3 Solution of the Poisson equation 

The pressure 1p  can be subsequently computed by numerical integration of (2.19) from 

the upper model boundary to the ground. The density deviation ~  is derived from the di-

agnostic equations (2.20) as a function of the temperature deviation 
~

 and the pressure

21 pp=p ~
. Since the pressure 1p

 at time step 1n  is unknown (Table 2), the known val-

ue at time step n  is used. However, for the temperature and pressure 2p  the values at 

time step 1n   are used. The density )i,j,k(~ , therefore, is derived semi-implicit. Addition-
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al boundary values are only necessary for 1p  at the upper boundary, where 0=p1  is as-

sumed and all pressure deviations are summarized in the pressure 2p  

Equation (2.25) for the pressure 2p  is an elliptic differential equation (Posson equation), 

with Neumann boundary conditions. Since Neumann boundary conditions imply a singular 

discretization matrix (constant pressure functions are contained in the kernel of the La-

place-operator), the solution is scaled by the mean pressure at the top of simulation do-

main. 

Furthermore, the discretized system needs to be solved by an iterative procedure - for the 

reason of singularity and its size. Within the model METRAS the iterative IGCG-scheme 

(Idealized Generalized Conjugate Gradient; Kapitza and Eppel, 1987) and the precondi-

tioned BiCGStab-method (BiConjugate Gradient Stabilized; Van der Vorst, 1992) are im-

plemented. More details about the solution procedure for the poisson equation can be 

found in Schröder (2007). An OpenMP based parallelization of the BiCGstab solver (and 

also an additional GMRES solver) with block preconditioners or multicoloring decomposi-

tion are currently under development. 

6.3.4 Numerical solution of gas-phase reactions 

The temporal change of a concentration is the sum of the sources and sinks, 

NitQtcR
dt

tdC
ii

i 1,..=)(),(=
)(

  (6.4) 

which depends on the chemical reactions )( iR , emission and deposition )( iQ . Including 

only the chemical reactions, equation (6.4) changes to 

))(())((=
)(

tCLtCP
dt

tdC
ii

i   (6.5) 

with iP = production rate and iL = lost rate of the species i. Assuming that iP and iL are 

constant during the time interval ),( nnn ttt  , the solution of equation (6.5) is 
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ttC


  (6.6) 

A chemical gas phase system is a nonlinear, stiff differential system. The large differences 

in the eigenvalues due to large differences in the lifetime of species cause the stiffness of 

the system. To solve a stiff ordinary differential equation system, special numerical algo-

rithms have to be chosen. In METRAS an explicit algorithm is included based on QSSA. 

This algorithm chooses different equations for species with different lifetime, which makes 

the algorithm very time consuming. To improve the algorithm, Knoth and Wolke (1993) 

replaced the exponential term of equation (6.6) by the Padé-approximation 
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Substituting equation (6.7) in equation (6.6) results in 
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7 Boundary conditions  

The model area is limited in vertical and horizontal directions. Over land the surface height 

sz and over water the water surface coincides with the lower model boundary. The remain-

ing five boundaries are artificial in the sense that they do not correspond to natural 

boundaries between two media. Since they are artificial, the corresponding boundary con-

ditions have to be formulated in such a way that waves can pass these boundaries without 

reflections. 

In METRAS/MITRAS several boundary conditions are implemented at each boundary, 

because different applications require different boundary conditions. They can be selected 

by control variables in the model input and are based on the following assumptions: 

- Lateral boundaries can be inflow and outflow boundaries at the same time. 

- Boundary values of the wind components 1u , 2u , 3u  normal to the boundary are 

coupled to the pressure deviation 2p . The derivation of the boundary conditions 

takes this relation into account, as is done in other mesoscale models (Clark, 

1977; Schumann and Volkert, 1984). 

- The increments yx  , remain constant at the first three scalar grid points, includ-

ing the scalar grid points outside the lateral boundaries. Thus the derivatives 

x/x1   at the west/east boundaries and yx  /2
 at the south/north boundaries re-

main constant at two grid points. 

- The increment z  remains constant at the lowest and highest three scalar grid 

points, including the scalar grid point below the surface and above the model top. 

Thus the derivative z/x3  remains constant at two vector grid points. 

- The surface heights sz  remain constant normal to the boundaries for three scalar 

grid points, which yields 0=/3 xx    and 0=y/x3   at the corresponding bounda-

ries. 

These five assumptions do not limit the range of applicability of the model. Within checked 

limits (Schlünzen (1988), Section 5.1) the grid increments can be chosen without declining 

the solvability of the equation system. The grid increments can be chosen depending on 

the requirements of the application. The constant surface heights prescribed at the lateral 

boundaries differ form reality. However, the prognostic variables should never be inter-

preted near the boundaries due to their artificial character. In case of complex terrain (due 
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to land-use or topography), reliable values of the prognostic variables can be assumed 

some grid points from the boundaries. 

The following boundary conditions are derived with respect to the assumptions mentioned 

above. 

7.1 Lower boundary 

Usually the surface is not a flat and homogenous plane, but rough, covered with vegeta-

tion (forest, grass, fields) or built-up (houses). From this the question arises, how to de-

termine the height sz of the lower model boundary. In METRAS/MITRAS it is considered 

as topography height, corresponding to the sum of surface height )y,x(h  and roughness 

length ),( yxzo : 

),(),(=),( yxzyxhyxz os   (7.1) 

However, since the roughness lengths within the considered areas are mostly very small, 

especially over water, 0z is neglected when calculating the topographic height. Therefore, 

the lower model boundary corresponds to the orography height ( ),(=),( yxhyxzs ). The 

physical meaning of the lower boundary in the model, however, remains that of the topog-

raphy height. 

The discretized form of the lower boundary conditions used in METRAS/MITRAS are de-

scribed in Appendix B.2.1. 

7.1.1 Wind 

The wind velocity at the surface usually follows a no-slip condition, thus the horizontal and 

vertical wind components are zero at the ground: 
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Corresponding to equation (2.24) the boundary condition for the pressure 2p  can be for-

mulated with regard to equation (7.2): 
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 (7.3) 

7.1.2 Temperature 

The temperature at the surface can be calculated from a surface energy budget equation: 
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0=))((1 FSEH QQQQLLDI   (7.4) 

Here ))((1 0 DIA   characterizes the direct and diffusive short wave radiation budget 

and can be calculated from the radiation scheme given in Section 3.6, or for more simple 

purposes, from )(tcosZI . The parameter   depends on the albedo 0A , the amount of 

clouds, the turbidity of the air and the elevation of the sun. For a cloud free sky,   can be 

estimated to )-A (. 01750  for Northern Germany (Golchert, 1981). With a typical value for 

the albedo 0A  over land,  results in 0.6 = 0.2)-0.75(1 . The zenith angle )(tZ is calcu-

lated in the model dependent on the terrain slope, time, latitude, etc. (Appendix A.5). 

The incoming and outgoing long wave radiation L  can also be calculated with respect to 

the radiation budget in the atmosphere or, more simple (e.g. for cloudfree skies), from 

4ˆ sT  dependent on the surface temperature sT , the Stefan-Bolzmann-constant 
428 K Wm1067.5  and the parameter ̂ . The last depends on the amount of clouds 

and the water content in the atmosphere. Following de Jong (1973) 22.0ˆ   is used for a 

cloudfree sky. 

The fourth and fifth terms in equation (7.4) characterize the sensible and latent heat flux-

es. They are calculated dependent on the friction velocity *u  (equation (3.12)) and the 

scaling values for temperature *  (equation (3.20)Fehler! Verweisquelle konnte nicht 

gefunden werden.) and humidity *q . 

sQ characterizes the heat flux and heat exchange with the ground and can be calculated 

from sss zTQ )/(  . Within the soil the conduction of heat can be calculated with a 

one-dimensional diffusion equation: 
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The last term in (7.4) denotes the anthropogenic heat emission. 

Following Tiedtke and Geleyn (1975) and Deardorff (1978), equation (7.4) is solved by 

use of the force-restore method, resulting in: 
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Here sk is the thermal diffusivity and s the thermal conductivity of the soil. The values 

used in the model for the different vegetation types are given in Table 3-2 of Schlünzen et 

al. (2018). The depth h of the daily temperature wave can be calculated following 

Deardorff (1978) from sk with s864001  . 

1=  skh  (7.7) 
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The temperature )( hT may be kept constant for short range forecasts (e.g. a few days) 

or calculated from a prognostic equation (Deardorff, 1978): 
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The real temperature calculated from equation (7.6) is converted into potential tempera-

ture. The boundary value   (lowest level) is calculated from )( sz and )level first( with the 

assumption of constant gradients: 

)level first()(2=)level low est(  sz  (7.9) 

Thus, the surface temperature )( sz is the mean of the values above and "below" the sur-

face. 

7.1.3 Humidity 

The humidity at the surface is calculated from a budget equation following Deardorff 

(1978): 
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The bulk soil water availability q can lie between ks WW /
 and 1 ))/,1min(( ksq WW

denotes the bulk soil moisture content (depth of liquid water) within the depth 2d and kW is 

the field capacity or saturated value of sW  given for each surface characteristic (values 

are provided in Table 3-2 of Schlünzen et al. (2018)). For q a prognostic equation can 

be derived: 
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21=  (7.11) 

EQ is calculated from the turbulent humidity flux PuqlQ sE ,= **21 denotes the precipitation 

and w the density of water (assumed to be 1000 kg m-3). Similar to equation (7.9), the 

humidity 'below' the surface is calculated from 1
1sq  and 1

1q  (first level). 

7.1.4 Liquid Water 

Liquid Water is assumed to be deposed at the ground only in form of rain. From this as-

sumption a zero flux boundary condition for the cloud water content arises, resulting in: 

)(= 2
1

2
1 levelfirstqq cc
s  (7.12) 

The flux of rain water to the ground is equal to the flux at the first grid level: 

)(= 1
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7.1.5 Pollutants 

Pollutants are partly absorbed at the surface and over water, e.g. at the topography height 

it can be written: 
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 (7.14) 

The partial absorption results from the concentration flux to the surface and depends on 

the deposition velocity dv and the concentration 
jC at the first grid level with the height 1z : 

)(=' 1zCvCw jdj   (7.15) 

The deposition velocity dv depends on the turbulence in the atmosphere, chemical proper-

ties of the species, surface characteristics, and vegetation. Thus, no fixed value of dv  for 

all species and meteorological conditions can be given. In METRAS the deposition veloci-

ty can be calculated for 19 species (Section 4.2). 

7.1.6 Sub-grid scale fluxes 

The turbulent momentum fluxes at the ground follow the boundary condition (Clark, 1977): 

0==== 12332211   (7.16) 

The stress tensor components wuo
 =13  and wvo

 =23 are derived from similarity 

theory. If the wind direction is given by 1)/(arctan= vud , 13  and 23 can be written 
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With (3.13) and (3.14) the momentum exchange between surface and atmosphere is 

completely described. 

For test purposes a free-slip condition at the ground can be used. In this case the friction 

velocity *u  is set zero, neglecting friction effects at the ground. 

The horizontal turbulent fluxes of scalar variables at the ground follow the boundary condi-

tion (Clark, 1977): 

jCqvu ,,=;0=''='' 00   (7.18) 

The vertical fluxes of scalar variables at the ground are derived from 

jCquw ,,=;='' 00  
 (7.19) 

where the scaling variable *  is calculated from profiles of the temperature and humidity 

1
1q  corresponding to Fehler! Verweisquelle konnte nicht gefunden werden. 
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7.2 Upper Boundary 

The upper model boundary is located at a height tz  (Figure 2.1). Since no physical 

boundary exists in the atmosphere, the boundary conditions of the model must permit ver-

tical propagating waves to leave the model area without reflections. Several boundary 

conditions for wind, pressure and scalars are implemented in METRAS/MITRAS. In Ap-

pendix B.2.2 they are described in detail. Usually it is assumed that the gradients of the 

horizontal wind components normal to the boundary vanish: 
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The vertical wind component also vanishes at the upper boundary: 

0=|
t

zw  (7.21) 

From these assumptions it follows that the normal pressure gradient is also zero, 

0=x/p 3
2

ˆ . To avoid reflections of vertical propagating waves at this rigid upper bounda-

ry, absorbing layers are introduced. They are realized by adding so-called Rayleigh damp-

ing terms to the balance equations (2.23) and (2.27) to (2.29) (Clark, 1977; Durran, 1981). 

These additional terms cause an increasing adaption of the prognostic variables to their 

corresponding and prescribed synoptic values with increasing height. In the equations of 

motion the damping terms are written: 
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The relaxation coefficient ]s[ 1
R

  increases with height 
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In (7.23) k  denotes the vertical grid point index, tk  the index of the highest grid point at 

the upper boundary and Dk the index of the first absorbing layer. From several tests 

0.2=][ 1 s  seems to be a good choice. 

The absorbing layers damp vertical propagating waves and prevent their reflection at the 

upper boundary. To preserve the height of the physical model area the absorbing layers 

have to be added at the upper boundary. Alternative boundary conditions, e.g. to obtain 

the pressure field from a Fourier transformation of the vertical wind field (Klemp and Dur-
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ran, 1983; Bougeault, 1983) are not implemented due to the minimum additional memory 

resources (about 20 % for five absorbing layers) necessary for the absorbing layers. 

The temperature gradient at the upper boundary results from the assumption 0=|w
tz : 

0=

t
z

z

  (7.24) 

The humidity and concentration values are calculated from analogous boundary condi-

tions. 

Corresponding to the boundary conditions for velocities (7.16), the turbulent momentum 

fluxes and their gradients at the upper boundary are zero: 
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7.3 Lateral Boundaries 

As the upper boundary the lateral boundaries are artificial. On one hand the lateral 

boundary conditions have to permit waves to leave the model area without reflections, on 

the other hand the synoptic values should influence the prognostic model variables at the 

inflow boundaries. 

7.3.1 Wind 

The most robust form is a non-reflecting boundary condition, implemented in 

METRAS/MITRAS by directly calculating the boundary normal wind components as far as 

possible from the prognostic equations. The boundary normal advection is treated by the 

use of the Orlanski condition at inflow boundaries and of the upstream scheme at outflow 

boundaries. For the boundary parallel components of the velocity a zero-flux condition is 

assumed. 

As a further option three-dimensional radiative boundary conditions may be used. The ra-

diative boundary conditions introduced by Orlanski (1976) for one-dimensional applica-

tions and extended by Raymond and Kuo (1984) to two-dimensional phenomena are im-

plemented in METRAS in a three-dimensional form. The derivation of radiative boundary 

conditions of Raymond and Kuo (1984) is only valid for horizontally oriented phenomena. 

In this form they are often used in mesoscale models. If vertical propagating waves exist 

at lateral boundaries, they must fail. Several tests gave evidence that reflections at the 

lateral boundaries are reduced when using the three-dimensional formulation instead of 

the two-dimensional one. To reduce errors from reflections the three-dimensional form is 
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implemented in METRAS (Schlünzen, 1988) and derived below. For clarity it is assumed 

that no slopes exist parallel to the boundary. However, within the model these terrain in-

homogeneities are taken into account. 

The advection equation, expanded three-dimensional from equation (7.26) in Raymond 

and Kuo (1984), can be written in the coordinate system X : 
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Here  characterizes a meteorological field (e.g. uo  ) and 321 ,, ccc
 the projection of 

the phase velocity c  on 321 ,, xxx   -direction, respectively. The ic
 are defined as follows: 
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(7.26) is discretized with respect to the numerical schemes in METRAS. The components 

 =,, *** wvu ooo of the momentum vector are discretized centered-in-space us-

ing the Adams-Bashforth scheme. The gradients normal to the boundaries are calculated 

from differences on the inner side of the boundary. The phase velocities ic  are limited in 

accordance to the stability criteria of the used numerical schemes. These coupled bound-

ary conditions allow waves to leave the model area without reflections. 

Somewhat different lateral boundary values result for a nesting of METRAS in METRAS 

or in other model results (Chapter 8). However, for nested runs in principle the same 

boundary conditions are used. 

7.3.2 Pressure and thermodynamic quantities 

The boundary conditions used for momentum have to be considered in the formulation of 

the pressure boundary condition. For the pressure 2p  it follows that its gradient normal to 

the boundary vanishes. The normal gradients of temperature, humidity and concentrations 

usually are also set zero (Appendix B.2.3.2). 
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As the velocity components the scalar quantities may also be nested (Chapter 8). 

7.3.3 Pollutants 

For concentrations a time dependent boundary condition is implemented at the inflow 

boundary (Niemeier, 1997) in addition to the boundary conditions of Section 6.3.2. With 

that, transport of pollutants across the boundaries can be calculated close to reality, as 

emissions in the upwind area determine the advected air masses and the diurnal changes 

of the concentrations are included. This boundary condition needs more computation time 

as before, and a simulation in a larger area is necessary to get the values at the bounda-

ries. The results of the first simulation are interpolated to the higher resolving grid of the 

second simulation. This is done once for the three dimensional area to get start values. In 

addition at each hour the values are interpolated to receive data at the boundaries. Inbe-

tween, the boundary data are interpolated linear in time. For the outflow boundaries a zero 

gradient condition is used. 
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8 Nesting of METRAS 

METRAS runs may be nested in results of other models or in METRAS results that were 

created with a coarser grid. The basic ideas for the nesting are described in this chapter. 

Details on the available programs can be found in Chapter 1 of Schlünzen et al. (2018). It 

has to be noted that the nesting is not fully tested yet. Therefore, the user must carefully 

check the results of nested METRAS runs. 

8.1 Basic Ideas of the model nesting 

Two conceptionally different methods are implemented in METRAS. The scale separation 

concept forces large-scale values only, while the nudging concept forces the prognostic 

variables. 

8.1.1 Scale separation concept 

The METRAS model may be forced by continuously changing the large-scale values ( 0 ,

0p , 0q , etc.). This scheme corresponds to a scale separation concept in the way that the 

large-scale values are interpreted as results given by a coarse resolving model and the 

calculated values of u , v , w ,  ,   are the resulting total values, with u~ , v~ , w~ , 
~

, ~  

corresponding to the disturbances from the large-scale values (compare Section 2.3). To 

include this forcing no changes of the original METRAS equations are needed, since all 

large-scale values are already implemented in such a manner that they can be considered 

as dependent of time and space. However, the actual large scale data are calculated by 

linear interpolation in time from the forcing data set. Therefore two additional large scale 

fields for each forced variable are needed. 

The coarse grid data are interpolated in the preprocessors on the fine grid used in the 

nested model (Section 8.2). The preprocessors have to ensure that the large-scale equa-

tions are fulfilled, namely the hydrostatic approximation (2.17) and the ideal gas law (

000 = RTp  ). It has to be kept in mind that the large-scale wind has not to be in geo-

strophic balance. Equation (2.18) and thus gU , gV  are only introduced to simplify the 

equations slightly and to reduce numerical inaccuracies in the large-scale pressure gradi-

ents introduced by the interpolation of pressure from a coarse to a fine mesh. 

8.1.2 Nudging concept 

The basic idea of the nudging concept is to replace the boundary values of the prognostic 

variables in METRAS at the lateral and/or upper boundaries of the model domain by val-

ues calculated by a model with a coarser grid. The advantage of this nesting concept is its 
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applicability for a one-way as well as a two-way nesting of METRAS in a model that uses 

a coarse grid. In addition, a nudging to measurements might be performed. At present, 

only the one-way nesting is implemented in METRAS and the corresponding preproces-

sors. 

To nudge METRAS, an additional forcing term has to be included in the equations. The 

term is added so that the values at each time step are calculated as weighted means of 

the data from the METRAS original equations ( u ) and the coarse mesh forcing data set 

( c ): 

cuf  11)(1=  (8.1) 

1  denotes a weighting factor. If its value is 1, only the large-scale forcing data remain. If 

its value is zero, only the unforced model results remain. The value of can be defined 

quite differently (e.g. Perkey and Kreitzberg, 1976; Davies, 1976; Källberg, 1977; Leh-

mann, 1993). 

Instead of a weighting factor 1  a nudging coefficient is used in METRAS. It is calculated 

from 

.
3

tanh1= 0 



















 i

N

af  (8.2) 

The values 0.001=0  s 1 , 0.4=fa  and 4=N  are used for a standard nudging (charac-

teristic time 1/0 about 30 minutes at the boundaries). With an intensified nudging 

0.01=0  s 1
 is used (Ries et al., 2010), resulting in a characteristic time of about 3 

minutes at the boundaries.  

For including obstacles like buildings 0.99999== 0  s 1
 may also be applied at all 

grid points within the obstacles. In this case the momentum fluxes around the buildings or 

the surface energy budget might not be very realistic, but the dynamic effect is well re-

flected. 

Index i  in equation (8.2) is the number of grid points counted from the boundary into the 

inner model domain. The nudging coefficient   increases towards the lateral and upper 

boundaries. Forcing is applied to all prognostic calculated variables. 

Equation (8.1) can be rewritten to show that the forcing corresponds to a diffusion term. 
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In this equation 
n

f  denotes the model results at time step n . The second term contains 

the temporal change of f
 resulting from the original METRAS equations alone (denoted 
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here as tu  / . Both terms summed up correspond to the model results at time step 
1n

u


 , when nesting is neglected. The last term in equation (8.3) describes the forcing 

due to the imbalance between the integrated METRAS results ( 1


n

u ) and the prescribed 

large-scale value 1


n

c . To derive equation (8.3) forward differences are assumed for the 

time integration.  

Summarizing and reordering the first two terms, equation (8.3) can be written as 
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which corresponds to equation (8.3) for t =1 . 

As for the Coriolis force, the deviation between north direction and the grid's y-direction   

must be considered when nudging wind velocity components (Spensberger, 2010): 
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The angle   is an intrinsic property of the model grid and varies with each grid point. 

Equation (8.3) cannot be directly used in the model for the wind components, because this 

equation does not necessarily fulfill the anelastic approximation, which is only guaranteed 

for 
1n

i
1n

iu u=
  at the end of the time step 1n . The reason for this is the invalidity of the 

anelastic approximation of the wind forcing field 1n

ci
u due to the interpolation in time. To 

avoid this problem, the field of the dynamic pressure part 2p  is calculated in such a man-

ner that the gradient of the dynamic pressure in the momentum equations guarantees the 

anelastic approximation for
1n

fu . To ensure this the 'preliminary' velocities needed in 

equation (2.24) contain the forcing term of equation (8.3). This integration method is only 

possible due to the knowledge of the forcing field icu for the time step 1n . 

Equation (8.3) is directly used to force the scalar quantities. 

8.2 Interpolation of forcing data 

Independent of the model which is used to force METRAS, the results have to be interpo-

lated on the METRAS grid. Therefore different preprocessors exists (Chapter 1 of Schlün-

zen et al., 2018). The interpolation algorithm used in the different preprocessors is always 

the same. The values given on the coarse grid of the forcing model are linearly interpolat-

ed to METRAS-grid. 
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Figure 8.1: Interpolation points 

Figure 8.1 shows the necessary grid points and distances needed for the interpolation. 

First the values of the coarse grid are interpolated within their corresponding grid level to 

the METRAS grid point, projected at that level (named 'help point' in Figure 8.1). The grid 

points on the coarse grid that surround the projected METRAS grid point are needed for 

this purpose. The four grid points of one grid level of the coarse grid are also used to cal-

culate the height of the 'help point'. For the interpolation the distances between the grid 

points of the coarse grid (A and B) and between the 'help point' and coarse grid points (a 

and b) are necessary. 

The heights of the help points are used to determine the vertical distance D  between the 

two grid levels of the coarse grid. In addition the distance between the higher grid level 

and the METRAS grid point is needed. With these data the three-dimensional interpolation 

of the values from the coarse grid to the fine METRAS-grid can be done following Press et 

al. (1989) 
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If a surface METRAS grid point is below the lowest 'help point', the height of the lowest 

'help point' is used for the interpolation of the data to the METRAS surface grid point. The 

values are interpolated from the four grid points at the lowest coarse grid level and used 

as surface data in the METRAS fine mesh. 
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9 Initialization of the Model 

The initialization of the three-dimensional model is done in three steps (Table 3). First, the 

spatial resolution of the model area and the location of the grid points have to be deter-

mined and the characteristic parameters of topography and land-use have to be interpo-

lated to the grid points. In a second step by using the one-dimensional model version a 

stationary data set for initialization of the three-dimensional model is calculated. As an al-

ternative the preprocessors as described in Section 7 might be used. In the third step the 

data set of step two is used for initializing the three-dimensional model. During the initiali-

zation phase of the three-dimensional model the orography grows slowly (diastrophism) 

until the real orography heights have been established. The initialization phase takes 2 to 

8 hours, dependent on the stratification. 

Task to be solved Solved by 

Determination of model area characteristics modelling expert 
Determination of grid  modelling expert, grid 

generation program 
Interpolation of orography and land-use characteristics to 
grid points 

grid generation pro-
gram 

Output of model area characteristics 

Calculation of initial data sets (one-dimensional model or 
three-dimensional preprocessor - Chapter 7) 

1D model or 3D pre-
processor 

Input of model area characteristics 1D model 
Calculation of coefficients A to G (defined by (A.11))  

Input and calculation of consistent large-scale values  
Input and calculation of consistent deviations for initializa-
tion 
Calculation of a stationary solution by numerical integra-
tion of the one-dimensional model equations 

 

Input of model area characteristics 3D model 
Calculation of coefficients A to G (defined by (A.11))  
Calculation of initial data sets (three-dimensional model)  

Input of the one-dimensional stationary solution for initiali-
zation 

 

Diastrophism and calculation of adapted large-scale and 
deviation values 

 

Calculation of stationary or instationary solutions by nu-
merical integration of the three- dimensional model equa-
tions 

 

Table 3: Initialization of the three-dimensional model (schematic description.) 

9.1 Initialization of orography and land-use characteristics 

The characteristic parameters orography, roughness, albedo etc. are interpolated to the 

'locations' of the horizontal grid points by use of the preprocessor GRITOP. This prepro-

cessor uses an area-weighting interpolation procedure and supplies the mesoscale model 
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with information on the partial land-use and the corresponding characteristic parameters 

within each grid volume. For details on this preprocessor and the interpolation procedure 

refer to Wosik et al. (1994b). An analogous interpolation procedure (preprocessor EMIINI) 

is applied to the initialization of emission inventories (Wosik et al., 1994a). 

After determining the topographic heights sz at each grid point and the height of grid levels 

above flat terrain, the height of each grid point above the topography can be calculated 

from equation (A.8). 

9.2 Initialization of 1-d Model 

From the area characteristic parameters the coefficients A to G at each grid point are cal-

culated according to (A.11) and Figure 6.1. Afterwards the large-scale and meso-scale 

values are read and derived from the input values, respectively. Finally the one-

dimensional model equations are integrated until the calculated meteorological profiles 

become stationary. 

9.2.1 Large-scale values 

For determining the geostrophic wind gV , potential temperature o , specific humidity 1
o1q

and liquid water content 2
1oq , following values have to be predefined: 

- pressure op at sea level  

- geostrophic wind gV at sea level or a profile of gV  

- temperature oT  at sea level and a temperature gradient zTo  /= or  

- temperature profile oT  

- profile of the relative humidity  

- profile of liquid water content 2
1oq  

These data sets are given in accordance to the application under consideration. They are 

taken from observations, weather charts or analysis (e.g. Luthardt, 1987). For the calcula-

tion of consistent large-scale values the hydrostatic (2.17) and geostrophic approximation 

(2.18) are presumed. Assuming a constant temperature gradient within each grid layer the 

temperature profile follows from: 

zNNTzT oo )(=)(  (9.1) 

The hydrostatic assumption together with the layer-wise constant temperature gradient   

yields the pressure profile 



Initialization of the Model 71 

 

)/(

)(

)(
)(=)(













Rg

NNT

zT
NNpzp

o

o
oo  (9.2) 

The density o  is calculated by use of the ideal gas law as a function of pressure and 

temperature: 

o

o
o

TR

p
=  (9.3) 

If not predefined, the potential temperature o  can be derived from the large-scale profiles 

by use of (2.5). 

9.2.2 Mesoscale values 

Due to the assumption of horizontal homogeneity no vertical winds can develop in the 

one-dimensional model version. Thus the preliminary vertical wind and the mesoscale 

pressure 2p  are zero, resulting in 1p=p~  for the one-dimensional case. Usually, the initial 

temperature perturbation T
~

 is zero, but it can also be prescribed by a measured tempera-

ture profile. The mesoscale density deviation ~  is calculated by (2.20) and the mesoscale 

pressure 1p  by (2.19). Now the mesoscale density ~  can be calculated again. This itera-

tion procedure is continued until the changes in ~  become very small, namely 

|~||~|  0.01< . Now the potential temperature 
~

 can be calculated by: 












































p

o

o
o

p

o

r

cR

pp

p
cR

pp

P
T

/

~1

/

~
~

=
~

 (9.4) 

For a shallow model area the horizontal wind components are initialized from the Ekman 

formulas, but usually their initial values are set equal to the geostrophic components. The 

Ekman profiles are derived from the simplified boundary layer equations with the assump-

tion .=sm10=
12 constKvert


 by (e.g. Dutton, 1976): 
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kgk
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kg

z
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



 (9.5) 

where 
vertKf/2=  and z  denotes the height of the scalar grid points. At a height /  it is 

assumed that ,0),(=0),,(= gg VUvuv . 

9.2.3 Stationarity 

The one-dimensional model equations are integrated starting with the predefined initial 

profiles and using the same boundary conditions but without diurnal cycles as in the three-

dimensional model. When starting the integration the wind profiles are not adapted to the 

thermodynamic variables and reverse. So the dynamic equations are integrated with a 
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fixed temperature profile until the wind profiles become stationary. Stationarity is defined 

by 

ta  <||  (9.6) 

where   stands for the horizontal wind components u  or v  and   denotes changes of 

  from one time step to the next. The constant a  is derived from a scale analysis of the 

equation of motion for typical mesoscale phenomena: In the one-dimensional model equa-

tions the Coriolis force with an acceleration uf  is small compared to the other forces. For 

mean latitudes with 114 ms10||,s10   uf  the acceleration results in . Stationarity can 

be assumed, if changes of u  and v  during one time step are less than 1 % of the maxi-

mum Coriolis acceleration. From this a value of 
25 ms 10= a  can be derived for the one-

dimensional model version. For a sufficient damping of inertial oscillations the simulations 

should be done for several days. Usually a simulation is interrupted after 80.000 time 

steps even if the profiles are not stationary. 

If the wind profiles are stationary, wind and temperature are integrated simultaneously un-

til all profiles are stationary again. These profiles are transferred to the three-dimensional 

model for initialization. 

9.3 Initialization of 3-d model 

As in the one-dimensional model the coefficients A  to G  are derived from the area char-

acteristics. First of all the topographic heights are neglected and the stationary profiles of 

the one-dimensional model are expanded over the model area under the assumption of 

horizontal homogeneity or the results of the preprocessor are used. Afterwards the initiali-

zation by diastrophism (Groß, 1984) starts. This means that the surface heights grow from 

time step to time step until the real heights are achieved. During the process of diastro-

phism the vertical coordinate   (eq. 2.6) changes according to 

sf
n

ps
n

ps zAzz 
,

1
, =  (9.7) 

sz  denotes the final surface height, fA  the reciprocate of the number of time steps for di-

astrophism, and n
p,sz  the temporal surface height at time tn  . fA1/  typically lies between 

100 and 1000 and should ensure that vertical winds arising from the topography growing 

do not exceed 0.1 m/s. Such artificial vertical winds decrease with increasing integration 

time. 

The wind components in the one-dimensional profile may either be seen as wind compo-

nents in the three-dimensional model grid or as wind components aligned to the East and 

to the North. In the latter case winds must be turned into the model grid as demonstrated 

for nudging of wind components in equation (9.6).  
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The large-scale values are adapted to the actual topographic heights at each time step. 

They remain horizontal homogenous with respect to the sea level. As an example the 

adaption of the large-scale temperature follows: 
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The large-scale pressure 0p  and density 0p  are calculated from (9.2) and (9.3), respec-

tively, and the potential temperature from (2.5). 

In contrast to the large-scale values the mesoscale variables are adapted to the changing 

coordinate system by integrating the prognostic equations over fA1/  time steps. The inte-

gration is continued without interruption as long as specified by the user. It is usually as-

sumed that the meteorological fields are independent from initialization after about three 

hours of integration time. For unstable stratification the initialization time might take up to 

8 hours. 
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10 Sea ice model MESIM 

The mesoscale sea ice model MESIM was developed by Birnbaum (1998). It is based on 

a large scale model from Fischer (1995) and Harder (1996) who advanced the model de-

veloped by Hibler (1979). Further improvements concerning boundary conditions and sur-

face temperature were done by Dierer (2002). 

MESIM consists of two parts representing the dynamic and the thermodynamic process-

es, respectively. It can be run in either of these modes separately or in a combined mode 

which applies the full dynamic-thermodynamic equations. In the dynamic part, the mo-

mentum equation for drifting ice is solved. The internal forces in the ice are treated with 

the viscous-plastic rheology proposed by Hibler (1979). The equations of the thermody-

namic part are based on the one-dimensional multilayer model developed by Maykut and 

Untersteiner (1971) and allow for non-linear temperature gradients in the ice. 

The ice model is fully coupled to the atmosphere model METRAS. Interactions include 

momentum, heat, humidity and radiation fluxes. For example, the ice drift depends on the 

wind, the edges of ice floes act as roughness elements influencing the boundary layer, 

and ice growth is affected by air temperature and solar radiation. 

Please note: The nomenclature of variable names in this chapter might overlap with the 

names in the rest of the document. Sea ice variables keep their meaning only in this chap-

ter. A list of symbols is provided in the beginning of the document. 

10.1 General Concept: Ice classes and basic variables 

The sea ice in MESIM is distributed into different ice classes which represent different ice 

thicknesses and, therefore, different ice characteristics. This is especially relevant if an 

accurate determination of heat fluxes between atmosphere and ice is desired because 

even small amounts of thin ice affect the total heat flux in a grid cell tremendously (Birn-

baum, 1998). The ranges of the four ice classes used in MESIM are shown in Table 4. 

The sea ice in each ice class c is characterized by following properties: 

 Ice concentration (percentage of grid cell coverage): Ac  

 Mean ice thickness: hi,c 

 Mean snow thickness on top of the ice: hs,c 

 Mean length of ice floes: Li,c 

 Mean spacing between ice floes (“length of water surface”): Lw.c 

 Mean temperature profile inside the ice: Ti,c(z)  
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Table 4: Ice classes and respective thicknesses used in MESIM. 

Number of ice class Corresponding ice thickness 

1 0 cm – 10 cm 

2 10 cm – 40 cm 

3 40 cm – 1 m 

4 > 1 m 

Except for the spacing between ice floes, all variables are prognostic. Their determination, 

using budget equations, is shown in section 10.2. Section 10.3 demonstrates how the 

temperature profile is calculated by applying the heat transfer equation. 

10.2 Dynamic part 

The dynamic part of MESIM covers those processes involving mechanical forces which 

lead to changes in ice concentration and ice thickness. Beside the ice drift, these include 

the formation of open water due to shearing deformation and the amassment of ice in 

convergent drift regimes. 

10.2.1 Budget equations 

The prognostic parameters which characterize the ice change dynamically according to 

the budget equations: 
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(10.5) 

A represents the total ice concentration in the respective grid cell, Ac the ice concentration 

in ice class c, hi,c the ice thickness in class c, hs,c the snow thickness in ice class c and Li.c 
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the length of ice floes in ice class c. To determine these values, the ice drift velocity iv


 

and the sink terms SA,dyn and SA,dyn,c need to be known. SA,dyn and SA,dyn,c describe the ef-

fect that the formation of open water due to shearing deformation has on the total ice con-

centration and the ice concentration in the class c, respectively. This process is discussed 

in section 10.2.5. 

10.2.2 Momentum equation 

The ice drift velocity iv


 is calculated from the momentum equation: 

 Fhgmvkfm
dt

vd
m ociwaii

i
i



 (10.6) 

It is regulated by the Coriolis force (mass of ice: mi, Coriolis parameter: f, unity vector in 

vertical direction: k

), the atmospheric drag force a


, the oceanic drag force w


, the force 

due to the tilt of the sea surface (sea surface height hoc) and the forces due to internal 

stresses in the ice F


. The gradient of the sea surface tilt depends on the velocity of the 

geostrophic ocean current ocv


 

so that: 

 ococ vk
g

f
h


  (10.7) 

10.2.2.1 Atmospheric drag 

The influence of the wind on the ice drift consists of two parts, the surface drag due to 

roughness elements on the ice, s,a


, and the form drag of the ice floes which jut out of the 

water surface,
 f,a


. The surface drag is calculated using the friction velocity i*,u
 
as de-

scribed in section 3.3.1, with the roughness length set to 1 mm for every ice class: 

2
*,0, isa u  (10.8) 

with the large scale densitiy of air 0 . For determining the form drag part, a logarithmic 

wind profile over the water surface is assumed. This is integrated until the height of free-

board hf,c to estimate the total wind pressure acting on the floe. hf,c can be determined - 

using Archimedes’ law - from the snow thickness hs, the ice thickness hi and the densities 

of ice i , snow s , and water w , respectively: 
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With it, the form drag can be calculated from  
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where the shadowing effect from neighbouring ice floes is allowed for by the exp-

expression. Required quantities are the length of ice floes Li,c, the spacing between the 

floes Lw,c, the friction velocity over water surfaces u*,w, the roughness length of water sur-

faces respective to wind z0,w, the von-Karman constant   and the stability function for 

momentum over water surfaces w,m . The latter is calculated according to equation 3.13. 

To combine the effects from surface drag and form drag, a weightning function is applied 

by which the impact of surface drag is reduced in conditions with little ice cover. 
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10.2.2.2 Oceanic drag  

For the oceanic drag, contributions from surface drag and form drag are considered sepa-

rately. In contrast to the atmospheric drag, the integral for the form drag can be solved 

analytically due to the lack of a stability function. The complete derivation can be found in 

Birnbaum (1998). The total oceanic drag w results in 

 

        ociocociocioc

2

c,d

c,w

oc,0

c,d

c,wc,i

c,d

oc,sdww

sinvvkcosvvvv

h

L
18.0exp1

z

1exph
ln

1

LL

h
5.01c

















































































 (10.12) 

where w

 

represents the density of water, 3
oc,sd 104c   the (surface) drag coefficient 

between ice and ocean, hd,c the draft of the ice floes, 4.0

 

the von-Karman constant, 

mm 1.0,0 ocz

 

the roughness length of the water surface with respect to the ocean cur-

rent (similar to z0,w but “seen” from underwater), ocv


 the velocity of the geostrophic ocean 

current, iv


 the velocity of drifting ice and  25oc  the deviation angle between geo-

strophic ocean current and oceanic drag force. 

10.2.2.3 Internal forces 

The last term in the momentum equation denotes the internal forces in the ice, which are 

calculated as the divergence of the stress tensor 


 




F  (10.13) 

Or in component notation as: 
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   
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F ,  
(10.14) 

i j
 
represents the stress acting on a plane perpendicular to the xi-direction towards the xj-

direction (with yx  and  xx 21  ). A certain rheology is necessary to determine the com-

ponents of i j . In general, the stresses could depend on the strain, the strain rate and the 

overall state of the ice (e.g. ice concentration, ice strength, …). In MESIM, the viscous-

plastic rheology proposed by Hibler (1979) is applied: 
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  (10.15) 

Here, i j  is only a function of the strain rate i j , the bulk viscosity  , the shear viscosity 

  and the hydrostatic ice pressure P. i j  
is the Kronecker symbol. The strain rates are 

linked to the ice drift velocity components as follows: 
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Thus, using equation (10.16) in (10.15) and further in (10.14) and (10.6) shows that the 

momentum equation is highly non-linear and can only be solved iteratively. 

The bulk and shear viscosities change with the hydrostatic ice pressure and with the total 

deformation of the ice: 

 
e

    and   
2

P
2





  (10.17) 

where  

    2
2211

22
12

22
22

2
11 e12e4e1     (10.18) 

The eccentricity of the elliptic yield curve is called e and is set to 2. A yield curve de-

scribes a region in the space of the stress invariants  yyxxI 5.0   and 
2/122 )4)(( xyyyxxII   in which the combination of compressive and shear stress is 

subcritical so that the flow is viscous. If the stresses are strong enough to reach to the 

yield curve, the flow becomes plastic. Then, the strain rates decrease to zero resulting in 

infinite values for the viscosities. 

For this transition between viscous and plastic flow, a regime function is introduced that 

sets an upper bound for the viscosities: 



Sea ice model MESIM 79 

 

  19
min

min

p s 102      w ithr 



  (10.19) 

This regime function alters the pressure term and therefore also   and  such that: 

pp rPP   (10.20) 

The ice strength under ideal-plastic conditions is given as 

    w ithAChPP ip
  (10.21) 

    A1CexpAC *   (10.22) 

with the mean ice thickness for all ice classes hi and the mean ice concentration over all 

ice classes A. 
-2* Nm   20000P is the compressive strength of compact ice of unit thick-

ness and 20C*   a constant rating the dependence of the ice strength on the ice con-

centration. With this approach, the ice strength decreases linearly with decreasing ice 

thickness whereas a sparser ice concentration weakens the ice more considerably. 

10.2.3 Numerical scheme for advection terms 

With the ice drift velocity calculated from the momentum equation (10.6) the advection in 

the balance equations (10.1) - (10.5) can be determined. In order to keep numerical diffu-

sion effects as small as possible, the NICE-scheme from Emde (1992) is used, which is 

described in detail in Birnbaum (1998). 

10.2.4 Handling of very small ice concentrations and of convergent drift in fully ice 

covered cells 

On one hand, the advection processes for the ice can lead to very small amounts of ice 

present in a certain grid cell. In MESIM sea ice concentrations below 0.01% are treated in 

a way that the ice coverage is set to 0 % instead and the mass of the reducted ice is con-

served by increasing the ice thickness in all other grid cells in the domain. 

On the other hand, advection of ice into cells which are already fully covered with ice 

would lead to concentrations above 100 %. In this case the ice is thought to break result-

ing in ridging or rafting. Therefore, the ice thickness is increased instead of the ice con-

centration. It is assumed that the thinner the ice, the easier it is piled up. Hence, only the 

thinnest ice – in ice class 1 – is assumed to undergo a rafting process, where its thickness 

is increased according to the law of mass conservation. 
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10.2.5 Formation of open water due to shear deformation 

The balance equations for ice concentration (10.1) and (10.2) contain the sink terms Sdyn 

and Sdyn,c. because the ice concentration decreases if shear stresses act on the ice field 

resulting in the opening of leads.. This process in parameterized as the product of the total 

shear deformation s  with C(A) which is known from equation (10.22): 

 ACS sdyn   (10.23) 

with 

   is v


  5.05.0 2211  (10.24) 

This means that the reduction of the ice coverage depends on the magnitude of shear de-

formation acting on the ice. The factor C(A), however, diminishes this impact in conditions 

of reduced ice concentration. If the concentration drops below 75 %, the value of C(A) is 

less than 0.007. This is considered to be negligible; therefore, only concentrations above 

75 % are treated in MESIM. 

10.3 Thermodynamic part 

The thermodynamic part of MESIM is based on the model of Maykut and Untersteiner 

(1971). The simplified approach of Semtner (1976), which was used by many subsequent 

modelers, is not applied here because it does not account for the temperature profile with-

in the ice. This leads to inaccuracies in the surface temperature and fluxes which become 

relevant at the mesoscale (Birnbaum, 1998). 

Using the approach of Maykut and Untersteiner (1971), storage of heat within the ice can 

be simulated. For this purpose, several layers in the ice are resolved and, thus, a nonline-

ar temperature profile can evolve. However, a transfer of heat in the horizontal direction is 

not considered. 

In the following sections, the thermodynamic processes included in MESIM are presented. 

These cover the vertical growth of ice floes by freezing or their shrinkage by melting (sec-

tion 10.3.1), flooding events (section 10.3.2), formation of new ice in areas of open water 

(section 10.3.3) and lateral melting at the edges of the ice floes (section 10.3.4). 

10.3.1 Ice thickness changes due to vertical growth or shrinkage 

Thickness of sea ice can change due to thermodynamic processes that only act in the ver-

tical direction: Sea water can freeze at the bottom of the ice floe thereby increasing the ice 

thickness. An excess of energy at the top of the ice floe can lead to its decrease by way of 
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melting. The rates of freezing and melting at both the top and bottom of the ice floe are 

governed by the local energy balance. In order to determine the energy available for 

freezing or melting, the conductive heat flux into the ice has to be calculated. This flux, in 

turn, depends on the heat distribution in the ice which will be discussed in the following 

section. 

10.3.1.1 Temperature profile in the ice 

MESIM calculates a temperature profile at each grid cell and for each ice class employing 

the heat conduction equation: 

 zKIK
z

T
k

zt

T
c ii

i
i

i
ii 





















 exp0  (10.25) 

In this section, the c-index representing the ice class is ignored. Thus, Ti is the abbrevia-

tion for Ti,c(z) which means the temperature of the ice in class c in z meter depth in the ice. 

The vertical coordinate z is pointing downwards with z=0 at the top of the ice. iic

 

stands 

for the volumetric heat capacity of ice, ki for the thermal conductivity of ice, I0 for the short 

wave radiation entering the top layer of the ice and 1
i m5.1K   for the absorption coeffi-

cient of short wave radiation in the ice. This equation represents the common 1-

dimensional heat diffusion except for the second term on the right hand side. This de-

scribes the energy input by absorption of short wave radiation that penetrates into the ice. 

In case of a snow cover on top of the ice, no short wave radiation reaches into the ice but 

is, instead, completely absorbed in the snow layer. The heat conduction equation for 

snow-covered ice therefore is simplified to 
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Inside the snow layer, the evolution of the temperature profile Ts(z) follows the equation 
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with the volumetric heat capacity of snow ssc

 

and the thermal conductivity of snow sk . z 

in snow covered conditions is set to zero at the top of the snow layer so that the ice is lo-

cated at iss hhzh  . 

At the interface between snow and ice, two conditions have to be fulfilled: The tempera-

tures and heat fluxes in the snow and the ice have to be equal 



82 Sea ice model MESIM 

   siss hThT   (10.28) 

as heat cannot be stored at the interface. 
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Salinity and temperature dependend parameters 

Most of the physical parameters needed in the heat conduction equations (10.25) -

 (10.27) are not constants but depend on the salinity of the sea ice and/or its temperature 

at the respective depth. In MESIM, two different salinity profiles are assumed: For first 

year ice (i.e. ice in classes 1 and 2), the so called “C-profile” by Eicken (1992) is applied 

which reads 

   ppt78.1853.146.1863.11)( 32 ZZZZS   (10.30) 

with S as salinity of sea ice in any ice class c (index omitted in this section) and Z as the 

relative depth in the ice ranging from 0 at the top to 1 at the bottom. For ice thicker than 

40 cm (classes 3 and 4) the profile is assumed to follow the one proposed by Jin et al. 

(1994) for multiyear ice: 

   ppt984.1785.2)( 4ZZZS   (10.31) 

These salinity profiles are converted from relative to absolute depth values. Afterwards, 

they can be used to calculate profiles of the volumetric heat capacity iic and the thermal 

conductivity ki following Maykut and Untersteiner (1971): 
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S(z) and Ti(z) denote the salinity and the ice temperature at the depth z. All other parame-

ters are constants and are given in Table 5. In order to avoid singularities due to a denom-

inator close to zero, Tmelt,i is set to Ti(z)+0.1 K in case Ti(z) exceeds 272.95 K. 
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Table 5: Constants used in calculation of salinity dependend parameters. 

Variable Value Meaning 

 
fiic  136 KmJ10884.1   Volumetric heat capacity of fresh ice 

  1137 pptKmJ10716.1   – 

f,ik  11 KmW035.2   Thermal conductivity of fresh ice 

  11 pptmW1172.0   – 

Tmelt,i K05.273  Melting point of sea ice 

Tmelt,s K15.273  Melting point of snow 

 

The thermal properties of snow do not depend on salinity but only on the temperature of 

the snow Ts. They are calculated following Ebert and Curry (1993) as 

   )z(T364.788.92)z()z(c ssss   (10.34) 

  5/233)z(T42
s

6
s

s2107.2)z(10845.2)z(k
   (10.35) 

The density of snow s is also temperature dependent. MESIM uses following assumption: 
















smelts

smelts

s
TT

TT

,
3

,
3

   if          mkg450

   if          mkg330
 (10.36) 

with the melting temperature of snow Tmelt,s=273.15 K. Once all of these thermal parame-

ters are determined for each discrete depth, the heat conduction equation can be solved  

Boundary conditions for the heat transfer equation 

In order to solve the heat conduction equations in snow and ice (10.25) - (10.27), bounda-

ry conditions along the snow-ice interface (10.28), (10.29) and the collective upper and 

lower boundaries are needed. At the bottom – the interface between ice and sea water – 

the Dirichlet boundary condition (constant values) is applied such that the temperature of 

the ice has to meet the freezing point of sea water Tf, which is constantly set to 

K 35.271,  fboti TT  (10.37) 
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At the top of the snow (if present) or the ice layer the boundary condition is of the Neu-

mann type (constant gradients) and states that the temperature gradient at the top is set 

to the conductive heat flux into the ice Qc divided by the thermal conductivity. 
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 (10.38) 

This conductive heat flux is calculated as residuum of all energy fluxes at the snow/ice 

surface, namely the net short wave radiation SWnet, the net long wave radiation LWnet, the 

sensible heat flux Qs and the latent heat flux Ql.  

 lsnetnetc QQLWSWQ   (10.39) 

With these boundary conditions, the temperature profile in the ice can be determined us-

ing the Crank-Nicholson scheme. 

10.3.1.2 Energy budget at the top of the ice - melting 

If the resulting temperature at the uppermost ice level increases above the melting point of 

sea ice Tmelt,i, the ice thickness must change due to melting. However, prior to this, a new 

temperature profile has to be computed because the temperature at the air–ice/snow in-

terface can not exceed the melting point before the ice has melted completely. This 

means that Ti(z=0)=Tsur is set to Tmelt,i as a Dirichlet boundary condition and the heat con-

duction equation is solved anew. If snow lies on top of the ice, the temperature profile is 

newly calculated again with the old Neumann condition. From the resulting temperature 

gradient between the first and the second level, the conductive heat flux into the ice is re-

calculated: 
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Qc is needed to determine the thickness change of the ice which is done utilizing the en-

ergy balance equation at the ice or snow surface. 
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Thus, any residual flux will lead to a melting, firstly of the snow cover and subsequently of 

the ice. For snow melt, a value of 38 mJ10097.1   for the volumetric heat of fusion Lfus,s 

is chosen while for ice 38
i,fus mJ10014.3L 

 

is used. By integrating equation (10.41) in 

time the snow and ice thickness changes can be predicted once the fluxes at the right 

hand side are known. Their determination will be covered in the next subsections. Please 
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note that the radiation fluxes are recalculated with different parameterizations in the ice 

model even if they were already computed by the atmospheric METRAS module before. 

Short wave radiation 

The amount of short wave radiation absorbed by the surface depends on the surface 

characteristics, namely the albedo i  
for ice surfaces, s  

for snow surfaces and w  for 

water surfaces. Due to the translucency of ice the net short wave radiation over ice is fur-

ther deceased by the factor (1-i0) where i0 specifies the amount of sun light which is pene-

trating into the ice. Summarized, the net short wave radiation at the surface can be written 

as 
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The albedo in MESIM may depend on ice and snow thicknesses as well as on the inci-

dence angle of the sun light and the cloud cover. Its values in the different cases are out-

lined in Table 5.2 in Birnbaum (1998). 

The fraction of penetrating radiation i0 is parameterized as 

  CCi  35.0118.00  (10.43) 

with C being the cloud cover fraction. To determine C, the model examines the air column 

above the particular ice/snow/water cell. If the water vapour pressure exceeds the satura-

tion pressure at any height clouds are assumed to be present and C is set to 1. Other-

wise, C is assigned the value 0. 

Also, the parameterization of the incoming short wave radiation relies on C. 
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 (10.44) 

In cloud free conditions 
SW

 

only depends on the incidence angle   of the sun light and 

on the water vapour pressure in 2 m height e2m. If, however, the sky is overcast, 

knowledge about the surface albedo and the optical thickness c  is additionally required. 
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c

 

is governed by the vertical thickness Hc of all clouds in the air column. By employing 

the extinction coefficient 1
c km42K   this can be converted into optical thickness: 

ccc HK   (10.45) 

Once all of these parameters are plugged into equation (10.42), the net shortwave radia-

tion absorbed at the surface can be determined. 

Long wave radiation 

The net long wave radiation is the sum of the incoming and outgoing parts. 


 LWLWLWnet  (10.46) 

The incoming long wave radiation emitted by the atmosphere is calculated from the air 

temperature in 2 m height Ta,2m for clear sky conditions and from the cloud-base tempera-

ture Tc otherwise. 
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The respective emissivities of air and clouds are given as 

1          and       1005.067.0 2
2  

cma e  (10.48) 

with the water vapour pressure at 2 m height e2m. 

The outgoing long wave radiation follows the Stefan-Boltzmann law stating that 

4
sursur TLW 


 (10.49) 

where Tsur respresents the surface temperature of snow, ice or water. The respective 

emissivity sur  is set to 0.99 for snow and to 0.97 for ice and water. 

Sensible heat flux between atmosphere and ice 

The third flux involved in the surface energy balance is the sensible heat flux between ice 

and atmosphere. It is calculated analogously to that on land surfaces from the friction ve-

locity i*,u  and the scaling temperature i*,  over the ice. 

iips ucQ *,*,0   (10.50) 
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Here 0  denotes the mesoscale density of the air and cp the specific heat capacity under 

constant pressure. i*,u  and i*,  are determined as shown in Section 3.3 assuming a con-

stant roughness length over ice of 1 mm. 

Latent heat flux between atmosphere and ice 

The flux of latent heat from the ice into the atmosphere reads: 

iil qulQ *,*,210  (10.51) 

As with the sensible heat flux, i*,u  represents the friction velocity over ice and i*,q
 
the 

scaling value for the specific humidity over the ice, both calculated as described in section 

3.3.1. The parameter 
16

21 kgJ105.2 l  gives the specific latent heat of vaporisation. 

10.3.1.3 Energy budget at the bottom of the ice – freezing or melting 

While the energy budget at the top of the ice (Section 10.3.1.2) is crucial for top-ice melt-

ing events, the energy budget at the bottom of the ice controls freezing or melting at the 

ice-floe base. It is determined by the sensible heat flux from the ocean to the ice–sea in-

terface Qs,bot and the conductive heat flux from the surface into the ice Qc,bot. Their differ-

ence controls the changes in snow and ice thickness as follows: 
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 (10.52) 

Any residual flux is converted into a thickness change via the volumetric heat of fusion. If 

the right hand side of equation (10.52) is negative, the ice grows, thereby releasing

38
i,fus mJ10014.3L  . If, in contrast, more energy is transported towards the interface 

than conducted away, the excess energy melts the ice. Only in cases where the whole ice 

floe deliquesces, does the snow cover begin to melt, consuming 38
s,fus mJ10097.1L  . 

The sensible heat flux from the ocean to the ice is calculated from the friction velocity be-

tween ice and ocean oc*,u  and the temperature difference between water and the ice 

base:  

 botiwocwhwpwbots TTuCcQ ,*,,,,   (10.53) 

Tw gives the temperature of the surface water layer and Ti,bot the temperature at the ice–

ocean interface, which is constrained to the freezing point of sea water Tf. The constants 

are the density of sea water 
3mkg1026 w , the specific heat capacity of sea water 

11
w,p KkgJ3980c   and a transfer coefficient for sensible heat 3

w,h 106C  . oc*,u . 

has to be determined by an iterative process from 
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where iv


 stands for the ice drift velocity, ocv


 for the velocity of the geostrophic ocean cur-

rent,   for the von-Karman constant, f for the Coriolis parameter and m1.0z bot,0   for 

the roughness length at the bottom side of the ice floe respective to sea water. The con-

stants B1 and B2 are set to 2.0 and i  represents the imaginary unit. In order to receive 

oc*,u  equation (10.54) is squared yielding a polynomial equation in oc*,u  and  oc*,uln , 

which is numerically solved using Newton’s method. The number of iterations carried out 

is fixed to three. 

The conductive heat flux from the ice–ocean interface into the ice is determined from the 

ice temperature gradient at the bottom of the floe: 
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10.3.2 Changes in thickness of snow and ice due to flooding 

Besides the vertical growing or melting of the ice due to energy deficits or surpluses, the 

ice and snow thicknesses may also change in flooding events. If there is more snow load 

on top of the ice than the ice floe can bear with its buoyancy, the snow–ice interface is 

pushed below the water surface and sea water will seep into the snow. In this case, the 

model assumes – currently regardless of conservation of energy – that the snow–water 

mixture freezes instantaneously to sea ice. The changes in ice thickness hi and snow 

thickness hs can be determined from Archimedes’ principle to be 

















w

ssii
iis

hh
hhh  (10.56) 

The effect is driven by differences in the respective densities of sea water
3mkg1026 w , sea ice 3

i mkg900   and snow 3
s mkg330  . 

10.3.3 Changes in ice cover due to new ice formation 

New ice can grow at all water surfaces in the model area. These include cells which con-

sist only of water as well as the open-water part of cells with a partly ice cover. In this 

case, the new ice formation is calculated separately for each ice class. 
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First, the total heat flux into the surface water layer is calculated as a residuum of 

shortwave incoming radiation
 
SW , net longwave radiation LWnet, the sensible heat flux Qs 

and the latent heat flux Ql. 

    lsnetwwl,w QQLWSW1i1Q 
  (10.57) 

w
 
is the albedo of the water surface and (1-iw) gives the fraction of the shortwave radia-

tion that is absorbed by the surface water layer. This layer is defined as the water mass 

reaching to the depth of the ice-floe draft hd,c. iw can be estimated by an empirical formula 

of Maykut and Perovich (1987): 

    cdww haai ,2111   (10.58) 

The values of a1 and a2 depend on the cloudiness. So, a1=0.5676 and a2=0.1046 m-1 for a 

cloud free sky, and a1=0.3938 and a2=0.1208 m-1 in overcast conditions. 

If the resulting flux Qw,l is negative, energy is extracted from the water. The cooling of the 

surface water layer can be determined as  



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,  (10.59) 

with the volumetric heat capacity of sea water 
136 KmJ1019.4  wwc , the depth of 

ice-floe draft hd,c and the water temperature at the previous time step 
1n

wT . lwT ,
  is only a 

temporary variable and the value of the new temperature is not stored for the next time 

step. 

New ice can form for surface layer temperatures lwT ,


 
below the freezing point 

Tf = 271.35 K. The energy deficit available for freezing water Qw,l is reduced when the wa-

ter temperature at the previous time step was above the freezing point. In this case, the 

water mass firstly has to be cooled down to Tf before ice can begin to grow. Qw,l is updat-

ed as follows: 

t

TT
hcQQ f

n
w

cdwwlwlw





1

,,,  (10.60) 

With this remaining energy deficit, the thickness of the new-ice layer covering the com-

plete water surface dedicated to surfrathil(c) is determined as  

ifus

lw
cni

L

tQ
h

,

,
,


  (10.61) 
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where Lfus,I = 3.014∙108 J m-3 is the latent heat of fusion per unit volume. 

In a wavy ocean, the growing ice is subjected to wind. Hence, a uniform ice layer is unlike-

ly to occur. Rather, small ice crystals form which float in the upper layer of the ocean (e.g. 

frazil ice) until they become numerous enough to conglomerate to pieces of ice (e.g. pan-

cake ice). To simulate this process, the newly formed layered ice is being drifted and 

compressed instantaneously at the same time step. The speed of the new ice 
1icl

iv 

 
drift-

ing relatively to the “old” ice with its speed iv


 
is calculated as: 

i

ocsdw

wicl
i v

c

u
v


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


,

2
*,01

 (10.62) 

where 
w*,u

 

is the friction velocity for water surfaces, 0

 

the density of air, w

 

the density 

of water, 3
oc,sd 104c   the surface drag coefficient between ice and ocean and iv



 

the 

ice drift speed which is the same for all ice classes. Within one timestep t , the ice can 

drift the distance  

tvx icl
i  1

 (10.63) 

If x  is less than the distance between the ice floes Lw,c the ice is only able to free a part 

of the water surface and will be pushed together in the left over area xL c,w  . The 

thickness of this accumulated ice hni,c is determined for each ice class using the mass 

conservation law while redistributing the ice, so that 

xL

L
hh

cw

cw
cnicni




,

,
,,  (10.64) 

For values of hni,c exceeding the upper bound of ice in class 1 (10 cm) a restriction for x  

is applied as follows: The new ice thickness hni,c is fixed to 10.01 cm and the model calcu-

lates in reverse the drifting distance x  necessary to yield this thickness: 

m   0.1001

,,
,

cwcni
cw

Lh
Lx


  (10.65) 

After this procedure is done for all 4 ice classes if present, the new-ice surfaces that grew 

between the ice floes are mapped into ice class 1. All thicknesses of the new-ice areas 

and that of the previous class 1 area are averaged to build the new value for hi,1. 

For the case that c,wLx  , which means that the new ice would drift further than there is 

space between the ice floes, the action of the model depends on the ice class in which 

this circumstance occurs. If it happens for the ice class 1 (ice below 10 cm thickness), the 
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newly formed ice is completely removed from the water surface and stacked on top of the 

already existing ice. The new ice thickness of class 1 results as 

1,

1,
1,

1
1,1,

i

w
ni

n
ii

L

L
hhh  

 (10.66) 

If the drift distance x  exceeds the floe spacing in any class other than c=1, the model 

applies the same scheme as used for new ice thicker than 10 cm: The value of hni,c is set 

to 10.01 cm and x  is recalculated to match with it. 

For cells in which there is only water and no ice, the procedure for determining the new-

ice formation differs slightly from the one shown above: Mainly, the depth of the surface 

water layer is not dependent on the ice-floe draft, but is instead fixed to 30 m, the as-

sumed depth of the mixing layer. Thus, the calculation of iw can be omitted because it is 

assumed that all shortwave radiation is absorbed by the 30 m thick water column. The 

heat flux from the deeper ocean to the surface layer could be taken into account in equa-

tion (10.56) but it is set to 0 in the current model version. Furthermore, the drift of the new-

ly formed ice is only evaluated if the model is run in the thermodynamic-only mode.  

Consequently, for only-water cells and simulations including dynamic processes, the new 

ice, firstly, covers the whole grid cell with a thin ice layer of thickness.

 
c,nih . Drift of this ice 

is then applied in the next time step. The last difference to the case with ice—water-mixed 

cells is that the water temperature is actually able to decrease because the new tempera-

ture calculated with equation (10.59) is stored and used at the next time step. 

10.3.4 Changes in ice cover due to lateral melting 

The second thermodynamic process which changes the ice coverage is triggered if the 

energy budget is positive. In cases where both ice and water are present in a grid cell, the 

possibly warm water can lead to melting at the flanks of the ice floes. To calculate the re-

sulting change in the lengths of the floes, MESIM applies the parameterisation by Jos-

berger (1979). He proposed that the reduction of the ice floe length depends on the tem-

perature difference between the ocean Tw and the freezing point Tf as follows 

  2

1

_

, 2
m

fw

meltlat

ci TTm
t

L





 (10.67) 

The constants are chosen to be 17
1 sm1085.2m   and 36.1m2  . The spacing be-

tween the floes increases according to the decrease of floe length, given by 
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 (10.68) 

From the new values of Li,c and Lw,c the new ice concentration of the respective ice class c 

can be calculated: 

cwci

ci
c

LL

L
A

,,

,


  (10.69) 

10.4 Numerical grids 

Horizontal grid 

In the horizontal direction, MESIM works on an Arakawa-B grid. Both components of the 

ice drift velocity, ui and uj, are defined at the same location but shifted by half a grid spac-

ing in both the east and north directions compared to the scalar variables.  

Vertical grid 

In the vertical direction, variables are also defined at different locations as can be seen 

from Figure 10.1. This figure shows a vertical profile through snow and ice. Every rectan-

gle represents one layer: nx3s+1 layers in the snow and nx3si+1 in total. Most of them 

have the same thickness dzsi(1)=…=dzsi(nx3si-1) except for the uppermost snow layer and 

the lowermost ice layer, which may be arbitrarily thick. The depths at which the layer bor-

ders are located are given by zsi. Variables like ice and snow temperature, density or heat 

conductivity, named X in Figure 10.1, are also defined at the layer borders. For some ap-

plications, however, values at the middle of the layers, Xm, are required. Their indexing 

can be seen from the figure. 
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Figure 10.1: Vertical grid in ice and snow: Definition locations of variables X and 

Xm, the layer thicknesses dzsi and the depth of the layer borders zsi. 
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A. Mathematical hints 

A.1 Model equations and coordinate transformation 

In this appendix the mathematical fundamentals of coordinate transformations are pre-

sented and are derived in a non-orthogonal, curvilinear and time independent coordinate 

system. The fundamentals of coordinate transformation and tensor analysis are described 

in detail by Dutton (1976), Spiegel (1982) and Wrede (1972). To transform the model 

equations into a non-orthogonal, curvilinear and time independent coordinate system it is 

indispensable to previously define the basis vectors of the coordinate system. Two sys-

tems of basis vectors, independent from each other, exist. The covariant basis vectors iq  

are tangent to the coordinate axis ix  and can be defined by 

ii
x

r
q







=  (A.1) 

where r  denotes the position vector. The contravariant basis vectors iq  are perpendicular 

to the surfaces .const=x i  and are defined by  

ii x=q    (A.2) 

Both systems of basis vectors in a nonorthogonal, curvilinear and time independent 

coordinate system are not systems of unit vectors. Both direction and magnitude vary in 

space. The components of the covariant and contravariant metric tensor can be calculated 

from the products ijji g=qq    and ijji g=qq   . In an orthogonal coordinate system both 

covariant and contravariant basis vectors are identical and, for j=i  , the components i jg  

and i jg  of the metric tensor become zero. In a nonorthogonal system i jg  and i jg  are 

different from zero. If j=i , the product of covariant and contravariant basis vectors j
i qq    

is 1, otherwise it is zero. Beyond basis vectors and metric tensor the determinant g:=gij
 ||  

of the covariant metric tensor as well as the Christoffel symbol i
jk  are necessary to 

derive the model equations in any coordinate system. i
jk  is defined by: 
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 (A.3) 

Any vector   in a non-orthogonal curvilinear coordinate system can be expressed by use 

of the basis vectors iq  and iq . The covariant vector components (subscript) are defined 

by  ii q=   and the contravariant components (superscript) by  ii q=   
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With the relations above all quantities are defined, which are necessary to derive the 

model equations (2.1) to (2.3) in a non-orthogonal curvilinear and time independent coor-

dinate system. If not explicitly mentioned, the summation convention is used in all follow-

ing equations. The equations of motion (2.1) are transferred to equations of momentum by 

use of the continuity equation (2.3). Using this formulation, it is unnecessary to solve the 

coupled system of differential equations (2.1) and (2.3), because the balance equation of 

momentum alone guarantees conservation of momentum if suitable numerical schemes 

are applied (Roache, 1982). The balance equations are derived for the contravariant 

components 
ju  of the velocity vector: 
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j  denotes the contravariant components of the angular velocity of the earth. For cyclic 

indices ijk  becomes +1, otherwise -1 and 0=ijk , if one index appears twice. 

The continuity equation can be written in a non-orthogonal curvilinear coordinate system: 
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 (A.5) 

The balance equation for any scalar variable   in a non-orthogonal curvilinear coordinate 

system can be derived to: 
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A.2 Equations in terrain-following coordinates 

The equations (A.4) to (A.6) can be formulated in the coordinate system X  by use of the 

components of the metric tensor and the Christoffel symbol. Both can be calculated from 

the basis vectors following (A.1) and (A.2). The transformation rules between the coordi-

nates 
321 x,x,x   of the terrain - following coordinate system X  (Section 2.2) and coordi-

nates z,y,x  of the orthogonal Cartesian system X are defined by: 
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The relation between coordinates z,y,x  of the coordinate system X and 
321 x,x,x   of the 

coordinate system X  follows: 
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The covariant basis vectors iq , which are tangential to the coordinate axis (Figure 2.1), 

are derived from equation (A.1): 
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 (A.9) 

In (A.9) k,j,i  denote the basis vectors of the Cartesian system X, tangential to the west-

east, south-north and vertical direction, respectively. The contravariant basis vectors are 

perpendicular to the coordinate surfaces (Figure 2.1) and can be derived from (A.2): 
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The transformation coefficients A to G stand for the spatial derivatives 
ji x/x  , 

ji x/x   

and are defined by (A.11). They are used in the discretized model equations (Appendix 

B.1). 

 



Mathematical Hints 97 

 

(h))/()/()/(

:),,(

(g):),(

(f)1:)(

(e):),(

(d):),(

(c):)(

(b):)(

(a):)(

321

321*

21

3

21

21

3

3

2

2

1

1

GCBA

xzxyxx

gxxx

z

zz
xxG

z
xF

y

z
xxE

x

z
xxD

x
xC

x

y
xB

x

x
xA

t

st

t

s

s



























































 (A.11) 

 

The balance equations of momentum in the coordinate system X  are written:   
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(A.12) 

The Coriolis parameters at latitude   are defined by sin2=f  and  cos2=f . g  

denotes the gravitational acceleration. The continuity equation can be written as follows: 
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The balance equation of any scalar quantity (e.g. potential temperature   in the coordinate 

system X  is given by: 
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 (A.14) 

The balance equations of momentum have been derived in a form of prognostic equations 

for the contravariant components 
iu  of the velocity vector in the coordinate system X . 

However, one is obviously interested in prognostic equations for the Cartesian velocity 

vector },w,v,u{=v . A relation between the Cartesian components w,v,u  and the 

contravariant components 
iu  in the nonorthogonal coordinate system X  can be derived 

from (10): 
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 (A.15) 

The contravariant components in (A.12) to (A.14) are replaced by (A.15) and result in 

equations (2.7) to (2.9). 

A.3 Coriolis force in a rotated coordinate system 

In a coordinate system with its x-axis orientated to East and its y-axis orientated to North, 

the earth's angular velocity is given as follows: 
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 (A.16) 

A rotation of the coordinate system with an angle   must maintain the determinant of the 

matrix. The rotation matrix is given by: 
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)( ieD   (A.17) 

The components of the earth's angular velocity are derived as follows: 
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With this equation the Coriolis force in the rotated coordinate system is given: 
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A.4 Calculation of the local grid rotation angle from an array of latitudes 

and longitudes 

The principal idea in the following formulae is to calculate the angle between a grid points 

neighbor in y-direction and the north pole using spherical geometry. The first necessary 

step is to calculate the distance of the two grid points 
jd , which should approximately be 

jy : 

)cos(coscossinsindcos j1jj1jj1jj    (A.20) 

This distance can now be used to calculate the cosine and the sine of  , which can be 

used to retrieve   by using the atan2 function. As 
jd  is a very small angle (in the same 

order of magnitude as the grid spacing compared to the circumference of the earth) the 

required )d(sin(arccos j ) won't give accurate results. 
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(A.21) 

A.5 Calculation of zenith angle and incoming solar radiation 

The incoming solar radiation is calculated with respect to  

- geographical position of the model area  

- date and time of the model run  

- inclined surfaces shading of areas due to neighbouring hills etc  

- rotation of the used coordinate system with respect to north. 

The following derivation is given by Iqbal (1983). For the meaning of symbols within this 

section see the symbol table at the end of this appendix. 
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For a given geographical latitude  , in the absence of the earth's refractive atmosphere, 

the trigonometric relation between the sun and a horizontal surface is (Pielke, 1984, p211) 

 sin=coscoscossinsin=)(cos wtZ  (A.22) 

where the declination   is given by 

)d(30.001480)d(30.002697

)d(20.000907)d(20.006758

)d(0.070257)d(0.3999120.006918=

oo

oo

oo

sincos
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





 (A.23) 

This equation gives the declination in radians (Pielke, 1984, p. 225). od  is the julian day. 

The hour angle w is defined by 

3600

15
s180=w

o
o   (A.24) 

with s  seconds since midnight.  tZcos has to be restricted to values between 0 and 1. 

For inclined surfaces it is necessary to prescribe the slope of the surface with respect to 

the horizontal position and its orientation in relation to the local meridian. The inclination of 

a surface from the horizontal position can be caluclated by 
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where xz  is the difference in surface height with respect to the x-direction, yz  

analogous. From the known values for surface's inclination  , orientation of the slope   

and solar azimuth   the angle   between the normal to the surface and sun-earth vector 

is given by 

)(cos)(sinsin)(coscos=cos  tztZ  (A.26) 

The solar azimuth   can be taken from 
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))t(Z(90

))t(Z(90
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o

 (A.27) 

and then 

)w(sign)(=  cosarccos  (A.28) 

to ensure the right sign of   due to its definition (symbol table). For the determination of   

with respect to south direction a possibly given rotation angle   of the used coordinate 
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system has to be taken into account.   is calculated by means of the FORTRAN standard 

function ATAN2: 
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2ATAN= cossinsincos  (A.29) 

Each grid point of the model area can be shadowed by the topography at other grid 

points, if the solar altitude is lower than the topographic altitude in the direction of the solar 

azimuth. For taking this shadowing effects into account without wasting computing time 

there are twelve azimuth sectors defined at each grid point. Sector 1 is defined by 

o
m

o 165>180  , sector 2 by o
m

o 135>165   and so on by steps of 
o30  

where 
o180  corresponds to north direction. The sector with o

m
o 180165   belongs 

to sector 1 again. With respect to a possibly rotated coordinate system, m  is also 

calculated by means of the FORTRAN function ATAN2: 

)yx,yx(2ATAN=m  cossinsincos  (A.30) 

When starting the model run a minimum solar altitude m  is calculated at each grid point 

and for each sector by 
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s
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which defines a minimum solar altitude for the corresponding azimuth sector. z  means 

the difference in topographic height between this grid point and any other grid point within 

the selected azimuth sector, s  is the horizontal distance between both grid points. So if 

the solar azimuth   belongs to an azimuth sector m  a grid point is shadowed as long as 

the solar altitude   is lower than the corresponding minimum solar altitude 

)y,x,(f= mm  . For clarity see Figure A.1.  
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Figure 10.2: Definition of azimuth m  and minimum solar altitude m  at grid point oP . 
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Symbol table 

 symbol  name  values  meaning/comments  
    solar altitude  oo 900    angular elevation of the 

sun above the true 
horizon (degrees)  

  surface inclina-
tion  

oo 900     inclination of a surface 
from the horizontal po-
sition (degrees)  

   surface azimuth  oo 180180     surface azimuth angle, 
that is, the deviation of 
the normal to the sur-
face with respect to the 
local meridian, south 
zero, east positive (de-
grees)  

   declination  oo 23.523.5     angular position of the 
sun at solar noon with 
respect to the plane of 
the equator, north posi-
tive (degrees)  

   suns angle to 
inclinated sur-
face  

oo 900    angle of incidence for 
an arbitrary oriented 
surface, the angle be-
tween normal to the 
surface and sund-earth 
vector (degrees)  

)(tZ   zenith angle  oo tZ 90)(0    angular position of sun 
with respect to the local 

vertical,  o

z 90=  

(degrees)  

   latitude  oo 9090     geographic latitude, 
north positive (degrees)  

   azimuth  oo 180180     solar azimuth, south 
zero, east positive (de-
grees)  

w   hour angle  oo w 180180    solar noon zero and 
morning positive (de-

grees); changes 
o15  

every hour (e.g. 
ow 15=   at 11:00 and 

ow 37.5=   at 14:30)  

   rotation angle  oo 3600    rotation of model's co-
ordinate system against 

north (e.g. 
o0=  with 

x-axis to east, and 
o135=  with x-axis to 

north-west)  
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B. Model in difference form 

B.1 Difference form of the equations 

In the following difference forms of the model equations a convention suggested by 

Shuman (1960) is used: 
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For weighted mean values the following abbreviations are used: 
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where: 
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The mean values 
j

xix  ,  and 
kx

j
xix  ,,  are defined analogous to equations (B.1b) and 

(B.1c). 

Gradients 
ix/   of any quantity   at a grid point i are discretized centered-in-space and 

abbreviated by: 
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Mean values of products are usually discretized by seperatly averaging the factors of the 

product. In general a quantity is not filtered twice in one direction and it is assumed that it 

changes linear between two grid points. This assumption is also used for all other 

discretizations. 

The transformation coefficients 
ji x/x  , 

ji x/x   can be directly derived from the 

coordinates ji x,x  . For efficiency they are combined from several coefficients, which can 

be derived following Appendix A.2: 
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The coefficients (B.6) are often used with operator (B.1) leading to xA
x


1

, 
yB

x


2

 

and zC
x


3

. 

B.1.1 Difference form of the equations of motion 

The advection and diffusion terms in the Reynold equations are integrated in time by 

means of the Adams-Bashforth-scheme. The Adams-Bashforth-scheme can be expressed 

by the general formulation (Roache, 1982): 
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where f  denotes the sum of advection terms ADVXI and diffusions terms DIFXI  defined 

in (B.11) and (B.12), which are both discretized centered-in-space. The numerical scheme 

is stable, if the time step follows the restriction: 
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z,y,x   characterize the grid increments in  y,x und z direction. D and E denote 

the slopes in x- and y- direction at the grid point under consideration. Buoyancy effects 

are taken into account by the additional restriction:  
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For ,/10|=|=|| smvu  ,s m 1|=| 1w m 1000== yx  ,m 50=z ,m 10= 12 sKvert

12m 50= sKhor , and a flat terrain, 0=E=D , the restrictions (B.6) and (B.7) yield 

s 18t . The lowest limit for the time step is 1s. In general the upper limit for the time 

step in METRAS is set to 60 s and for simulations of cloud and rain formation to 10 s. 

The balance equations of momentum (2.23) discretized by the numerical schemes 

described in Section 4.3 can be written as follows: 
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The sum of the advection term ADVXI and the diffusion term DIFXI  is abbreviated by If . 

FXI1P  and FXI2P  denote pressure gradient forces due to the mesoscale pressures 1p  and 

2p . CORXI  and BOUXI  are the Coriolis and buoyancy terms. These terms are listed in 

detail in the equations (B.11) to (B.17). The advection terms ADVXI are discretized by: 

)())}/(({

))}/(({

))}/(({=3

)())}/(({

))}/(({

))}/(({=2

)()}/()({

)}/()({

))}/(({=1

3

0

3
3

0

3
3

3
3

3

0

2

2
3

0

3

2

3

0

1

1
3

0

3

1

22

0

23
3

22

0

2
2

3
3

22

0

2

22

0

1

2

22

0

1

1

22

0

2

1

11

0

13
3

11

0

1
1

3
3

11

0

2

2

11

0

1

2

11

0

1

11

0

1

1

cGCGwGCGu

GBwGv

GAwGuADVX

bGGCvGCGu

GBvGv

GAvGuADVX

aGGCuGCGu

GBuGv

GAuGuADVX

x
x

xx
x

x

xx

x
xx

x

xx

x
xx

x

xxxx
x

xxx
x

x

xx
x

xxx

x

xxx

x

xxx

x

xxxx
x

xxx
x

x

xxx

x

xxx

x

xx
x

xxx

x














































































































 

(B.11) 

The diffusion terms DIFXI are discretized by:  
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The contravariant vertical velocity component 
3u  is calculated as follows: 

))}/(({=
2,321,313 GCvEuDFwu xxxxxx 
  (B.13) 

The momentum fluxes ]c,b,a[ij  are defined by equation (3.2) and calculated by a grid 

point ]c,b,a[  (Figures 5.1 and 5.2a,b), where "s" denotes a scalar and "v" a vectorial grid 

point: 

]s,s,s[ij  :  shear stress at a scalar grid point )i,j,k(  

]v,s,s[ij  :  shear stress at an u-grid point 1/2)i,j,k(   

]s,v,s[ij  :  shear stress at a v-grid point )i1/2,j,k(   

]s,s,v[ij  :  shear stress at a w-grid point )i,j1/2,k(   

]v,v,s[ij  :  shear stress at a grid point of u, v 1/2)i1/2,j,k(   

]v,s,v[ij  :  shear stress at a grid point of u, w 1/2)i,j1/2,k(   

]s,v,v[ij  :  shear stress at a grid point of v, w )i1/2,j1/2,k(    

The pressure gradient force terms P1FXI due to the mesoscale pressure 1p  are 

discretized by: 
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The pressure gradient force terms P2FXI due to the mesoscale pressure 2p  can be written 

in difference form as follows: 
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The last equation gives the pressure gradient force term for the vertical velocity .3u  It is 

used for the calculation of the pressure 2p  at time step n  as well as for the pressure 

change 2p̂  (Section 2.5). 

The Coriolis terms CORXI are discretized by: 
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The difference form of the bouyancy terms BOUXI is: 
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B.1.2 Difference form of the budget equations for scalar quantities 

The balance equations of scalar quantities are discretized in time by: 
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QUEPHItDIFPHItADVPHIt= n1n    (B.18) 

Here ADVPHI  denotes the advection terms, DIFPHI  the diffusion terms and QUEPHI  

processes due to sources and sinks. The advection terms are formulated by use of the 

contravariant velocity components 
iu  as defined by (A.15). 
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If the Smolarkiewicz scheme (Smolarkiewicz, 1983,1984; Smolarkiewicz and Clark, 1986) 

is used, several iterative upstream steps are performed and for the second and each 

following iteration step "anti-diffusive" velocities ( wvu ˆ,ˆ,ˆ ) are used instead of the physical 

velocity components w,v,u . For the one dimensional case in vertical direction the scheme 

can be written: 

1. Advective Step:  
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2. Antidiffusive step: 
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F denotes the advective flux of a quantity  0= , which is defined at the vectorial grid 

points of the velocity components: 
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The antidiffusive velocity 
3û  is calculated from: 
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1510=   is added to ensure 0=u3̂  for k1k =    = 0 and to prevent a zero denominator 

if k1k =   . The original Smolarkiewicz scheme is derived for positive defined quantities 

only. To apply the scheme to other quantities it is necessary to add a factor to the data 

array (Smolarkiewicz and Clark, 1986). In METRAS the lowest value of an array is 

determined and, if this value is negative, half as much of this value is added to the array to 

ensure positive values overall. 

The diffusion terms F  are discrtized by: 



112  List of Tables 

 

))}/(]/,,[)(ˆ({

))}/(]/,,[ˆ({

))}/(]/,,[ˆ({

))}/(]/,,[ˆ({

))}/(]/,,[ˆ({

))}/(]/,,[ˆ({

))}/(]/,,[ˆ({

))}/(]/,,[ˆ({

0

3

3

22212
33

03

0

32

2

2
33

03

0

31

1

1
33

03

0

22

3

3
22

02

0

11
3

3
11

01

2
0

3

3

33

03

0

2

2

2
22

02

0

1

1

1
11

01

GCCGssvEDFK

GCBssvFEK

GCAssvFDK

GBCsvsFEK

GACvssFDK

GCCssvK

GBBsvsKG

GAAsvsKGDIFPHI

x

x

xx
x

hor

x

x

xx

x

x
x

hor

x

x

xx

x

x
x

hor

x

x

xx

x

x
x

hor

x

x

xx

x

x
x

hor

x

x

x

x

x

ver

x

x

x

x

x

hor
xx

x

x

x

x

hor
xx

x




























































































 (B.24) 

Letters in brackets denote the grid points (Figures 5.1 and 5.2a,b) at which the gradients 

x  are calculated. 

B.1.3 Difference form of divergence 

Equation (2.25) for the calculation of the pressure change 2p̂  can be written in finite 

difference form in the following way: 
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Here the surface normal velocity component 
3û  is calculated by: 
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The poisson-equation in finite-difference form can be derived by use of equations (B.15) 

and (2.24) in equation (B.25). A matrix of coefficients results for the pressure field 2p̂ : 
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The coefficients have to be modified at the model boundaries. 

B.1.4  Differential form of hydrostatic assumption 

The hydrostatic assumption is solved by use of centered differences: 

3
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 (B.28) 

B.1.5 Calculation of density deviations 
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B.2 Difference form of boundary conditions 

The boundary conditions used in the model are desribed in this Section in difference form. 

B.2.1 Lower boundary 

B.2.1.1 Wind and Pressure 

Wind and pressure boundary conditions are always coupled (Chapter 6) and have thus to 

be discretized corresponding to each other. 

At the lower boundary only the surface normal pressure gradient is effective and 

correspondingly the surface normal component of the momentum vector. It can allways be 

calculated from: 

0=0 33
3

*
3

0 uu
xx




  (B.30) 

Use of equation (2.24) and of preliminary velocities results in: 
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NUVWX3(1)=0, Cyclic Boundary Conditions 

This boundary condition can only be selected if no pressure perturbation 2p  is to be 

calculated. In vertical direction it makes only sense in connection with model tests. The 

upper boundary condition has also to be cyclic. 
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 (B.32) 

NUVWX3(1)=3, No Slip Condition 

This Boundary condition can be used in connection with boundary condition 

NP2X3(1) = 1. 

For a no slip boundary condition the surface parallel wind velocity is zero at the ground: 
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From these equations and equation (B.30) a diagnostic equation for w  can be derived. 

With the assumption of vanishing vertical velocities at the lateral boundaries of the model 

the following boundary conditions are derived: 
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(B.34) 

NUVWX3(1)=27, Free Slip Condition 

This Boundary condition can be used in connection with boundary condition NP2X3(1) = 

1. 
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For a free slip boundary condition the vertical gradient of the surface parallel wind velocity 

is zero at the ground (Clark, 1977): 
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 (B.35) 

From this equations for the components of the horizontal wind vector it can be derived: 

)i,j(1,v=)i,j(0,v

)i,j(1,u=)i,j(0,u
 (B.36) 

The vertical wind at the ground is calculated corresponding to equation (B.10): 

)i,j(1,v)i,j(E)i,j(1,u)i,j(D=)i,j(0,w
2x2x1x1x 

  (B.37) 

For flat terrain the vertical velocity results to zero. 

B.2.1.2  Prognostic Scalar Quantities 

The scalar quantities are denoted by  . The values   are the sum of the large-scale 

value o  and the mesoscale values ~ . All boundary conditions are formulated for the 

value ~  and transformed to formulations for ~ since these values are calculated 

prognostically in the model. 

NPHI3(1)=0, Cyclic Boundary Conditions 

As for the wind, this boundary condition has to be used at the lower and upper boundary 

both. 

)i,j(1,v)i,j(E)i,j(1,u)i,j(D=)i,j(0,w
2x2x1x1x 

  (B.38) 

This boundary condition is not implemented for liquid water and tracers. 

NPHI3(1)=1, Zero Gradient 

For tracer transport a zero gradient corresponds to total reflexion. No tracers are 

absorbed at the ground. This is not realized in METRAS by this boundary condition but by 

NPIH3(1)=8 together with a deposition velocity 0=vd . 

)i,j(0,)i,j(1,)i,j(1,=)i,j(0, 00  ~~  (B.39) 

This boundary condition results in zero fluxes at the ground, e.g. 0=* . It corresponds 

to boundary condition NPHI3(1)=6 and is implemented for cloud water only. 
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NPHI3(1)=3, Fixed Values 

To keep the values at the surface constant in time, the values at the “old” time step have 

to be used to calculate the surface values: 

 ),(1,),(1,~),(0,),(0,~0.5=),,(~
00 ijijijijijsurface

nnnnn   (B.40) 

The values at the boundary are calculated from: 

),(0,),(1,),(1,~),,(~2=),(0,~ 1

0

1

0
11 ijijijijsurfaceij

nnnnn    (B.41) 

This boundary condition is not implemented for rain water and tracers. 

NPHI3(1)=5, Surface Energy Budget for the Temperature and Budget-Equation for 

Humidity 

The surface values )i,j,surface(1n  are derived from prognostic equations. The boundary 

values are derived in correspondence with equation (VI.12) but by use of the surface 

values at the new time step 1n  . 

NPHI3(1)=7, Flux at the Boundary equal to Flux in the Model 

This boundary condition is not defined at the boundary but between the surface and the 

next inner grid point. It corresponds to a zero vertical gradient of the fluxes: 

)i,j(1,w=)i,j,surface(w ''''   (B.42) 

With respect to Chapter 3 this equation results to: 

1=kz
K=u=w



 **  (B.43) 

The difference form of the equation is: 

)i,j(1,K

)i,j(1,zu2
)i,j(0,)i,j(2,)i,j(2,=)i,j(0, 00 ˆ

~~ ** 
  (B.44) 

This boundary condition corresponds to a total absorption of cloud water or rain at the 

ground and is implemented for these two variables only. 

NPHI3(1)=8, Flux at the Boundary calculated from Deposition Velocity 

This boundary condition can only be used for tracer transport. The derivation is similar to 

boundary condition 7, but the surface fluxes are calculated from: 
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)i,j(1,Cv=Cu=)i,j,surface(wC jD*ji  *''  (B.45) 

For the boundary values a formulation similar to equation (VI.15) results. The fluxes **u  

are now calculated from ))i,j(1,C)i,j(1,C(v j0jD 
.
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 (B.46) 

B.2.2 Upper boundary 

B.2.2.1 Wind and Pressure 

At the upper boundary the boundary conditions for wind and pressure are coupled in a 

similar way as at the lower boundary. 

NUVWX3(2)=0, Cyclic Boundary Conditions 

This boundary condition can only be selected if no pressure perturbation 2p  is to be 

calculated. In vertical direction it makes only sense in connection with model tests. The 

lower boundary condition has also to be cyclic (Section B.2.1.). 

)i,j(1,w=)i,j3,NX(w

)i,j(1,v=)i,j1,P3NX(v

)i,j(1,u=)i,j1,P3NX(u

 (B.47) 

NUVWX3(2)=4, Large-Scale Values Prescribed 

This boundary condition can be used in connection with boundary condition NP2X3(2) = 1. 

The values of the components of the wind velocity vector are prescribed from the 

geostrophic values: 

),3,0(=),3,(

),3,(),3,(),1,3(=),1,3(

),3,(),3,(),1,3(=),1,3(

ijNXWijNXw

ijNXvijNXVGijPNXVGijPNXv

ijNXuijNXUGijPNXUGijPNXu





 (B.48) 

NUVWX3(2)=23, Boundary Normal Wind Components: Large-Scale Values; 

Boundary Parallel Wind Components: Zero Gradient 

This boundary condition can be used in connection with boundary condition NP2X3(2) = 1. 

)i,j3,NX0(W=)i,j3,NX(w

)i,j3,NX(v=)i,j1,P3NX(v

)i,j3,NX(u=)i,j1,P3NX(u

 (B.49) 
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NUVWX3(2)=24, Boundary Normal Wind Components: Large-Scale Values; 

Boundary Parallel Wind Components: Gradient at the Boundary Equal to Gradient 

in the Model 

This boundary condition can be used in connection with boundary condition NP2X3(2) = 1. 

)i,j3,NX0(W=)i,j3,NX(w

)i,j1,M3NX(v)i,j3,NX(v2=)i,j1,P3NX(v

)i,j1,M3NX(u)i,j3,NX(u2=)i,j1,P3NX(u





 (B.50) 

B.2.2.2 Prognostic Scalar Quantities 

NPHI3(2)=0, Cyclic Boundary Conditions 

As for the wind, this boundary condition has to be used at the lower and upper boundary 

both. 

)i,j1,P3NX()i,j(1,)i,j(1,=)i,j1,P3NX( 00  ~~  (B.51) 

This boundary condition is implemented in METRAS for temperature and humidity only. 

NPHI3(2)=1, Zero Gradient 

)i,j1,P3NX()i,j3,NX()i,j3,NX(=)i,j1,P3NX( 00  ~~  (B.52) 

This boundary condition results in zero fluxes at the model top. 

NPHI3(2)=2, Gradient at the Boundary Equal to Gradient in the Model 
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 (B.53) 

This boundary condition is not implemented for liquid waters. 

NPHI3(2)=3, Fixed Values 

To keep the value at the model top constant in time, the values at the “old” time step have 

to be used to calculate the values at the model top: 


)i,j3,NX()i,j3,NX(~

)i,j1,P3NX()i,j1,P3NX(~0.5=)i,j,top(

n

0
n

n

0
nn




 (B.54) 

For the next time step the boundary values are derived from: 
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 (B.55) 

B.2.3 Lateral boundaries 

All boundary conditions described in this section can be used at all lateral boundaries. 

They are not given in detail for all boundaries here, only the formulation at the eastern 

boundary is presented. 

B.2.3.1 Wind and Pressure 

Wind and pressure boundary conditions are always coupled (Chapter 6) and have thus to 

be discretized corresponding to each other. 

NUVWX1,2(1,2)=0, Cyclic Boundary Conditions 

This boundary condition can only be selected if no pressure perturbation 2p  is to be 

calculated. It has always to be used at both corresponding boundaries, e.g. at the western 

and eastern boundary: 

 1)M1NX,j,k(u=,0)j,k(u  

 1)NX,j,k(v=,0)j,k(v  

 1)NX,j,j(w=,0)j,k(w  

 ,1)j,k(u=1)NX,j,k(u  

 ,1)j,k(v=1)P1NX,j,k(v  

 ,1)j,j(w=1)P1NX,j,k(w   (B.0) 

NUVWX1,2(1,2)=9, Radiation Boundary Conditions at the Outermost Grid Point 

This boundary condition can be used in connection with boundary condition NP2X1,2(1,2) 

= 1. 

It can be derived as follows: 
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The phase velocity ic  can be calculated by use of the assumption 1n
1i

n
i c=c 

  as follows: 
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1)i,j,k(F 1n
2   is calculated from:  
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 (B.58) 

The grid sizes are calculated in the model by: 1.5)i(A=1.5)i(x1  , )j(B=)j(x2 , 

1)i,j(G)k(C=1)i,j,k(x3  . 

The components 2c  and 3c  of the phase velocity vector are derived correspondingly. 

Following and extending the limitations given by Orlanski (1976) the phase velocity at the 

eastern boundary has to be restricted in the following way: 





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


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1 


 (B.59) 

With the assumption that the preliminary values w,v,u ˆˆˆ  are equal to the final values w,v,u  

the pressure gradients normal to the boundary are equal to zero. 

NUVWX1,2(1,2)=15, At Inflow Boundary: Large-Scale Values Prescribed; At Outflow 

Boundaries: Zero Gradient 

This boundary condition can not be used when calculating the pressure 2p  
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NUVWX1,2(1,2)=25, Boundary Normal Wind Components: Radiation Boundary 

Conditions; Boundary Parallel Wind Components: Zero Gradient 

This Boundary condition can be used in connection with boundary condition NP2X1,2(1,2) 

= 1. 

For the boundary normal wind components equations (B.10) to (B.59) are used. The 

boundary parallel wind components are calculated from: 

1)NX,j,k(w=1)P1NX,j,k(w

1)NX,j,k(v=1)P1NX,j,k(v
 (B.61) 

NUVWX1,2(1,2)=27, Boundary Normal Wind Components: Direct Calculation as Far 

as Possible; Boundary Parallel Wind Components: Zero Gradient 

This Boundary condition can be used in connection with boundary condition 

NP2X1,2(1,2) = 1. 

The equations for the boundary normal velocity components are discretized following 

Appendix B.1. This results in zero pressure gradients. The boundary normal advection at 

the inflow boundary is calculated by use of the phase velocity 1c  (equations (B.56) to 

(B.59)). At the outflow boundary a constant advection is assumed. The boundary normal 

diffusion is neglected. 

The boundary parallel wind components are calculated following equation (B.61). 

B.2.3.2 Prognostic Scalar Quantities 

NPHI1,2(1,2)=0, Cyclic Boundary Conditions 

This boundary condition has to be used at two corresponding lateral boundaries, e.g. at 

the east and west boundary. 

1)P1NX,j,k(,1)j,k(,1)j,k(~=1)P1NX,j,k(~

,0)j,k(1)NX,j,k(1)NX,j,k(~=,0)j,k(~

00

00




 (B.62) 
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NPHI1,2(1,2)=1, Zero Gradient 

1)P1NX,j,k(1)NX,j,k(1)NX,j,k(=1)P1NX,j,k( 00  ~~  (B.63) 

This boundary condition results in zero fluxes at the lateral boundary. 

NPHI1,2(1,2)=2, Gradient at the Boundary Equal to Gradient in the Model 
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NPHI1,2(1,2)=3, Fixed Values 

To keep the value at the lateral boundaries of the model constant in time the values at the 

“old'' time step have to be used: 
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By use of the old values at the boundary the new ones are calculated: 
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NPHI1,2(1,2) = 15, At Inflow Boundary: Large-Scale Values Prescribed; At Outflow 

Boundary: Zero Gradient 
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NPHI1,2(1,2) = 16, At Inflow Boundary: Time dependent Values Prescribed; At 

Outflow Boundary: Zero Gradient 

For this boundary condition a presimulation is necessary to get the values for the species 

concentrations at the inflow boundary. 
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0<1)NX,j,k(u  : 

The time dependent values are prescribed at the furthest grid point, not at the boundary 

on 1)P1NX,j,k(~ . The large scale value )i,j,k(o  has to be zero at all grid points.  

 1)NX,j,k(1)NX,j,k(=1)P1NX,j,k(:1)NX,j,k(u0 o ~~  

 1)P1NX,j,k(o  
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List of Symbols 

Symbols for the atmospheric models 

A  transformation coefficient for grid increment in west-east direction 

fA   control value for diastrophism 

0A   Albedo 

a   stationarity parameter 

B   transformation coefficient for grid increment in south-north direction 

C   transformation coefficient for vertical grid increments 

jC   pollutant concentration 

*jC   scaling value of concentration 

pc   specific heat of dry air at constant pressure 

vc   specific heat of dry air at constant volume 

D   transformation coefficient for terrain slope in west-east direction 

E   transformation coefficient for terrain slope in north-south direction 

F


  moleculare friction 

F   transformation coefficient 

f   Coriolis parameter ( sin2 ) 

f    Coriolis parameter ( cos2 ) 

G   transformation coefficient 

g  acceleration of gravity  

g   determinant |g| ij
  

i lg   covariant metric tensor 

i lg   contravariant metric tensor 
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sH   characteristic vertical scale of a phenomen 

h   depth of temperature wave  

h   topography height 

i


  unit vector in west-east direction 

j

  unit vector in south-north direction 

horK   horizontal exchange coefficient for momentum 

,horK   horizontal exchange coefficient for scalar quantities 

vertK   vertical exchange coefficient for momentum 

,vertK   vertical exchange coefficient for scalar quantities 

k

  unit vector in vertical direction 

sk   thermal diffusivity in soil 

L Monin Obukhov length  

SL   characteristical horizontal scale of a phenomen 

bl   blending height  

*l   scale of horizontal extension of sub-grid scale surface elements 

21l   latent heat of vaporization of water 

p  pressure 

op   large-scale pressure (basic state) 

1p   pressure deviation (“hydrostatic” pressure deviation) 

2p   pressure deviation ("dynamic" pressure deviation, corresponds to rest term in 

pressure needed to fulfil anelastic approximation) 

p~   pressure devitaion from basic state 
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p   mean pressure value 

p   pressure fluctuation 

Q   sources and sinks in the balance equation of scalar quantities   

iq

   covariant basis vectors in coordinate system X  

iq

   contravariant basis vectors in coordinate system X  

1
1q   specific humidity 

1
s1

q   surface humidity  

1
sat1

q   saturation value of surface humidity  

1

i0q   large scale part of 1,2,3)=i(q1
i  

1
iq~   humidty deviation from basic state of 1,2,3)=i(q1

i  

1
iq̂  ' preliminary' value of 1,2,3)=i(q1

i  

2
1q   liquid water content [kg] per kg humid air (dry air and water) 

3
1q   ice content [kg] per kg air (dry air and ice) 

*q   scaling value for specific humidity 

jq ,*   sub-grid scale scaling value for specific humidity  

R   universal gas constant 

oR   gas constant of dry air 

1
1R   gas constant of water vapour 

k
iR   individual gas constant 

*
iR   modified Richardson number 

r


  location vector 
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r   relative humidity 

T   temperature 

oT   large-scale temperature (Basic state) 

sT   surface temperature  

t   time  

gU   geostrophic wind in west-east direction 

u   velocity in west-east-direction 

û   preliminary velocity in west-east direction 

u   velocity fluctuation in west-east direction 

iu   velocity components in Cartesian coordinates 

u   mean velocity in west-east direction 

iu   covariant velocity component 

iu  contravariant velocity component 

iu   mean contravariant velocity component 

'iu  contravariant component of velocity fluctuation 

u* friction velocity 

lu ,*  subgrid scale friction velocity 

V magnitude of horizontal wind 

gV


 geostrophic wind vector 

Vg geostrophic wind in south-north direction 

VTR terminal velocity of rain drops 

v


 velocity vector 



130  List of Symbols 

v velocity in south-north direction 

v̂  temporal velocity in south-north direction 

vd deposition velocity 

v  mean velocity in south-north direction 

vk specific volume 

Ws bulk moisture content 

Wk saturated value of Ws 

w vertical velocity 

ŵ  temporal vertical velocity 

w  mean vertical velocity 

X Cartesian coordinate system 

X  terrain-following coordinate system 

x horizontal coordinate in west-east direction in coordinate system X 

ix  coordinate in coordinate system X
 

y horizontal coordinate in south-north direction in coordinate system X 

Z(t) zenith angle 

zjk=1  height of first grid level  

z vertical coordinate in coordinate system X 

zs topographic height in coordinate system X 

zt height of model top 

z0 mean roughness length 

j
0z  subgrid-scale roughness length 

  ratio of exchange coefficients for scalar quantities and momentum 

d  wind direction 
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*

  grid volume 

  function for calculating changes in specific humidity 

i
j,j

  Christoffel symbol 

  temperature gradient 

t  time step 

x  longitudinal grid increment 

1x  grid increment in west-east direction in coordinate system X  

2x  grid increment in south-north direction in coordinate system X  

3x  vertical grid increment in coordinate system X  

y  lateral grid increment 

z  vertical grid increment 

  kinematic viscosity of air 

R  damping coefficient 

s  thermal conductivity 

  vertical coordinate in coordinate system X  

  potential temperature 

0  large-scale part of potential temperature 


~

 meso-scale part of potential temperature 

  potential temperature fluctuation 

*  scaling value of temperature 

j
*  subgrid-scale scaling value of temperarure 
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Mean

~
  area mean temperature values 

̂  ’temporal’ value of potential temperature 

  von Karman constant 

  density of air 

0  large-scale part of density 

~  meso-scale part of density 

  mean density 

  density fluctuation 

i j  component of turbulent stress tensor 

  geopotential 

  geopotenital latitude 

  any scalar quantity 

~  meso-scale part of scalar quantity   

  mean value of scalar quantity   

̂  ’temporal’ value of scalar quantity   

  fluctuation of scalar quantity   

0  large-scale part of scalar quantity   

  any quantity 

~  meso-scale part of   

  mean value of   

  fluctuation of   

0  large-scale part of   
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m  stability function of momentum 

h  stability function of heat 




 angular velocity vector of the earth 

  magnitude of 

i  covariant component of earth’s angular velocity vector 

  gradient operator 

□x area size in west-east direction 

□y area size in south-north direction 

 

Symbols for the sea ice model MESIM 

A Total ice concentration (percentage of coverage) of a grid cell 

Ac Ice concentration (percentage of coverage) of ice class c in a grid cell 

Aw Fraction of water in a grid cell 

C Cloud cover fraction 

C* Strength reduction constant for lead opening (C*=20) 

Ch,w Transfer coefficient for sensible heat from the ocean (Ch,w =6∙10-3) 

cp Specific heat capacity of air at constant pressure (cp =1006 J kg-1 K-1) 

cp,w specific heat capacity of sea water (cp,w = 3980 J kg-1 K-1) 

csd,oc Surface drag coefficient between ice and ocean (csd,oc = 4∙10-3) 

e Excentricity of the elliptic yield curve for ice failure (e =2) 

e2m Water vapour pressure at 2 m height 

f Coriolis parameter 

F


 Forces due to internal stresses in the ice 
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g Gravity constant 

Hc Summed up vertical thickness of all clouds in the air column 

hd,c Height of draft of ice floes in ice class c 

hf,c Height of freeboard of ice in class c 

hi Mean ice thickness over all ice classes 

hi,c Thickness of ice in class c 

hni,c Thickness of new ice grown in leads between ice of class c (after drift) 

c,nih  Thickness of homogenious new-ice layer in leads belonging to ice in class c 

hoc Sea surface height 

hs,c Thickness of snow on top of the ice in class c 

i Imaginary unit 

I0 Short wave radiation entering the top layer of ice 

i0 Percentage of net short wave radiation at the ice surface that penetrates 
 further into the ice 

iw Percentage of net short wave radiation at the sea surface that penetrates 
 further into the ocean 

Kc Extinction coefficient for short wave radiation in clouds (Kc =42 km-1) 

Ki Absorption coefficient of short wave radiation inside the ice (Ki =1.5 m-1) 

ki Thermal conductivity of sea ice 

ki,f Thermal conductivity of fresh ice (ki,f =2.035 W m-1 K-1) 

ks Thermal conductivity of snow 

l21 Specific latent heat of vaporisation (l21= 2.5∙106 J kg-1) 

Lfus,i Volumetric heat of fusion for ice (Lfus,i =3.014∙108 J m-3) 

Lfus,s Volumetric heat of fusion for snow (Lfus,s =1.097∙108 J m-3) 

Li,c Length of ice floes in class c 

Lw.c Spacing between ice floes (“length of water”) in class c 
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
LW  Outgoing long wave radiation 


LW  Incoming long wave radiation 

LWnet Net long wave radiation at surface 

mi Mass of ice 

P Hydrostatic ice pressure 

P* Compressive strength of compact ice of unit thickness (P*=20 kN m-2) 

Pp Ice strength under ideal-plastic conditions 

i*,q  Scaling value for the specific humidity over ice 

Qc Conductive heat flux from ice surface into the ice 

Qc,bot Conductive heat flux at the bottom of the ice 

Ql Latent heat flux at surface 

Qs Sensible heat flux at surface 

Qs,bot Sensible heat flux from the ocean to the ice base 

Qw,l Total heat flux at the ocean surface 

l,wQ  Remaining energy flux at sea surface after cooling of water 

rp Regime function for the transition zone between viscous and plastic ice flow 

Sc(Z) / Sc(z) Salinity of sea ice in relative depth Z or absolute depth z (ice class index 
  omitted in the text) 


SW  Incoming short wave radiation 

SWnet Net short wave radiation at surface 

T1 Temperature of ice or snow at the first level into the ice/snow  

Ta,2m Air temperature in 2 m height above ground 

Tc Temperature of the cloud base 

Ti,bot Temperature of the ice at the ice–water interface 
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Ti,c(z) Temperature in z meter depth inside the ice of class c (abbreviated as “Ti”) 

Tf Freezing point of sea water (Tf =271.35 K) 

Tmelt,I Melting point of sea ice (Tmelt,i =273.05 K) 

Tmelt,s Melting point of snow (Tmelt,s =273.15 K) 

Ts,c(z) Temperature inside the snow on top of ice in class c in z meter depth 

Tsur Surface temperature of ice or snow (or water) 

Tw Temperature of the oceanic cover layer 

1n
wT   Water temperature at the previous time step 

l,wT  Temporary water temperature 

i*,u  Friction velocity of surface-dragged ice respective to the atmosphere 

oc*,u  Friction velocity between ice and ocean 

w*,u  Friction velocity of water surfaces respective to the atmosphere 

ui Ice drift speed in x-direction 

uj Ice drift speed in y-direction 

iv


 Ice drift velocity (identical for all ice classes) 

1icl
iv 

 Drift speed of new ice relative to that of “old” ice 

ocv


 Velocity of the geostrophic ocean current 

Z Relative depth in the ice (0 at top; 1 at bottom) 

z0,bot Roughness length at the ice base respective to sea water (z0,bot = 0.1 m) 

z0,oc Roughness length of the water surfrace with respect to the ocean current 
 (z0,oc = 0.1 mm) 

z0,w Roughness length of water surfaces in respect to wind 

i  Albedo of ice surfaces 

s  Albedo of snow surfaces 
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w  Albedo of water surfaces 

t  Length of time step 

x  Drift distance of new ice in one timestep 

a  Emissivity of the atmosphere 

c  Emissivity of clouds ( c =1) 

i j  Strain rate of ice deformation 

sur  Emissivity of the respective surface ( sur = 0.99 for snow, sur =0.97 for 

 ice and water 

  Bulk viscosity of ice deformation 

  Shear viscosity of ice deformation 

  Incidence angle of sun light 

i*,  Scaling temperature over ice 

  von Karman constant (  = 0.4) 

0  Large scale densitiy of air 

i  Density of sea ice ( i =900 kg m-3; sometimes also 910 kg m-3 is used.) 

iic  Volumetric heat capacity of sea ice 

 
fiic  Volumetric heat capacity of fresh ice (  

fiic =1.884∙106 J m-3 K-1) 

s  Density of snow ( s =330 kg m-3 or 450 kg m-3 if at melting point) 

ssc  Volumetric heat capacity of snow 

w  Density of sea water ( w =1026 kg m-3) 

wwc  Volumetric heat capacity of sea water ( wwc = 4.19∙106 J m-3 K-1) 

  Stefan-Bolzmann constant ( = 5.67∙10-8 W m-2 K-4) 
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


 Tensor of internal stresses in the ice due to floe interaction 

i j  Component of the tensor of internal stresses in the ice: Stress acting in 

 j-direction on a plane perpendicular to the i-direction 

a


 Atmospheric drag forces 

f,a


 Form drag part of the atmospheric drag forces 

s,a


 Surface drag part of the atmospheric drag forces 

c  Optical thickness of clouds 

w


 Oceanic drag force 

oc  Deviation angle between geostrophic ocean current and oceanic drag force 

 ( oc = 25°) 

w,m  Stability function for momentum over water surfaces 

s  Total shear deformation of ice 
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