Skip to main content
Log in

DEM assessment of scaling laws capturing the grain size dependence of yielding in granular soils

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Experimental evidences show that the pressure at which granular soils exhibit a sharp increase of their compressibility depends on the size of the particles that constitute their skeleton, thus reflecting the role of micro-scale fracture events on the macroscopic compression of granular systems. In this paper, the distinct element method (DEM) is used to test the validity of scaling laws relating the macroscopic energy at which the grains of a soil matrix crush collectively to the energy at which individual grains subjected to diametrical compression undergo tensile fracture. Oedometric compression tests on uniformly graded specimens with different values of particle size have been simulated by considering two deterministic fracture models and a probabilistic criterion based on the Weibull weakest link theory. It has been shown that the constants of proportionality between grain-scale and assembly-scale crushing thresholds depend considerably on the statistical variability of the particle strength, and that a larger variability exacerbates the departure between the scaling constants pertaining to deterministic and probabilistic models. Nevertheless, for the chosen set of initial conditions and loading paths, the simulations have suggested the applicability of a proportional scaling between the energy stored in the assembly at the moment of yielding and that required to fracture a single grain. In particular, the simulations revealed that the scaling constants relating the microscopic and macroscopic energy thresholds fall within a rather narrow range and do not depend significantly on the grain size. The Breakage Mechanics theory has been used to further explore such connection between length scales, finding a good agreement between the DEM simulations and the yielding stress computed by the theory whenever its parameters were defined on the basis of the scaling constants computed from the DEM model. These results confirm the interplay between the statistical variability of the particle strength and the grain size dependence of the yielding pressure, stressing at the same time the usefulness of energy scaling arguments in incorporating the effect of micro-scale fracture events into continuum models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alonso, E.E., Tapias, M., Gili, J.: Scale effects in rockfill behaviour. Geotech. Lett. 2, 155–160 (2012)

    Article  Google Scholar 

  2. Ben-Nun, O., Einav, I.: The role of self-organization during confined comminution of granular materials. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 368(1910), 231–247 (2010)

    Article  ADS  Google Scholar 

  3. Ben-Nun, O., Einav, I., Tordesillas, A.: Force attractor in confined comminution of granular materials. Phys. Rev. Lett. 104(10), 108001 (2010)

    Article  ADS  Google Scholar 

  4. Buscarnera, G., Einav, I.: The yielding of brittle unsaturated granular soils. Géotechnique 62(2), 147–160 (2012)

    Article  Google Scholar 

  5. Calvetti, F.: Discrete modelling of granular materials and geotechnical problems. Eur. J. Environ. Civ. Eng. 12(7–8), 951–965 (2008)

    Article  Google Scholar 

  6. Cheng, Y.P., Nakata, Y., Bolton, M.D.: Discrete element simulation of crushable soil. Géotechnique 53, 633–641 (2003)

    Article  Google Scholar 

  7. Ciantia, M.O., Arroyo, M., Calvetti, F., Gens, A.: An approach to enhance efficiency of DEM modelling of soils with crushable grains. Géotechnique 65, 91–110 (2015)

    Article  Google Scholar 

  8. Cil, M.B., Alshibli, K.A.: 3D assessment of fracture of sand particles using discrete element method. Geotech. Lett. 2, 161–166 (2012)

    Article  Google Scholar 

  9. Cil, M.B., Alshibli, K.A.: 3D evolution of sand fracture under 1D compression. Géotechnique 64, 351–364 (2014)

    Article  Google Scholar 

  10. Coop, M., Lee, I.: The behaviour of granular soils at elevated stresses. In: Houlsby, G.T., Schofield, A.N. (eds.) Predictive Soil Mechanics, pp. 186–199. Thomas Telford, London (1993)

    Google Scholar 

  11. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  12. De Bakker, J.: Energy use of fine grinding in mineral processing. Metall. Mater. Trans. E 1(1), 8–19 (2014)

    Google Scholar 

  13. De Souza, J.: Compressibility of Sand at High Pressure. Massachusetts Institute of Technology, Massachusetts (1958)

    Google Scholar 

  14. Einav, I.: Breakage mechanics—part I: theory. J. Mech. Phys. Solids 55(6), 1274–1297 (2007a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Einav, I.: Fracture propagation in brittle granular matter. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 463(2087), 3021–3035 (2007b)

    Article  ADS  Google Scholar 

  16. Eliáš, J.: Simulation of railway ballast using crushable polyhedral particles. Powder Technol. 264, 458–465 (2014)

    Article  Google Scholar 

  17. Frossard, E., Hu, W., Dano, C., Hicher, P.-Y.: Rockfill shear strength evaluation: a rational method based on size effects. Géotechnique 62(5), 415–427 (2012)

    Article  Google Scholar 

  18. Griffith, A. A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163–198 (1921)

  19. Hu, W., Dano, C., Hicher, P.Y., Le Touzo, J.Y., Derkx, F., Merliot, E.: Effect of sample size on the behavior of granular materials. Geotech. Test. J. 34(3), 186–197 (2011)

    Google Scholar 

  20. Itasca, C.G.I.: PFC (Particle Flow Code in 2 and 3 Dimensions), Version 5.0 [User’s Manual]. Minneapolis (2014)

  21. Jaeger, J.C.: Failure of rocks under tensile conditions. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 4(2), 219–227 (1967)

    Article  Google Scholar 

  22. Jankovic, A.: Variables affecting the fine grinding of minerals using stirred mills. Miner. Eng. 16(4), 337–345 (2003)

    Article  MathSciNet  Google Scholar 

  23. Lee, D.-M.: The Angles of Friction of Granular Fills. University of Cambridge, Cambridge (1992)

    Google Scholar 

  24. Marsal, R.J.: Large-scale testing of rockfill materials. J. Soil Mech. Found. Div. 93(2), 27–43 (1967)

    Google Scholar 

  25. McDowell, G.R.: On the yielding and plastic compression of sand. Soils Found. 42(1), 139–145 (2002)

    Article  MathSciNet  Google Scholar 

  26. McDowell, G.R., De Bono, J.P.: On the micro mechanics of one-dimensional normal compression. Géotechnique 63(11), 895–908 (2013)

    Article  Google Scholar 

  27. McDowell, G.R., Humphreys, A.: Yielding of granular materials. Granul. Matter 4(1), 1–8 (2002)

    Article  Google Scholar 

  28. Nakata, Y., Hyde, A.F.L., Hyodo, M., Murata, H.: A probabilistic approach to sand particle crushing in the triaxial test. Géotechnique 49(5), 567–583 (1999)

    Article  Google Scholar 

  29. Nakata, Y., Kato, Y., Hyodo, M., Hyde, A.F.L., Murata, H.: One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. Soils Found. 41(2), 39–51 (2001)

    Article  Google Scholar 

  30. Ovalle, C., Frossard, E., Dano, C., Hu, W., Maiolino, S., Hicher, P.Y.: The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mech. 225(8), 2199–2216 (2014)

    Article  MATH  Google Scholar 

  31. Tang, C.A., Xu, X.H., Kou, S.Q., Lindqvist, P.A., Liu, H.Y.: Numerical investigation of particle breakage as applied to mechanical crushing—part I: single-particle breakage. Int. J. Rock Mech. Min. Sci. 38(8), 1147–1162 (2001)

    Article  Google Scholar 

  32. Tavares, L.M.: Optimum routes for particle breakage by impact. Powder Technol. 142(2–3), 81–91 (2004)

    Article  Google Scholar 

  33. Tsoungui, O., Vallet, D., Charmet, J.-C.: Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol. 105(1–3), 190–198 (1999)

    Article  Google Scholar 

  34. Wang, J., Yan, H.: On the role of particle breakage in the shear failure behavior of granular soils by DEM. Int. J. Numer. Anal. Methods Geomech. 37(8), 832–854 (2013)

    Article  Google Scholar 

  35. Wang, P., Bakhtiary, E., Christopher, T., Francis, K., Ecker, S., Arson, C.: Discrete Element modeling and analysis of shielding effects during the crushing of a grain. In: 49th US Rock Mechanics/Geomechanics Symposium of the American Rock Mechanics Association, San Francisco, CA, June 28– July 1, 2015 (2015)

  36. Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. Trans. ASME 18(3), 293–297 (1951)

    MATH  Google Scholar 

  37. Zhang, Y.D., Buscarnera, G.: Grainsize dependence of clastic yielding in unsaturated granular soils. Granul. Matter 16(4), 469–483 (2014)

    Article  Google Scholar 

  38. Zhang, Y.D., Buscarnera, G., Einav, I.: Grain size dependence of yielding in granular soils interpreted using fracture mechanics, breakage mechanics and Weibull statistics. Géotechnique 66(2), 149–160 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the Petroleum Research Fund of the American Chemical Society (Project PRF-55647-ND8) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Buscarnera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

For the linear contact model, the size-dependency of \(E_{pc}\) can be expressed as follows:

$$\begin{aligned} \hbox {Weibull theory }\quad \quad E_{pc}= & {} \overline{E_{pc,0} } \left( {\frac{d}{d_0 }} \right) ^{-6/\mathrm w} \end{aligned}$$
(17a)
$$\begin{aligned} \hbox {Centre crack }\quad \quad E_{pc}= & {} \overline{E_{pc,0} } \left( {\frac{d}{d_0 }} \right) ^{-1} \end{aligned}$$
(17b)
$$\begin{aligned} \hbox {Contact crack }\quad \quad E_{pc}= & {} \overline{E_{pc,0} } \left( {\frac{d}{d_0 }} \right) ^{-3} \end{aligned}$$
(17c)

where \(\overline{E_{pc,0} }= 2.4 \times 10^5\,\hbox {J}/\hbox {m}^{3}\) is the value of specific energy threshold at particle crushing used for the reference grain size \(d_0 = 2.0\,\hbox {mm}\). Such value is a direct outcome of the particle strength and contact stiffness parameters chosen for the DEM simulations discussed in the previous sections.

Similarly, the following relations hold for the case of Hertzian contact model:

$$\begin{aligned} \hbox {Weibull theory }\quad \quad E_{pc}= & {} \overline{E_{pc,0} } \left( {\frac{d}{d_0 }} \right) ^{-5/\mathrm w} \end{aligned}$$
(18a)
$$\begin{aligned} \hbox {Centre crack }\quad \quad E_{pc}= & {} \overline{E_{pc,0} } \left( {\frac{d}{d_0 }} \right) ^{-0.8} \end{aligned}$$
(18b)
$$\begin{aligned} \hbox {Contact crack }\quad \quad E_{pc}= & {} \overline{E_{pc,0} } \left( {\frac{d}{d_0 }} \right) ^{-2.5} \end{aligned}$$
(18c)

where \(\overline{E_{pc,0} }=2.6 \times 10^5\,\hbox {J}/\hbox {m}^{3}\) is the value used for particles with a reference grain size \(d_0 = 2.0\,\hbox {mm}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cil, M.B., Buscarnera, G. DEM assessment of scaling laws capturing the grain size dependence of yielding in granular soils. Granular Matter 18, 36 (2016). https://doi.org/10.1007/s10035-016-0638-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0638-9

Keywords

Navigation