Skip to main content
Log in

Ductile failure behavior of polycrystalline Al 6061-T6

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Ductile failure in polycrystalline aluminum alloys is explored through uniaxial tension and notched tension experiments. Specimens obtained through tests interrupted at various stages of deformation and failure evolution are examined through microscopy to discern the mechanisms of failure and to evaluate the local strain evolution quantitatively. Fractographic observations are used to identify the onset and evolution of damage processes during deformation and failure of these aluminum alloys. Local strain levels are estimated from measurements of the change in grain size with deformation and used to indicate that the local values of failure strains are likely to be much larger than that estimated from strains averaged over characteristic specimen dimensions such as the gage length or the specimen diameter. Lower bound estimates of the failure strain at moderate triaxiliaties are obtained from the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babout L, Brechet Y, Maire E, Fougères R (2004) On the competition between particle fracture and particle decohesion in metal matrix composites. Acta Mater 52: 4517–4525

    Article  CAS  Google Scholar 

  • Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi S-H, Chu E (2003) Plane stress function for aluminum alloy sheets—part I: theory. Int J Plast 19: 1297–1319

    Article  CAS  Google Scholar 

  • Benseddiq N, Imad A (2008) A ductile fracture analysis using a local damage model. Int J Pressure Vessels Piping 85: 219–227

    Article  CAS  Google Scholar 

  • Benzerga AA, Leblond J-B (2010) Ductile fracture by void growth to coalescence. Adv Appl Mech 44: 169–305

    Article  Google Scholar 

  • Bernauer G, Brocks W (2002) Micro-mechanical modelling of ductile damage and tearing—results of a European numerical round robin. Fatigue Fract Eng Mater Struct 25: 363–384

    Article  Google Scholar 

  • Besnard G, Hild F, Roux S (2006) ‘Finite-element’ displacement fields analysis from digital images: application to Portevin–le châtelier bands. Exp Mech 46: 789–803

    Article  Google Scholar 

  • Bridgman PW (1964) Studies in large plastic flow and fracture. Harvard University Press, Cambridge

    Google Scholar 

  • Brocks W, Sun DZ, Honig A (1996) Verification of micromechanical models for ductile fracture by cell model calculations. Comput Mater Sci 7: 235–241

    Article  CAS  Google Scholar 

  • Chu CC, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102: 249–256

    Article  Google Scholar 

  • Decamp K, Bauvineau L, Besson J, Pineau A (1997) Size and geometry effects on ductile rupture of notched bars in a C–Mn steel. Experiments and modelling. Int J Fract 88: 1–18

    Article  CAS  Google Scholar 

  • Dong MJ, Berdin C, Beranger AS, Prioul C (1996) Damage effect in the fracture toughness of nodular cast iron. In: First European mechanics of materials conference on local approach to fracture, Fontainebleau, September

  • Ghahremaninezhad A, Ravi-Chandar K (2011) Ductile failure of polycrystalline OFHC copper. Int J Solids Struct 48: 3299–3311

    Article  CAS  Google Scholar 

  • Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99: 2–15

    Article  Google Scholar 

  • Hancock JW, Mackenzie AC (1976) On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J Mech Phys Solids 24: 147–169

    Article  Google Scholar 

  • Hutchinson JW, Tvergaard V (1980) Surface instabilities on statically strained plastic solids. Int J Mech Sci 22: 339–354

    Article  Google Scholar 

  • Johnson GR, Cook WH (1985) Fracture characteristics of three metals subject to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21: 31–48

    Article  Google Scholar 

  • Korkolis YP, Kyriakides S (2008a) Inflation and burst of anisotropic aluminum tubes for hydroforming applications. Int J Plast 24: 509–543

    Article  CAS  Google Scholar 

  • Korkolis YP, Kyriakides S (2008b) Inflation and burst of anisotropic aluminum tubes, part II: an advanced yield function including deformation-induced anisotropy. Int J Plast 24: 1625–1637

    Article  CAS  Google Scholar 

  • Lassance D, Fabregue D, Delannay F, Pardoen T (2007) Micromechanics of room and high temperature fracture in 6xxx Al alloys. Prog Mater Sci 52: 62–129

    Article  CAS  Google Scholar 

  • Lee BJ, Mear ME (1999) Stress concentration induced by an elastic spheroidal particle in a plastically deforming solid. J Mech Phys Solids 47: 1301–1336

    Article  Google Scholar 

  • Lesuer DR, Kay GJ, LeBlanc MM (2001) Modeling large strain, high-rate deformation in metals. Modeling the performance of engineering structural materials II. In: Proceedings of a symposium sponsored by the SMD of TMS, Indianapolis, IN, pp 75–86

  • McClintock FA (1968) A Criterion for ductile fracture by the growth of holes. J Appl Mech 35: 363–371

    Article  Google Scholar 

  • Nielsen KL (2008) Ductile damage development in friction stir welded aluminum (AA2024) joints. Eng Fract Mech 75: 2795–2811

    Article  Google Scholar 

  • Norris DM Jr, Moran B, Scudder JK, Quinones DF (1978) A computer simulation of the tension test. J Mech Phys Solids 26: 1–19

    Article  Google Scholar 

  • Pardoen T, Doghri I, Delannay F (1998) Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars. Acta Mater 46: 541–552

    Article  CAS  Google Scholar 

  • Puttick KE (1959) Ductile fracture in metals. Philos Mag 4: 954–969

    Article  Google Scholar 

  • Réthoré J, Hild F, Roux S (2007) Extended digital image correlation with crack shape optimization. Int J Numer Methods Eng 73: 248–272

    Article  Google Scholar 

  • Rice J, Tracy D (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17: 201–217

    Article  Google Scholar 

  • Simar A, Nielsen KL, de Meester B, Tvergaard V, Pardoen T (2010) Micro-mechanical modelling of ductile failure in 6005A aluminium using a physics based strain hardening law including stage IV. Eng Fract Mech 77: 2491–2503

    Article  Google Scholar 

  • Steglich D, Brocks W (1998) Micromechanical modelling of damage and fracture of ductile materials. Fatigue Fract Eng Mater Struct 21: 1175–1188

    CAS  Google Scholar 

  • Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1: 133–139

    Article  Google Scholar 

  • Tipper CF (1949) The fracture of metals. Metallurgia 39: 133–137

    Google Scholar 

  • Tvergaard V (1990) Material failure by void growth to coalescence. Adv Appl Mech 27: 83–151

    Article  Google Scholar 

  • Weck E, Leistner E (1996) Metallographische Anleitung zum Farbätzen nach dem Tauchverfahren Teil III: Nichteisenmetalle, Hartmetalle und Eisenwerkstoffe, Nickel-Basis- und Kobalt-Basis-Legierungen, Series of Specialist Books on Welding Technology Band 77/III

  • Worswick MJ, Chen ZT, Pilkey AK, Llyod D, Court S (2001) Damage characterization and damage percolation modelingin aluminum alloy sheet. Acta Mater 49: 2791–2803

    Article  CAS  Google Scholar 

  • Zhang ZL (1996) A sensitivity analysis of material parameters for the Gurson constitutive model. Fatigue Fract Eng Mater Struct 19: 561–570

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ravi-Chandar.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghahremaninezhad, A., Ravi-Chandar, K. Ductile failure behavior of polycrystalline Al 6061-T6. Int J Fract 174, 177–202 (2012). https://doi.org/10.1007/s10704-012-9689-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-012-9689-z

Keywords

Navigation