
Received July 7, 2019, accepted July 21, 2019, date of publication July 26, 2019, date of current version August 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2931464

Hierarchical Schema Representation
for Text-to-SQL Parsing With
Decomposing Decoding
MEINA SONG, (Member, IEEE), ZECHENG ZHAN , AND HAIHONG E.
School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Meina Song (mnsong@bupt.edu.cn)

This work was supported by the National Key Research and Development Program of China under Grant 2018YFB1403003.

ABSTRACT Most of existing studies on parsing natural language (NL) for constructing structured query
language (SQL) do not consider the complex structure of database schema and the gap between NL and
SQL query. In this paper, we propose a schema-aware neural network with decomposing architecture,
namely HSRNet, which aims to address the complex and cross-domain Text-to-SQL generation task. The
HSRNet models the relationship of the database schema with a hierarchical schema graph and employs a
graph network to encode the information into sentence representation. Instead of end-to-end generation, the
HSRNet decomposes the generation process into three phases. Given an input question and schema, we first
choose the column candidates and generate the sketch grammar of the SQL query. Then, a detail completion
module fills the details based on the column candidates and the corresponding sketch. We demonstrate
the effectiveness of our hierarchical schema representation by incorporating the information into different
baselines. We further show that the decomposing architecture significantly improves the performance of our
model. Evaluation of Spider benchmark shows that the hierarchical schema representation and decomposing
architecture improves our parser result by 14.5% and 4.3% respectively.

INDEX TERMS Semantic parsing, SQL generation, deep learning, neural network, graph encoder, natural
language process.

I. INTRODUCTION
Text-to-SQL, i.e., synthesizing SQL from natural language
questions and query relational databases, has recently
received renewed interest. Evaluations on public Text-to-SQL
benchmarks, e.g., ATIS, GeoQuery and WikiSQL, have
demonstrated the effectiveness of the existing SQL
synthesizing approaches (beyond 85% exact matching
accuracy) [1]–[6]. However, these approaches do not perform
well on a newly released Text-to-SQL benchmark called, Spi-
der [8]. Specifically, the recent neural approach [9] achieves
27% exact matching accuracy on Spider, which is much
lower than that on other benchmarks. Unlike the ATIS, Geo-
Query and Restaurants benchmarks, Spider focuses on the
cross-domain settings assuming no database overlaps across
the training and test sets. In comparison to WikiSQL [1],
Spider contains databases with multiple tables and is far
more complex in terms of the compositionality of SQL

The associate editor coordinating the review of this manuscript and
approving it for publication was Shuping He.

FIGURE 1. Example input questions x , SQL queries ysql and
corresponding database schema s. The first example shows the complex
of schema and the others illustrate the complexity of labeled SQL
components.

components and input question. In other words, Spider is
more representative of the real-world synthesizing settings.

Spider benchmark brings new challenges leading to unsat-
isfactory performances of the existing parsing approaches, as
shown in Fig. 1. Firstly, previous studies either had simple

103706 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-0685-7825

M. Song et al.: Hierarchical Schema Representation for Text-to-SQL Parsing With Decomposing Decoding

FIGURE 2. The schema graph for the question ‘‘ Show the stadium name and max area of concerts in each stadium.’’. The blue edge indicates the
word order features of the question. The relation IS_A in the yellow edge represents the schema type features, while the relation belongs and
Relation_linking represent the schema relation features.

database schema which contains only one table, or involved
the same database at both training and test time. Thus, under-
standing the database schema structure seems less important.
However, about 27% mistakes of SyntaxSQL on Spider
are caused by the mismatch of complicated relationship
across tables and columns. Consequently, understanding the
database schema is important for Text-to-SQL on the new
released benchmark. Given a complex database schema that
the model has never seen, it is still non-trivial to achieve
this goal. We regard this challenge as schema comprehension
problem. Second, given a cross-domain database schema,
predicting column names that are partially or implicitly men-
tioned in NL is challenging. However, the state-of-the-art
neural approach surprisingly still struggles with predicting
those columns that appears in NL with exactly the same
surface form, which indicates that it is still hard for existing
approaches to choose corresponding columns from complex
database schema. Thirdly, the complexity of SQL compo-
nents makes it challenging to generate the correct SQL query.
For example, SyntaxSQL only achieve 17% in the IUEN
(Except, Union Intersect, Nested SQL) causes. We regard
these challenges as column prediction problem and SQL
generation problem, respectively.
Considering the three main challenges above, we first

propose a new schema-aware graph, that serves as a hier-
archical structure representation, aiming to model the rela-
tionships between NL question and database schema. Such
insight is partly inspired by the success of using syntactic
graph information [10] in semantic parsing tasks. We further
employ a relational graph encoder to integrate the structure
information of schema graph into NL representation.

For the other two challenges, instead of end-to-end syn-
thesizing a SQL query from a question, we propose a
decomposed framework, which decomposes the process of
decoding SQL query into three stages. The first column
prediction module focuses on predicting a set of candi-
dates from the given database schema and question. Then,
the sketch decoder generate a sketch of the SQL query
omitting low-level details, e.g., the aggregation, column and
table name in our task. Specifically, the sketch guides the
generation process, whereas the column prediction module
constrains the search space based on the database schema.
Then, the detail completion module fills in missing details

based on the NL input and the sketch generated from the
sketch decoder and the candidates predicted by the column
prediction module.

On the challenging Spider [8] benchmark, HSRNet
achieves an 45.6% exact matching accuracy, significantly
outperforming previous approaches. Further analysis and
experimental study demonstrate the effectiveness of HSRNet.

In summary, this paper makes the following three main
contributions. (1) We propose a new hierarchical schema
representation to facilitate the schema comprehension and
model the relationship between question and schema. (2) We
introduce a decomposed framework for the Text-to-SQL task,
which aims to mitigate the challenge on predicting columns
and complex SQL components. (3) We propose a neural
approach model for synthesizing SQL, taking NL question
and database schema as input. This model significantly out-
performs various strong baselines on the Spider benchmark.

II. APPROACH
In this section, we present our approach HSRNet in details.
First, we introduce the SQL-specific grammar that we used to
guide the decoding process. Then, we describe the hierarchi-
cal schema representation and the decomposed framework.

A. METHOD OVERVIEW
Given an NL specification x = x1 · · · x|x|, our task is to
generate an SQL query ysql = ysql1 · · · ysql|ysql | . To take
the advantage of the well-defined structure of SQL queries,
we design a SQL-specific grammar to help guiding the
decoder process and constrain the search space. Inspired
by many existing researches on grammar model [11], [12],
we design it to be a tree-structured grammar, as shown
in Fig. 3. The grammar strictly follow the abstract syntax
tree (AST) of the SQL grammar, except for the From cause,
which will be generated based on the selected columns. To
generate the grammar yg from the SQL query ysql , we first ini-
tialize a node Stmt and construct its sub-trees according to the
grammar and corresponding components on the SQL query.
Then for eachColumn node, we attach its detail modules, e.g.,
the node agg, column and table, where can be identified by
the aggregation and column part of the SQL query. Fig. 3
shows an example of the grammar.

VOLUME 7, 2019 103707

M. Song et al.: Hierarchical Schema Representation for Text-to-SQL Parsing With Decomposing Decoding

FIGURE 3. Right The SQL-specific grammar for spider. The cardinality (optional ? and sequential ∗) denotes the number of corresponding symbol.
The blue box denotes the sketch part of grammar while the red box denotes the detail part. Left An illustrative example of query ‘‘ Show the
stadium name and max area of concerts in each stadium.’’ and corresponding SQL ‘‘ SELECT T2.name, max(area) FROM concert AS T1 JOIN stadium
AS T2 ON T1.stadium_id = T2.stadium_id GROUP BY T1.stadium_id ’’.

The SQL query can be transformed into a sequence of the
grammar, which changes the task to generate a sequence of
SQL-specific grammar yg = yg1 · · · yg|yg| .

B. HIERARCHICAL SCHEMA GRAPH
To represent the relationship between question and schema,
we define three types of hierarchical relational features and
incorporate them into NL representation. For each input ques-
tion and schema, we build a schema graph, as shown in Fig. 2.
We describe the relational features below.

1) SCHEMA TYPE FEATURES
To enable our model for generalizing unseen databases, the
schema type features recognizes the schema type of the word
mentioned in NL question. Taking Fig.2 as an example,
the word name is explicitly annotated as the ‘‘Column’’ type,
which is critical for our model to predict the correspond-
ing column. As a whole, we define six entity types that
may be mentioned in NL question, namely, Table, Column,
Value, Aggregation, Comparative, and Superlative, where
Value stands for a cell value in a database and Aggregation
represents the aggregation keywords such as Sum, Max and
Min.

2) SCHEMA RELATION FEATURES
Besides the type information, the relationship between
columns and tables and among the tables with foreign keys
should also be taken into account when understanding the
schema structure. The relationship between columns and
tables help choosing the table when a column is determined,
while the relations among tables help inferring the table in
the conditional join of From cause. Motivated by this obser-
vation, we model these relations explicitly and define two
specific types. Type belongs will be tagged to a column and

table if the column is part of the table. Type Relation Linking
indicates that the tables are connected by private keys.

3) WORD ORDER FEATURES
Followed a previous work [10], we also add the word order
features to incorporate the information into word sequence.
Each word is connected to its neighboring words. This type
of features incorporates the contextual information of NL
question.

C. DECOMPOSED FRAMEWORK
Previous studies generate SQL queries directly from NL
question and database schema but still achieving an unsat-
isfactory performance on the Spider benchmark. Through
the spider data study, We find that it is challenging to
correctly generate SQL components and columns simultane-
ously. Motivated by this observation, we propose to factorize
the generation process. Inspired by the previous work [5],
we decompose the generation process into three following
stages that can be formulated as:

p(yg|x, s) = p(yg|x, a, s, c)p(a|x, s, c)p(c|x, s)

= p(yg|x, a, s, c)p(a|x, s)p(c|x, s), (1)

where a represents the sketch part of grammar yg. The sym-
bol c denotes the predicted columns from schema s. We
assume that the sketch part is independent from the predicted
columns c.

Thus our model comprises three modules, a Column Pre-
dictionmodule that chooses columns from the given database
schema, a Sketch Decoder module that generates the sketch
grammar of the SQL defined in Figure 3 and aDetail Comple-
tion module that selects the corresponding aggregation, col-
umn and table from candidates based on the sketch grammar
predicted in sketch decoder module. The detailed description

103708 VOLUME 7, 2019

M. Song et al.: Hierarchical Schema Representation for Text-to-SQL Parsing With Decomposing Decoding

of factorizing these generation processes in our model are
provided in the Section III.

III. MODEL
In this section, we present our neural approach HSRNet that
takes an NL question and a database schema as inputs and
outputs a SQL-specific grammar yg of the corresponding SQL
query. Basically, HSRNet follows the encoder-decoder archi-
tecture using a recurrent neural network. The input NL ques-
tion and database schema are first encoded as vectors that are
then decoded into the SQL-specific grammar yg. To address
the challenge in schema comprehension problem, we first
propose to build a hierarchical graph with database schema
and NL question. Then we use a relational graph encoder to
extract the structure information of database schema into the
NL representation. To mitigate the challenge on predicting
column from complex schema and generating complicate
SQL components, HSRNet decomposes the SQL decoding
process into three modules, e.g., column prediction, sketch
decoder and detail completion module. Further details are
provided below.

A. ENCODER
The encoder takes an NL specification x and a database
schema s as inputs. The encoder first constructs an embedding
for each word in x and average the embedding of words in the
span level to get the embedding ex. For each column and table
name, the encoder constructs its embedding et by taking the
average embedding of the words constituting the name.

1) SENTENCE ENCODER
To obtain the sentence feature of input x, the encoder
runs a bi-directional long short-term memory network [13]
(BI-LSTM) over the spans. We concatenate the output hidden
states of the forward and backward LSTMs to get the NL
question representation Lx:

−→
L t
x = fLSTM

(
−→
L t−1
x , etx

)
, t = 1, · · · , |x|

←−
L t
x = fLSTM

(
←−
L t−1
x , etx

)
, t = 1, · · · , |x|

Lx =
[
−→
L x ,
←−
L x

]
. (2)

2) SCHEMA ENCODER
Then, the encoder further considers the structure informa-
tion of the schema and applies a relational graph encoder
to the schema graph Es mentioned in Section II-B. Inspired
by the successful application of graph convolutional net-
works (GCN) on knowledge graphs [14], [15], we employ
a relational GCN to encode our schema features. Given the
nodes and edges (

(
ni, e, nj

)
∈ Es)

g(l+1)i = σ

∑
r∈R

∑
j∈N r

i

W (l)
r g(l)j + b

(l)

 , (3)

FIGURE 4. The decoder is decomposed into sketch decoder (blue box),
column prediction (green box) and detail completion (pink box). The
detail completion module fills the sketch of SQL and chooses the
columns from column prediction module.

where g(l)i denotes the hidden state of the node ni in the layer
l, with g0i being initialized by the pre-trained embedding. R
and N r

i denote the relation and the set of neighbors under
the relation r of node ni respectively. W and b are trainable
parameters, and σ is the activation function.
We denote the output hidden states of the schema encoder

asGx. The schema-aware representationHx of input question
x is the concatenation of the schema encoding and word
encoding:

Hx = [Gx,Lx] . (4)

To further address the column prediction problem,
we incorporate an attention mechanism to let the represen-
tation of columns and tables be aware of the query. Taking
the i-th column representation as an example, the enhanced
representation êic for a column is calculated as follows:

gik =
(eic)

Tekx
||eic||||ekx ||

cic =
L∑
k=1

gike
k
x

êic = eic + c
i
c, (5)

We denote the enhanced embedding of columns and tables as
Et and Ec, respectively.

B. DECODER
To mitigate the challenge on predicting column and pre-
dicting SQL components simultaneously, We decompose our
decoder into three stages, as shown in Fig. 4. Given the
representation vector Hx of NL question and Et and Ec
of schema, the column prediction module learns to choose
corresponding columns from complex database schema. The
sketch decoder and detail completion modules are a variant
of the grammar model [11], which uses the LSTM to model
the generation process of a SQL query into sequential appli-
cations of actions. We defer the detailed descriptions below.

VOLUME 7, 2019 103709

M. Song et al.: Hierarchical Schema Representation for Text-to-SQL Parsing With Decomposing Decoding

1) COLUMN PREDICTION
The possibility of the t-th column in the schema is computed
by the context vector ctc and the enhanced embedding of
column êtc:

p(colt |x, s) = sigmoid
(
wc · ctc + we · êtc

)
, (6)

where wc and wc are trainable parameters in our model.
The detail completion module chooses columns from top-k

candidates sorted by the possibility p(col|x, s) and the k being
the number of columns inferred from the sketch part that
predicted by sketch decoder.

2) SKETCH DECODER
The sketch decoder uses the LSTM to model the generation
process of the sketch grammar. We define this sequential
applications of actions as ApplyRule, which is responsible
for applying a production rule to the current derivation tree.
Each action step corresponds to a time step in the LSTM. The
probability of generating a sketch a is formalized as follows:

p(a|x, s, c) = p(a|x, s)

=

T∏
i=1

p(ai=ApplyRule[r]|x, s, a<i), (7)

where ai denotes an action taken at time step i and a<i is the
sequence of actions before step i. The ApplyRule[r] stands
the decoder chooses the r-th ApplyRule action in the step i.
The probability of selecting a rule r is calculated as follows:

hi = LSTM([ai−1;ni−1; vi−1],hi−1)

wi = softmax(HxWahi)

ci = wT
i Hx

vi = tanh(W v[hi; ci]+ bv)

p(ai = ApplyRule[r]|x, s, a<i) ∝

exp(W r (tanh(Wpvi + bp))), (8)

where ai−1 is the action embedding of previous step, ni−1 is
the embedding of the type of frontier node and hi is the hidden
states of LSTM. h0 is the final hidden states of the encoder
BI-LSTM.Wa,W v,Wp,W r , bv and bp are trainable param-
eters. We assign each product rule an embedding. When the
action is ApplyRule, we take the embedding of the production
rule as the action embedding.

3) DETAIL COMPLETION
Similar to sketch decoder, the detail completion module uses
the LSTM to generate the sequential actions of selecting
aggregation, columns or tables to fill in the missing details in
the sketch. Thus we define three types of actions, i.e., SelAgg,
SelectCol and SetTab to represent the generation:

p(yg|x, a, s, c) =
Tc∏
i=1

[λci p(ai=SelCol[c]|x, s, c, a<i)

+(λti)p(ai = SelTab[t]|x, s, c, a<i)

+(λai)p(ai=SelAgg[t]|x, s, c, a<i)], (9)

where λi ∈ {λci , λ
t
i , λ

a
i } is 1 when the i-th action is corre-

sponding type, otherwise λi = 0. The symbol c denotes the
column set predicted by the column prediction module. We
leverage pointer network [16] to implement the SelectAgg,
SelectCol and SelectTab function.

C. TRAINING AND INFERENCE
First we minimize the following log-likelihood loss of
column prediction module:

loss(col, x, s) = −
C∑
j=1

(
yj log p

(
colj|x, s

)
+
(
1− yj

)
log

(
1− p

(
colj|x, s

)))
, (10)

where yj indicates the ground true label of the j-th column.
The model is optimized by the multi-task of maximizing

the log-likelihood of the ground truth action sequences and
minimizing the loss of column prediction module:

max
∑

(x,s,yg)∈D
(log p(yg|a, x, s)+ λ log p(a|x, s)

)
−αloss(col, x, s), (11)

where D represents training pairs of SQL queries. λ
and α represents the scale between log p(yg|a, x, s) and
log p(a|x, s), which all set to 1 in our experiment.
At inference time, we first obtain a sketch a∗ via

argmax p(a|x, s) and column set c predicted from the database
schema. Then, generate a sequence of SQL-grammar y∗g via
argmax p(yg|x, s, c, a) from the sketch and column set pre-
dicted above. Instead of iterating over all candidates, we use
greedy search to approximate the best result.

IV. EXPERIMENT
In this section, we evaluate the effectiveness of our model
by comparing HSRNet to various baseline approaches.
We also conduct a thorough ablation study and an error
analysis on our model. Code for HSRNet is available at
https://github.com/NoviceCookie/HSRNet

A. EXPERIMENT SETUP
1) DATASET
We conduct our experiments on Spider [8], a new large-scale
human-annotated and cross-domain Text-to-SQL dataset
with complex SQL queries.We use the database split, as men-
tioned in previous setting [9], where 206 databases are split
into 146 training, 20 development and 40 test. In total, there
are 8625, 1034, 2000 examples for training, development and
test. The SQL queries are divided into 4 hardness levels: easy,
medium, hard and extra hard based on the number of SQL
components. We pre-process examples to remove stop words
and lemma words in the input question. We evaluate HSRNet
and other approaches using the SQL Exact Matching and
Component Matching proposed by Spider [8]. The test set
of Spider is unreleased, and our model are submitted to the
owner once for getting official scores on the hidden test set.

103710 VOLUME 7, 2019

M. Song et al.: Hierarchical Schema Representation for Text-to-SQL Parsing With Decomposing Decoding

TABLE 1. Accuracy of exact matching score on SQL queries of HRSNet and other baselines on development set and test set.

2) BASELINES
To establish the baseline, we also evaluate a basic sequence-
to-sequence model [17] and explore it augmented with neural
attention mechanism [18] and copying mechanism [19].
We also include SQLNet [2] which employs a sketch-based
method and synthesize SQL as a slot-filling task based on the
sketch, and TypeSQL [4] improved upon SQLNet by utilizing
types information. In addition, we explore the prior state-
of-the-art method SyntaxSQLNet [9], which employs a SQL
specific syntax tree-based decoder with SQL generation path
history and table-aware column attention encoders.

3) IMPLEMENTATION DETAILS
We implement HSRNet and the baseline approaches in
PyTorch [20]. Dimensions of word embedding and hidden
vectors are set to 300. Word embedding are initialized by
Glove [21], shared by sentence tokens and tokens in database
schema, and are fixed during training. The dimensions of
schema encoder is set to 300 and initialized by the Glove
embedding and the depth of our layers is set to 2. The
dimension of action embedding and node type embedding are
set to 128 and 64 respectively. The dropout rate is 0.3. We
use Adam [22] with default hyperparameters for optimization
and the training loss scale λ and α is set to 1 respectively.
Batch size is set to 64.

B. EXPERIMENT RESULT
1) COMPARISON WITH BASELINE
Table 1 presents the accuracy of exact matching score of
HSRNet and various baselines on the development set and
test set. As can be noticed from Table 1, HSRNet clearly out-
performs various baselines. It achieves 45.6% exact matching
score on all SQL queries, and registers 25.9% absolute
improvements over SyntaxSQLNET in accuracy.

2) EXPERIMENT ON SCHEMA ENCODING
To better demonstrate the effectiveness of encoding struc-
ture information into neural model, we alter the baseline
approaches with the schema encoder. As shown in Table 2,
there are at least 6.2% and up to 8.6% absolute improvements
on accuracy of exact matching score on development set. We
conjecture that the type information of TypeSQL overlaps
the schema type features of hierarchical schema graph so the
improvement is not significant compared to other approaches.

We further explore the effectiveness of type and relation
features. Fig. 5 and Fig. 6 show the cosine similarity of

TABLE 2. Accuracy of exact matching on development set. The header
‘SQL’ means that the approach are learned to generate SQL, which the
header ‘SemQL’ indicates that they are learned to generate SQL query.

FIGURE 5. The cosine similarity of schema encoder output vector Gx and
the embedding of entity types of schema type features.

schema encoder output vectorGx and the embedding of corre-
sponding types. After incorporating the schema type features,
the output vector Gx captures the alignment of schema types,
as shown in Fig. 5. For example, the output vector of schema
encoder of word ‘concert‘ is most similar to the type Table.
Fig. 6 demonstrates the effectiveness of the schema relation
features. The column ‘name‘ is belong to the table ‘stadium‘
and the output vector Gname is similar to the embedding of
table ‘stadium‘.

Fig. 7 presents the accuracy of exact matching score of
using different schema features by the hardness level. It is
clear that using on all combinations of features is significantly
outperforms the basemodel in all four hardness levels, and the
gain of the schema encoding mainly comes from the relation
features and type features. The relation features empower the
model on predicting complex schema database and improve
the result on extra hard level. The type features help model
better understand corresponding entity types in the question.

VOLUME 7, 2019 103711

M. Song et al.: Hierarchical Schema Representation for Text-to-SQL Parsing With Decomposing Decoding

FIGURE 6. The cosine similarity of schema encoder output vector Gx and
the embedding of table names.

FIGURE 7. Accuracy of exact matching score of different schema features
on development set by hardness level.

The SQL query that belongs to Hard and Extra Hard level is
much more complicated in terms of the structure of database
schema, and the gain from these harness indicates that the
schema graph representation mainly addresses the schema
comprehension problem.

Fig. 8 presents the exact matching accuracy of model with
and without schema encoding as a function of the number of
tables in the SQL query. As shown in figure, the performance
increases when the database has more mentioned tables. The
model without schema encoding lacks of the comprehen-
sion on database schema while the model incorporated with
schema features performs better than base model. The perfor-
mance of with and without schema encoding both degrade to
nearly 10% when the number of tables comes to 4. One cause
may be the difficulty of choosing correct tables in the From
cause from many candidates in a complex database schema,
which is still changeling for the current approach.

FIGURE 8. Accuracy of exact matching score as a function of the number
of tables in SQL query.

TABLE 3. F1 scores of component matching of ablation study. Base model
means that we does not perform schema encoder(SE) and decompose
framework on column prediction(CP) and sketch generation(SeG).

C. ABLATION STUDY
To further understand the effectiveness of HSRNet, we ablate
our approach to analyze the contribution of each technique on
development set.

‘‘+SE’’ adds the schema encoder into the model, which
focuses on modeling the database schema structure informa-
tion. The performance improves significantly when incor-
porating the information of the database schema structure.
The gain mainly comes from the Where cause, which needs
the schema information to infer the column and the compo-
nents of subquery. The schema type features assigns words
on question with its corresponding type, which could help
model identify some keywords on SQL quires and improve
the performance on the Select cause. ‘‘+CP’’ and ‘‘+SeG’’
adds the column prediction and sketch generation module
respectively. As Table. 3 shows, removing the sketch decoder
harms the performance since the decoder loses access to
additional high-level information of the generated sequence.
The column prediction module, on the other hands, mitigates
the difficulty of choosing right columns from the complex
database schema. The result of our ablation study demon-
strates the effectiveness of the proposed Text-to-SQL model.

D. ERROR ANALYSIS
To understand the sources of errors, we analyze 502 cases
which are failed in exact matching synthesized by our model
from development set. 47.3% of these errors are due to
the mismatch of column and most of them are caused by

103712 VOLUME 7, 2019

M. Song et al.: Hierarchical Schema Representation for Text-to-SQL Parsing With Decomposing Decoding

the conditional value. Although the type relation features of
schema graph can alleviate the column matching problem
to some extends, it is still hard for model to understand the
conditional value without access to database content. A good
representative example is ‘Count the number of flights into
ATO‘, wherein the conditional value ‘ATO‘ is belong to
column ‘SourceAirport‘. To address the cases where only the
value of a column is mentioned, as the study points out [23],
the content of a database is required.

23.9% of them fail to predict correct SQL sketch, which
lead to an accuracy lower than 40% in the extra hard level.
There are still 21 cases failed in predicting self-join in the
From cause. Besides, the inconsistent of GroupBy label also
causes 15 cases failed. There are some other errors remained
in SQL diversity and label error cases.

V. RELATED WORK
Since 1970s, the task of Text-to-SQL or NLIDB (Natural
Language Interface to Database) has received a wide range of
significant attention [24]–[27]. The early methods proposed
in the community are hand-crafted to a specific database
and tend to involve hand features [24], [28], [29], making it
challenging to generalize to new domains. These systems has
shown within a limited subset of English can be translated
into a certain subset of logical forms, such as programming
language and SQL query. These works establish a good foun-
dation of NLIDB. To reuse the NLIDB systems for multi-
ple databases, later works focus on the generalization and
effectiveness of these systems [30]–[32]. These systems are
adapted to interface with new databases by users who are
not experts in natural-language processing. However, the pro-
posed rule-based systems still have poor performance on
unseen query and new database, which require more semantic
understanding of input question.

Recent years have seen a great deal of interest in
neural network-based methods to address the semantic
parsing task [2], [4], [6], [7], [9], [33]–[35]. Among them,
sketch-based methods and generated-based methods have
been the two most successful approaches. The sketch-based
approaches predict the content for each slot based on the
pre-designed sketch so that it changes the generation to
slot-filling task. The generated-based methods can generate
nested and complex queries because of the general decoding
process. But the complex of enormous search space prohibits
the generated-based methods achieving satisfactory perfor-
mance. With the release of large-scale Text-to-SQL bench-
marks such asWikiSQL [1] and Spider [8], there is a renewed
interest in the NLIDB. State-of-the-art approaches on Wik-
iSQL have achieved accuracy beyond 85%. However, the best
results on Spider benchmark which targets a more real-world
setting, are still far from being satisfactory. Inspired by a
recent study onWikiSQL about the challenges towards 100%
condition accuracy [23], we conduct an analysis on Spider
benchmark and design our approach for the complex and
cross-domain Text-to-SQL task.

Inspired by recent studies on Graph-to-Sequence model
[10], [42], we focus on the information between question and
database schema and further design a hierarchical schema
representation. Unlike previous works on graph represen-
tation which focus on modeling the syntactic information
in semantic parsing, our approach aims to incorporate the
schema information into the text representation. Our schema
encoder is closely related to a number of works in the area
of neural networks on graphs. It is primarily motivated as an
adaption of previous works on graph convolutional networks
(GCN) [39]–[41]. Similarly to the RGCN [14], we employ a
Relational graph encoder to model the graph structure with
different relationship types.

Another lines of research that are related to our work is
the structured neural decoders [11], [36]–[38]. The decoder
of HSRNet is based on the grammar model [11]. We extend
the grammar model to accommodate the characteristics of
SQL query.

VI. CONCLUSION
In this paper, we propose a novel neural semantic parsing
model called HSRNet for Text-to-SQL task and validate its
effectiveness on the complex and cross-domain benchmark,
Spider. HSRNet encodes the structure of the database schema
with graph convolution network and incorporate the infor-
mation into sentence representation. This additional schema
features have improved at least 6.2% and up to 8.6% absolute
improvements of our baselines on the development set of
Spider. We also carefully conduct experiments to demon-
strate the effect of each features in the hierarchical schema
graph. To address the challenging on predicting columns
from complex schema and generating complicate SQL quires,
we propose a decoder framework, which decomposes the
process into column prediction, sketch generation and detail
completion. Experiment shows the effectiveness of our
methods.

In the future, once more Text-to-SQL datasets are released,
we will validate our model and conduct experiments on these
datasets. Beside, we will seek to more efficient methods to
encode our hierarchical schema representation.

REFERENCES
[1] V. Zhong, C. Xiong, and R. Socher, ‘‘Seq2SQL: Generating structured

queries from natural language using reinforcement learning,’’ CoRR,
vol. abs/1709.00103, pp. 1–12, Aug. 2017.

[2] X. Xu, C. Liu, and D. Song, ‘‘SQLNet: Generating structured queries
from natural language without reinforcement learning,’’ Nov. 2017,
arXiv:1711.04436. [Online]. Available: https://arxiv.org/abs/1711.04436

[3] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig, ‘‘SQLizer: Query
synthesis from natural language,’’ Proc. ACM Program. Lang., vol. 1,
pp. 63:1–63:26, Oct. 2017. doi: 10.1145/3133887.

[4] T. Yu, Z. Li, Z. Zhang, R. Zhang, and D. Radev, ‘‘TypeSQL:
Knowledge-based type-aware neural text-to-SQL generation,’’ in Proc.
16th Annu. Conf. North Amer. Chapter Assoc. Comput. Linguistics, vol. 2.
Stroudsburg, PA, USA: Assoc. Comput. Linguistics, 2018, pp. 588–594.
[Online]. Available: http://aclweb.org/anthology/N18-2093

[5] L. Dong and M. Lapata, ‘‘Coarse-to-fine decoding for neural semantic
parsing,’’ in Proc. 56th Annu. Meeting Assoc. Comput. Linguistics, vol. 1.
Stroudsburg, PA, USA: Assoc. Comput. Linguistics, 2018, pp. 731–742.
[Online]. Available: http://aclweb.org/anthology/P18-1068

VOLUME 7, 2019 103713

http://dx.doi.org/10.1145/3133887

M. Song et al.: Hierarchical Schema Representation for Text-to-SQL Parsing With Decomposing Decoding

[6] C. Wang, K. Tatwawadi, M. Brockschmidt, P.-S. Huang, Y. Mao,
O. Polozov, and R. Singh, ‘‘Robust text-to-SQL generation with execution-
guided decoding,’’ Jul. 2018, arXiv:1807.03100. [Online]. Available:
https://arxiv.org/abs/1807.03100

[7] W. Hwang, J. Yim, S. Park, and M. Seo, ‘‘A comprehensive explo-
ration on WikiSQL with table-aware word contextualization,’’ Feb. 2019,
arXiv:1902.01069. [Online]. Available: https://arxiv.org/abs/1902.01069

[8] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li,
Q. Yao, S. Roman, Z. Zhang, and D. Radev, ‘‘Spider: A large-scale human-
labeled dataset for complex and cross-domain semantic parsing and text-
to-SQL task,’’ in Proc. Conf. Empirical Methods Natural Lang. Process.
Stroudsburg, PA, USA: Assoc. Comput. Linguistics, 2018, pp. 3911–3921.
[Online]. Available: http://aclweb.org/anthology/D18-1425

[9] T. Yu, M. Yasunaga, K. Yang, R. Zhang, D. Wang, Z. Li, and D. Radev,
‘‘SyntaxSQLNet: Syntax tree networks for complex and cross-domaintext-
to-SQL task,’’ in Proc. Conf. Empirical Methods Natural Lang. Process.
Stroudsburg, PA, USA: Assoc. Comput. Linguistics, 2018, pp. 1653–1663.
[Online]. Available: http://aclweb.org/anthology/D18-1193

[10] K. Xu, L. Wu, Z. Wang, M. Yu, L. Chen, and V. Sheinin, ‘‘Exploiting
rich syntactic information for semantic parsing with graph-to-sequence
model,’’ in Proc. Conf. Empirical Methods Natural Lang. Process.
Brussels, Belgium: Assoc. Comput. Linguistics, Oct./Nov. 2018,
pp. 918–924. [Online]. Available: https://www.aclweb.org/anthology/
D18-1110

[11] P. Yin and G. Neubig, ‘‘A syntactic neural model for general-purpose
code generation,’’ in Proc. 55th Annu. Meeting Assoc. Comput. Linguis-
tics, vol. 1. Stroudsburg, PA, USA: Assoc. Comput. Linguistics, 2017,
pp. 440–450. [Online]. Available: http://aclweb.org/anthology/P17-1041

[12] P. Yin and G. Neubig, ‘‘TRANX: A transition-based neural abstract syn-
tax parser for semantic parsing and code generation,’’ in Proc. Conf.
Empirical Methods Natural Lang. Process. Stroudsburg, PA, USA: Assoc.
Comput. Linguistics, 2018, pp. 7–12. [Online]. Available: http://aclweb.
org/anthology/D18-2002

[13] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[14] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and
M. Welling, ‘‘Modeling relational data with graph convolutional net-
works,’’ in Proc. ESWC, 2018, pp. 593–607.

[15] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with
graph convolutional networks,’’ CoRR, vol. abs/1609.02907, pp. 1–14,
Sep. 2016.

[16] O. Vinyals, M. Fortunato, and N. Jaitly, ‘‘Pointer networks,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 28, C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, Eds. Red Hook, NY, USA: Curran Asso-
ciates, 2015, pp. 2692–2700. [Online]. Available: http://papers.nips.cc/
paper/5866-pointer-networks.pdf

[17] I. Sutskever, O. Vinyals, andQ. V. Le, ‘‘Sequence to sequence learningwith
neural networks,’’ inProc. 27th Int. Conf. Neural Inf. Process. Syst. (NIPS),
vol. 2. Cambridge, MA, USA: MIT Press, 2014, pp. 3104–3112. [Online].
Available: http://dl.acm.org/citation.cfm?id=2969033.2969173

[18] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ Sep. 2014, arXiv:1409.0473.
[Online]. Available: https://arxiv.org/abs/1409.0473

[19] J. Gu, Z. Lu, H. Li, and V. O. Li, ‘‘Incorporating copying mechanism
in sequence-to-sequence learning,’’ in Proc. 54th Annu. Meeting Assoc.
Comput. Linguistics, vol. 1. Stroudsburg, PA, USA: Assoc. Comput.
Linguistics, 2016, pp. 1631–1640. [Online]. Available: http://aclweb.org/
anthology/P16-1154

[20] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, ‘‘Automatic differentiation in
PyTorch,’’ in Proc. NIPS-W, 2017, pp. 1–4.

[21] J. Pennington, R. Socher, and C. D. Manning, ‘‘Glove: Global vec-
tors for word representation,’’ in Proc. Conf. Empirical Methods Natu-
ral Lang. Process. (EMNLP). Stroudsburg, PA, USA: Assoc. Comput.
Linguistics, 2014, pp. 1532–1543. [Online]. Available: http://aclweb.org/
anthology/D14-1162

[22] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimiza-
tion,’’ Dec. 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.org/
abs/1412.6980

[23] S. Yavuz, I. Gur, Y. Su, and X. Yan, ‘‘What it takes to achieve 100%
condition accuracy on WikiSQL,’’ in Proc. Conf. Empirical Methods Nat-
ural Lang. Process. Stroudsburg, PA, USA: Assoc. Comput. Linguistics,
2018, pp. 1702–1711. [Online]. Available: http://aclweb.org/anthology/
D18-1197

[24] D. H. D. Warren and F. C. N. Pereira, ‘‘An efficient easily adapt-
able system for interpreting natural language queries,’’ Comput. Linguis-
tics, vol. 8, nos. 3–4, pp. 110–122, Jul./Dec. 1982. [Online]. Available:
http://dl.acm.org/citation.cfm?id=972942.972944

[25] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, ‘‘Natural language
interfaces to databases—An introduction,’’ Natural Lang. Eng., vol. 1,
no. 1, pp. 29–81, 1995.

[26] A.-M. Popescu, A. Armanasu, O. Etzioni, D. Ko, and A. Yates, ‘‘Modern
natural language interfaces to databases: Composing statistical parsing
with semantic tractability,’’ in Proc. 20th Int. Conf. Comput. Linguis-
tics (COLING). Stroudsburg, PA, USA: Assoc. Comput. Linguistics, 2004,
p. 141. doi: 10.3115/1220355.1220376.

[27] C. Hallett, ‘‘Generic querying of relational databases using natural lan-
guage generation techniques,’’ in Proc. 4th Int. Natural Lang. Gener.
Conf. (INLG). Stroudsburg, PA, USA: Assoc. Comput. Linguistics,
2006, pp. 95–102. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1706269.1706289

[28] W. A. Woods, ‘‘Semantics and quantification in natural language question
answering,’’ in Readings in Natural Language Processing. B. J. Grosz,
K. Sparck-Jones, and B. L. Webber, Eds. San Francisco, CA, USA:
Morgan Kaufmann Publishers, 1986, pp. 205–248. [Online]. Available:
http://dl.acm.org/citation.cfm?id=21922.24336

[29] G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum, ‘‘Devel-
oping a natural language interface to complex data,’’ ACM Trans.
Database Syst., vol. 3, no. 2, pp. 105–147, Jun. 1978. doi: 10.1145/
320251.320253.

[30] B. J. Grosz, D. E. Appelt, P. A. Martin, and F. C. N. Pereira, ‘‘Team:
An experiment in the design of transportable natural-language interfaces,’’
Artif. Intell., vol. 32, no. 2, pp. 173–243, May 1987. doi: 10.1016/0004-
3702(87)90011-7.

[31] I. Androutsopoulos, G. Ritchie, and P. Thanisch, ‘‘Masque/SQL: An effi-
cient and portable natural language query interface for relational
databases,’’ in Proc. 6th Int. Conf. Ind. Eng. Appl. Artif. Intell. Expert
Syst. (IEA/AIE). Philadelphia, PA, USA: Gordon Breach Sci. Publishers,
1993, pp. 327–330. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1114022.1114073

[32] L. R. Tang and R. J. Mooney, ‘‘Automated construction of database
interfaces: Integrating statistical and relational learning for semantic pars-
ing,’’ in Proc. Joint SIGDAT Conf. Empirical Methods Natural Lang.
Process. Very Large Corpora, Held Conjunction 38th Annu. Meeting
Assoc. Comput. Linguistics (EMNLP), vol. 13. Stroudsburg, PA, USA:
Assoc. Comput. Linguistics, 2000, pp. 133–141. doi: 10.3115/1117794.
1117811.

[33] S. Iyer, I. Konstas, A. Cheung, J. Krishnamurthy, and L. Zettlemoyer,
‘‘Learning a neural semantic parser from user feedback,’’ in Proc. 55th
Annu. Meeting Assoc. Comput. Linguistics, vol. 1. Stroudsburg, PA,
USA: Assoc. Comput. Linguistics, 2017, pp. 963–973. [Online]. Avail-
able: http://aclweb.org/anthology/P17-1089

[34] Y. Sun, D. Tang, N. Duan, J. Ji, G. Cao, X. Feng, B. Qin,
T. Liu, and M. Zhou, ‘‘Semantic parsing with syntax-and table-aware
SQL generation,’’ in Proc. 56th Annu. Meeting Assoc. Comput. Lin-
guistics, vol. 1. Stroudsburg, PA, USA: Assoc. Comput. Linguis-
tics, 2018, pp. 361–372. [Online]. Available: http://aclweb.org/anthology/
P18-1034

[35] I. Gur, S. Yavuz, Y. Su, and X. Yan, ‘‘DialSQL: Dialogue based struc-
tured query generation,’’ in Proc. 56th Annu. Meeting Assoc. Comput.
Linguistics, vol. 1. Stroudsburg, PA, USA: Assoc. Comput. Linguistics,
2018, pp. 1339–1349. [Online]. Available: http://aclweb.org/anthology/
P18-1124

[36] L. Dong and M. Lapata, ‘‘Language to logical form with neural atten-
tion,’’ in Proc. 54th Annu. Meeting Assoc. Comput. Linguistics, vol. 1.
Stroudsburg, PA, USA: Assoc. Comput. Linguistics, 2016, pp. 33–43.
[Online]. Available: http://aclweb.org/anthology/P16-1004

[37] C. Xiao, M. Dymetman, and C. Gardent, ‘‘Sequence-based structured pre-
diction for semantic parsing,’’ in Proc. 54th Annu. Meeting Assoc. Comput.
Linguistics, vol. 1. Stroudsburg, PA, USA: Assoc. Comput. Linguistics,
2016, pp. 1341–1350. [Online]. Available: http://aclweb.org/anthology/
P16-1127

[38] J. Krishnamurthy, P. Dasigi, and M. Gardner, ‘‘Neural semantic parsing
with type constraints for semi-structured tables,’’ in Proc. Conf. Empirical
Methods Natural Lang. Process. Stroudsburg, PA, USA: Assoc. Comput.
Linguistics, 2017, pp. 1516–1526. [Online]. Available: http://aclweb.org/
anthology/D17-1160

103714 VOLUME 7, 2019

http://dx.doi.org/10.3115/1220355.1220376
http://dx.doi.org/10.1145/320251.320253
http://dx.doi.org/10.1145/320251.320253
http://dx.doi.org/10.1016/0004-3702(87)90011-7
http://dx.doi.org/10.1016/0004-3702(87)90011-7
http://dx.doi.org/10.3115/1117794.1117811
http://dx.doi.org/10.3115/1117794.1117811

M. Song et al.: Hierarchical Schema Representation for Text-to-SQL Parsing With Decomposing Decoding

[39] M. Defferrard, X. Bresson, and P. Vandergheynst, ‘‘Convolutional neural
networks on graphs with fast localized spectral filtering,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 29, D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates,
2016, pp. 3844–3852. [Online]. Available: http://papers.nips.cc/paper/
6081-convolutional-neural-networks-on-graphs-with-fast-localized-
spectral-filtering.pdf

[40] D. K. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre,
R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams,
‘‘Convolutional networks on graphs for learning molecular fingerprints,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 28, C. Cortes, N. D. Lawrence,
D. D. Lee,M. Sugiyama, and R. Garnett, Eds. RedHook, NY, USA: Curran
Associates, 2015, pp. 2224–2232. [Online]. Available: http://papers.
nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-
molecular-fingerprints.pdf

[41] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, ‘‘Spectral networks
and locally connected networks on graphs,’’ in Proc. Int. Conf. Learn.
Represent. (ICLR), Apr. 2014, pp. 1–14.

[42] B. Bogin, M. Gardner, and J. Berant, ‘‘Representing schema structure
with graph neural networks for text-to-SQL parsing,’’ May 2019,
arXiv:1905.06241. [Online]. Available: https://arxiv.org/abs/1905.
06241

MEINA SONG received the Ph.D. degree in
electronic engineering from the Beijing University
of Posts and Telecommunications, in 2004, where
she is currently a Professor with the School of
Computer Science. She has published hundreds
of academic or technical papers on journals and
conferences and served as the Director of the
Engineering Research Center on Information Net-
work for Education Ministry. Her research inter-
ests include the mobile Internet, cloud computing,

big data, and artificial intelligence. She also served as a Technical Com-
mittee Member on data communications and service computing for China
Computer Federation.

ZECHENG ZHAN received the B.S. degree from
the School of Optical Information Science and
Technology, Beijing Institute of Technology, Bei-
jing, China, in 2013. He is currently pursuing the
M.S. degree with the School of Computer Science,
Beijing University of Posts and Telecommunica-
tions, Beijing. He has published several papers
and patents in related fields, and there are some
excellent open source projects on his GitHub, such
as Semantic Parsing. His research interests include

natural language processing and recommendation algorithm.

HAIHONG E. received the B.S. degree from the
School of Electronic Engineering, Beijing Uni-
versity of Posts and Telecommunications, Beijing,
China, in 2005, and the M.S. and Ph.D. degrees
from the School of Computer Science, Beijing
University of Posts and Telecommunications,
in 2010, where she is currently an Associate
Professor.

From 2010 to 2014, she was an Associate Team
Leader with the China Communications Standards

Association TC11-WG3. Since 2014, she has been an Associate Secretary
General Ministry of Science and TechnologyModern Service Industry Com-
mon Service Alliance. Her research interest includes the big data and artifi-
cial intelligence, mainly on network representation learning and graph-based
data mining.

Dr. E’s awards and honors include the Key Technologies and Applications
of Common Service Platforms in Modern Service Industry Science and
Technology Progress Award of Higher Education Scientific Research Out-
standing Award Second Prize China Ministry of Education, the Third Prize
of 10 Industry Standards for Overall Technical Requirements for Mobile
User Personal Information Management Business by China Communica-
tions Standards Association Science and Technology Progress Award, Com-
mon Service Platform for Modern Service Industry China Service Industry
Technology Innovation Award Special Award China Business Federation.

VOLUME 7, 2019 103715

	INTRODUCTION
	APPROACH
	METHOD OVERVIEW
	HIERARCHICAL SCHEMA GRAPH
	SCHEMA TYPE FEATURES
	SCHEMA RELATION FEATURES
	WORD ORDER FEATURES

	DECOMPOSED FRAMEWORK

	MODEL
	ENCODER
	SENTENCE ENCODER
	SCHEMA ENCODER

	DECODER
	COLUMN PREDICTION
	SKETCH DECODER
	DETAIL COMPLETION

	TRAINING AND INFERENCE

	EXPERIMENT
	EXPERIMENT SETUP
	DATASET
	BASELINES
	IMPLEMENTATION DETAILS

	EXPERIMENT RESULT
	COMPARISON WITH BASELINE
	EXPERIMENT ON SCHEMA ENCODING

	ABLATION STUDY
	ERROR ANALYSIS

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	MEINA SONG
	ZECHENG ZHAN
	HAIHONG E.

