
����������
�������

Citation: Ma, D.; Chen, X.; Cao, R.;

Chen, Z.; Chen, L.; Yu, K.

Relation-Aware Graph Transformer

for SQL-to-Text Generation. Appl. Sci.

2022, 12, 369. https://doi.org/

10.3390/app12010369

Academic Editors: Julian Szymanski,

Andrzej Sobecki, Higinio Mora,

Doina Logofătu

Received: 10 November 2021

Accepted: 17 December 2021

Published: 31 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Relation-Aware Graph Transformer for SQL-to-Text Generation

Da Ma, Xingyu Chen, Ruisheng Cao, Zhi Chen, Lu Chen and Kai Yu *

X-LANCE Lab, MoE Key Lab of Artificial Intelligence, AI Institute, Department of Computer Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; mada123@sjtu.edu.cn (D.M.);
galaxychen@sjtu.edu.cn (X.C.); 211314@sjtu.edu.cn (R.C.); zhenchi713@sjtu.edu.cn (Z.C.);
chenlusz@sjtu.edu.cn (L.C.)
* Correspondence: kai.yu@sjtu.edu.cn

Abstract: Generating natural language descriptions for structured representation (e.g., a graph) is
an important yet challenging task. In this work, we focus on SQL-to-text, a task that maps a SQL
query into the corresponding natural language question. Previous work represents SQL as a sparse
graph and utilizes a graph-to-sequence model to generate questions, where each node can only
communicate with k-hop nodes. Such a model will degenerate when adapted to more complex SQL
queries due to the inability to capture long-term and the lack of SQL-specific relations. To tackle this
problem, we propose a relation-aware graph transformer (RGT) to consider both the SQL structure
and various relations simultaneously. Specifically, an abstract SQL syntax tree is constructed for
each SQL to provide the underlying relations. We also customized self-attention and cross-attention
strategies to encode the relations in the SQL tree. Experiments on benchmarks WikiSQL and Spider
demonstrate that our approach yields improvements over strong baselines.

Keywords: SQL-to-text; relation-aware graph transformer (RGT); abstract SQL syntax tree

1. Introduction

SQL (Structured Query Language) is a vital tool to access databases. However, SQL is
not easy to understand for the average person. SQL-to-text aims to convert a structured
SQL program into a natural language description. It can help automatic SQL comment
generation as well as build an interactive question answering system [1,2] for natural
language interface to a relational database [3–5]. Besides, SQL-to-text is useful for searching
SQL programs available on the Internet. Guo et al. [6] and Wu et al. [7] also demonstrated
that SQL-to-text can assist the text-to-SQL task [8–11] by using SQL-to-text as data augmen-
tation. In the real world, it can help people understand complex SQLs quickly by reading
corresponding texts.

A naive idea is casting SQL-to-text as a Seq2Seq problem [12,13]. Taking the SQL
sequence as input, a Seq2Seq model translates it to natural language. The main limitation is
that when the SQL sequence becomes longer, the Seq2Seq model may fail to capture the
dependency between complex conditions and operations. SQL is structural and can be con-
verted into an abstract syntax tree, as Figure 1 illustrated. Generally, a tree is a special graph,
so SQL-to-text can be modeled as a Graph-to-Sequence [14] task. Xu et al. [15] considers the
intrinsic graph structure of a SQL query. They construct the SQL graph by representing each
token in the SQL as a node in the graph, and concatenating different units (e.g., column
names, operators, values) through SQL keyword nodes (e.g., SELECT, AND). By aggregat-
ing information from the K-hop neighbors through graph neural network (GNN, Scarselli
et al. [16], 2008), each node obtains its contextualized embedding which will be accessed
in the natural language decoding phase. Though simple and effective, it suffers from two
main drawbacks: (1) poor generalization capability due to the sparsity of the constructed
SQL graph, and (2) ignorance of relations between different node pairs, especially the
relevance among column nodes.

Appl. Sci. 2022, 12, 369. https://doi.org/10.3390/app12010369 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12010369
https://doi.org/10.3390/app12010369
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12010369
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010369?type=check_update&version=1


Appl. Sci. 2022, 12, 369 2 of 16

Figure 1. Two major problems incurred by the previous sparse Graph2Seq model. Examples are
selected from dataset Spider. (a) Poor generalization problem. K is the iteration number. Bold edges
indicate the maximum distance between node pairs in the entire graph. (b) Ignorance of relations
between node pairs.

In particular, Xu et al. [15] only deals with the simple SQL sketch SELECT $AGG
$COLUMN WHERE $COLUMN $OP $VALUE (AND $COLUMN $OP $VALUE)∗. Only one
column unit and one single table are mentioned in the sketch, and all constraints are
organized via intersections of conditions in the WHERE clause. The model updates the
contextualized embedding of each node by a K-step iteration. Each node will only com-
municate with its 1-hop neighbors in one iteration, thus each node can only “see” nodes
within the distance of K at the end of iterations. The performance will easily deterio-
rate when we transfer to more complicated SQL sketches composed of multiple tables,
GroupBy/HAVING/OrderBy/LIMIT clauses and nested SQLs.

As the example shown in Figure 1, a Graph2Seq model with K = 6 may work well on
the simple SQL (shown in the left) while generalizing poorly on the complex SQL with a
longer dependency distance (shown in the right). We find that two nodes may share high
correlations even though they are far apart in both the serialized SQL query and the parsed
abstract syntax tree. For instance, the columns mentioned in the same clause (intra-clause)
are tightly related. See the example in Figure 1b. Users always require not only the last
name, but also the first name of specific candidates. Similarly, there is a high probability that
the column serving as one condition in the WHERE clause will also be requested exactly in
SELECT clause (inter-clause). Previous work pays more attention on the syntactic structure
of SQL, but neglects these potential relations at the semantic level.

To this end, we propose a Relation-aware Graph Transformer (RGT) to take into
account both the abstract syntax tree of the query and the correlations between different
node pairs. The entire node set is split into two parts: intermediate nodes and leaf nodes. Leaf
nodes are usually raw table names or column words, plus some unary modifiers such as
DISTINCT and MAX. Typically, these leaf nodes convey significant semantic information
in the query. Intermediate nodes such as SELECT and AND inherently capture the tree
structure of the underlying SQL query and connect the scattered leaf nodes. An example of
constructed SQL tree is shown in Figure 2.

We introduce four types of relations into the SQL tree and propose two variants of
cross-attention to capture the structural information. All relations are encoded by our
proposed RGT model. As a SQL query may involve multiple tables, we first consider the
relations among abstract concepts TABLE and COLUMN, called databse schema (DBS). Given
two nodes representing TABLE or COLUMN, they might be two columns in the same table
or two tables connected by a foreign key. We define 11 different types of DBS to describe
such relations. Besides, the depth of node reflects the amount of information: deeper



Appl. Sci. 2022, 12, 369 3 of 16

nodes contain more semantic information while shallower nodes have more syntactic
information. We introduce directional relative depth (DRD) to capture the relative depth
between intermediate nodes. As for leaf nodes, the most important relation is affiliation.
For example, in Figure 2, the leaf nodes month and salary are connected to the COLUMN node,
and the COLUMN and another leaf node val0 belong to the intermediate node >. These three
leaf nodes are highly relevant. We use lowest common ancestor (LCA) to measure the closeness
of two leaf nodes. As we can see, the LCA of node month and val0 is the node > in Figure 2.
Furthermore, to leverage the tree structure of SQL, we use two cross-attention strategies,
namely attention over ancestors (AOA) and attention over descendants (AOD). Attention over
ancestors only allows leaf nodes to attend their ancestors, and attention over descendants
forces intermediate nodes to attend only their descendants.

We conduct extensive experiments on benchmarks WikiSQL [17] and Spider [18]
with various baseline models. For simple SQL sketches on WikiSQL, our RGT model
outperforms the previous best Graph2Seq model [15] and achieves 31.2 BLEU. To the best
of our knowledge, we are the first to perform SQL-to-text task on the SQL sketches that
involves multiple tables and complex conditions. Results (28.84 BLEU) demonstrate that
our model generalizes well compared with other alternatives.

Our main contributions are summarized as follows:

• We propose a relation-aware graph transformer to consider various relations between
node pairs in the SQL graph.

• We are the first to perform the SQL-to-text task with much more complicated SQL
sketches on the dataset Spider.

• Extensive experiments show that our model is superior to various Seq2Seq and
Graph2Seq models. Data and codes of our models and baselines will be public.

This paper is organized as follows: In Section 1, we introduce the task of SQL-to-text,
analyze the existing problems of previous work and present our work on the whole. Then,
we summarize related work in Section 2. After that, we clarify our method in detail in
Section 3, including how to build the SQL tree and the architecture of our model. In Section 4,
we conduct our experiments on two public datasets and report all the results. Finally, we
conclude and show the expectation of future work in Section 5.

Figure 2. An example of the constructed SQL tree.

2. Related Work

Data-to-text Data-to-text intends to transform non-linguistic input data into the mean-
ingful and coherent natural language text [19]. There are several types of the non-linguistic
input data, such as a set of triples (the WebNLG challenge [20]) and some kinds of meaning
representations (e.g., several slot-value pairs of the E2E dataset [21], the Abstract Meaning
Representation (AMR) graph [22]). The key problem of this task is how to obtain a good



Appl. Sci. 2022, 12, 369 4 of 16

representation of the input data. At first, researchers [23,24] cast the structured input data
to sequence and adopt the sequence-to-sequence model, e.g., LSTM. However, this method
neglects the intrinsic structure of the input data. To this end, a lot of graph-to-sequence
models are proposed. In particular, refs. [25,26] encoded the input data based on a graph
convolutional network (GCN [27]) encoder. Ref. [28] extended transformer to the graph
input and proposed the graph transformer encoder. In this work, our model is based on the
graph transformer encoder.

SQL-to-text This technique can leverage automatically generated SQL programs [17]
to create additional (question, SQL) pairs, alleviating the annotation scarcity problem of
the complicated text-to-SQL [29] task with data augmentation [6]. Earlier rule-based meth-
ods [30,31] heavily rely on researchers to design generic templates, which will inevitably
produce rigid and canonical questions. Seq2Seq [13], Tree2Seq [32] and Graph2Seq [15]
models have demonstrated their superiority over the traditional rule-based system. In this
work, we propose a relation-aware graph transformer to take into account both the graph
structure and various relations embedded in different node pairs.

Tree-to-sequence Tree-to-sequence model [32] aims to map a tree structure into a
sequence. Each node gathers information from its children nodes when encoding. They
apply this technique to neural machine translation. Specifically, they reorganize the input
sequence in the source language as a tree according to its constituency structure. In our
work, we construct a SQL tree and utilize the Tree LSTM [33] as a baseline.

Graph-to-sequence Graph convolution network (GCN, Kipf and Welling [27], 2016)
and graph attention network (GAT, Veličković et al. [34], 2017) have been successfully ap-
plied in various tasks to obtain node embeddings. Every node updates its node embedding
by aggregating information from its neighbors. There may be labeled relations or features
on edges of the graph. Relations or edge features can be incorporated when aggregat-
ing information from neighbors [2,35,36] or calculating relevance weights between node
pairs [37–40]. We adopt both strategies with our tailored relations for different node pairs.

3. Model
3.1. SQL Tree Construction

The entire node set of the constructed SQL tree V is split into two categories: inter-

mediate nodes V I = {vI
i }
|V I |
i=1 and leaf nodes VL = {vL

i }
|VL |
i=1 . Intermediate nodes include

three abstract concepts (SQL, TABLE and COLUMN), seven SQL-clause keywords (SELECT,
WHERE, etc.) and binary operators (>, <, =, etc.), while leaf nodes contain unary operators,
raw table names and column words and placeholders for entity value (entity mentions
such as “new york” are replaced with one special token val0 during preprocessing, called
delexicalization). With this partition, the node embeddings of these two types can be updated
using different relational information.

Starting from the root node SQL, we firstly append the clause-level nodes as its
children (see Figure 2). Then concept abstraction nodes, TABLE and COLUMN, and relevant
operator nodes are accordingly attached to their parents. Next, for node COLUMN and
TABLE, we append all the raw words, aggregators, and distinct flags as leaf nodes. Our
SQL Tree consists of three levels (see Figure 3): clause level, schema level, and token level.
Table 1 shows all types of nodes.

• First, SQL is divided into some clauses such as SELECT clause, WHERE clause, nested
SQL clause and so on (see Figure 3a).

• Then, each clause is composed of several tables, columns, and some other binary
operators. Considering that some table and column names have multiple tokens, we
design two abstract nodes (TABLE and COLUMN) to address this problem (see Figure 3c).
With these two abstract nodes, the clause nodes can be represented as shown in
Figure 3b. Noticing that binary operators can be regarded as a relation between several
nodes, we set them as intermediate nodes (parents of some children nodes).

• For other unary operators and tokens (table and column), we put them on leaves.



Appl. Sci. 2022, 12, 369 5 of 16

Figure 3. SQL Tree construction procedure. (a) is clause level; (b) is schema level; (c) is token level.

Table 1. Enumeration or examples of all types of nodes.

Node Types Enumeration

intermediate

concept abstractions SQL, TABLE, COLUMN

clause keywords SELECT, FROM, WHERE, GROUPBY, HAVING, ORDERBY, LIMIT

binary operators

conjuction AND, OR, INTERSECT, UNION, EXCEPT

arithmetic +,−,×, /

condition >,<,=,≥,≤, LIKE, IN, BETWEEN

leaf

column/table words e.g., column state_name −→ nodes state and name

value placeholders val0, val1, val2, etc.

unary operators
aggregation SUM, COUNT, MAX, MIN, AVG

others ASC, DESC, DISTINCT, NOT

3.2. Encoder Overview

The input features include trainable embeddings for all nodes and relations. We use
XL ∈ R|VL |×dx and RL = [rL

ij]|VL |×|VL | to denote the set of leaf node embeddings and the

relation matrix among leaf nodes. Symmetrically, XI ∈ R|V I |×dx and RI = [rI
ij]|V I |×|V I | for

intermediate nodes.
The encoder is composed of K stacked blocks, as illustrated in Figure 4. The main

component is relation-aware graph transformer (RGT), which takes as input the node
embedding matrix X, the relation matrix R and a relation function E that extracts relation
embeddings from R, and outputs the updated node matrix. Each block contains four
modules: one RGT for intermediate nodes, one RGT for leaf nodes, and two cross-attention
modules. In each block, node embeddings XI and XL are updated sequentially via self-
attention and cross-attention. According to the dataflow in Figure 4, intermediate nodes
are first updated by

XI
mid = RGT(XI

in, EI
rel , RI).

Then, leaf nodes attend intermediate nodes and update with RGT,

XL
mid = CrossAttentionL←I(XL

in, XI
mid),

XL
out = RGT(XL

mid, EL
rel , RL).



Appl. Sci. 2022, 12, 369 6 of 16

Finally, intermediate nodes attend leaf nodes also,

XI
out = CrossAttentionI←L(XI

mid, XL
out).

Subscripts in, mid, out are used to differentiate the inputs and outputs. Definitions
of relation embedding functions EI

rel and EL
rel , relation matrix RI and RL, and module

CrossAttentionI←L(·, ·) and CrossAttentionL←I(·, ·) will be elaborated later.

DBS

+1
+1 +2

+2

n

tables

foreign keys

i

g j

co
lum

ns

h

−1

+1𝑖𝑛𝑓
m

𝑖𝑛𝑓

0

DRD
AODn

m

k l

h

j

RPR

LCA b

a a

fc

a

−1 +1

−2 +2

+3

ca fb d e

a

b c d

f

e

g h i j

k l m
n

𝑿𝒊𝒏𝑰

𝑿𝒊𝒏𝑳

𝑿𝒎𝒊𝒅𝑰 𝑿𝒐𝒖𝒕𝑰

𝑿𝒐𝒖𝒕𝑳

①

③

④

AOA
a

b c d

②

×𝑲

𝑿𝒎𝒊𝒅𝑳

Figure 4. Architecture of the encoder. DRD: directional relative depth. DBS: database schema. LCA:
lowest common ancestor. RPR: relative position relation. AOD: attention over descendants. AOA: attention
over ancestors. The dataflow is ordered by the number.

3.3. Relation-Aware Graph Transformer

We utilize Transformer [41] as the backbone of our model, which can be viewed as an
instance of graph attention network (GAT, Veličković et al. [34], 2017) where the receptive
field for each node is the entire node set. We view SQL tree as a special graph. Assume the
input graph is G = (V, R), V = {vi}

|V|
i=1, R = [rij]|V|×|V|, where V is the vertex set and R

is the relation matrix. Each node vi ∈ V has a randomly initialized embedding xi ∈ Rdx .
Shaw et al. [37] proposes to incorporate the relative position between nodes vi and vj into
relevance score calculation and context aggregation step. Similarly, we adapt this technique
to our framework by introducing additional relational vectors. Mathematically, given the
relation matrix R, we construct a relation embedding function Erel to retrieve the feature
vector eij = Erel(rij) ∈ Rdx/H for relation rij. Then, the output embedding yi of node vi
after one iteration layer is calculated via

âh
ij =

xiWh
Q(xjWh

K + eij)
T

√
dx/H

, ah
ij = softmaxj{âh

ij},

zh
i =

n

∑
j=1

ah
ij(xjWh

V), zi = [z1
i ; · · · ; zH

i ]WO,

ŷi = LayerNorm{xi + zi},
yi = LayerNorm{ŷi + FC(ReLU(FC(ŷi)))},

where FC(·) denotes a fully-connected layer, LayerNorm{·} is layer normalization trick [42],
[ ; ] represents vector concatenation, parameters Wh

Q, Wh
K, Wh

V ∈ Rdx×(dx/H), Wh
O ∈ Rdx×dx ,

and 1 ≤ h ≤ H is the multi-head index. The relation embedding function Erel is shared
across different heads and multiple layers unless otherwise specified. For the convenience
of discussion, we simplify the notation of our RGT encoding module into

Xout = RGT(Xin, Erel , R),



Appl. Sci. 2022, 12, 369 7 of 16

where Xin = [x1; · · · ; x|V|] represent the matrix of input embeddings for all nodes.

3.4. Relations among Intermediate Nodes

As for intermediate nodes, we consider two types of relations: database schema (DBS)
and directional relative depth (DRD). DBS considers the relations among abstract concepts
TABLE and COLUMN. In total, we define 11 relations, which is a subset of relations proposed
in Wang et al. [39]. For example, if node vI

i and vI
j are nodes of type COLUMN and they

belong to the same table according to the database schema, the relation rDBS
ij is SAME-TABLE.

Table 2 shows the complete version of DBS relations. Mathematically,

rDBS
ij = DataBaseSchema(vI

i , vI
j ),

eDBS
ij = EDBS

rel (rDBS
ij ),

where the relation embedding function EDBS
rel maps the relation category rDBS

ij into a train-

able vector eDBS
ij .

Table 2. Database schema relation (refer to Wang et al. [39]).

Node vI
i and vI

j Relation rDBS
ij Description

COLUMN COLUMN
SAME-TABLE vI

i and vI
j belong to the same table.

FOREIGN-KEY-COL-F vI
i is a foreign key for vI

j .
FOREIGN-KEY-COL-R vI

j is a foreign key for vI
i .

COLUMN TABLE PRIMARY-KEY-F vI
i is the primary key of vI

j .
BELONGS-TO-F vI

i is a column of vI
j (but not the primary key).

TABLE COLUMN PRIMARY-KEY-R vI
j is the primary key of vI

i .
BELONGS-TO-R vI

j is a column of vI
i (but not the primary key).

TABLE TABLE
FOREIGN-KEY-TAB-F Table vI

i has a foreign key column in vI
j .

FOREIGN-KEY-TAB-R Same as above, but vI
i and vI

j are reversed.
FOREIGN-KEY-TAB-B vI

i and vI
j have foreign keys in both directions.

others NO-RELATION vI
i and vI

j have no above relations.

With the assistance of the underlying directed SQL tree, we can build another relation
matrix to indicate the accessibility and relative depth difference between two intermediate
nodes vI

i and vI
j . Let d(vI

i ) indicates the depth of node vI
i , e.g., the depth of root SQL node

is 1 (see Figure 4). Given the maximum depth difference D,

clamp(i, j) = max(−D, min(d(vI
j )− d(vI

i ), D)),

rDRD
ij =

{
clamp(i, j) if vI

i → vI
j or vI

j → vI
i exists

inf otherwise
,

eDRD
ij = EDRD

rel (rDRD
ij ),

where EDRD is the relation embedding module with 2D + 2 entries. One special entry
represents the inaccessibility inf.

The complete relation embedding function EI
rel and relation matrix RI for intermediate

nodes merge database schema and directional relative depth together.

EI
rel(r

I
ij) = FC([eDBS

ij ; eDRD
ij ]) ∈ Rdx/H ,

rI
ij = tuple(rDBS

ij , rDRD
ij ), rI

ij ∈ RI ,



Appl. Sci. 2022, 12, 369 8 of 16

where affine transformation FC(·) is used to fuse relation features from two perspectives
and tuple(·, ·) means the combination of relations.

3.5. Relations among Leaf Nodes

Leaf nodes mainly consist of raw words, plus a few unary operators as modifiers.
Gathering all these nodes into a sequence sL following their original order in the SQL query,
we can obtain relative position relation (RPR) among these leaf nodes. Assume the position of
node vL

i in sL is indexed by sL(vL
i ) and D is the pre-defined maximum distance, relation

features eRPR
ij for nodes vL

i and vL
j is defined as

rRPR
ij = max(−D, min(sL(vL

j )− sL(vL
i ), D)),

eRPR
ij = ERPR

rel (rRPR
ij ).

Actually, ERPR
rel stores the parameter matrix of shape (2D + 1)× (dx/H) for retrieval.

Tokens in the same clause will cluster together in the sequence sL. Intuitively, rRPR
ij with

smaller absolute numerical value will capture the previously mentioned intra-clause relations.
Furthermore, we take into account the structure of SQL tree. Let LCA(vL

i , vL
j ) denotes

the lowest common ancestor for leaf nodes vL
i and vL

j in the SQL tree. The relation feature

eLCA
ij is computed via

rLCA
ij = LCA(vL

i , vL
j ),

eLCA
ij = ELCA

rel (rLCA
ij ).

The relation embedding function ELCA
rel simply extracts the current node embedding of

intermediate node LCA(vL
i , vL

j ) from XI
mid and transforms it into dimension dx/H through

a trainable linear layer. The relation between remote leaf nodes is reflected by the common
ancestor node.

The complete relation embedding function EL
rel for leaf nodes is constructed by com-

bining both the flattened and tree-structured relations

EL
rel(r

L
ij) = FC([eRPR

ij ; eLCA
ij ]) ∈ Rdx/H ,

rL
ij = tuple(rRPR

ij , rLCA
ij ), rL

ij ∈ RL.

3.6. Cross-Attention between Leaf and Intermediate Nodes

Module CrossAttentionI←L(·, ·) collects features from leaf nodes VL to intermediate
nodes V I , such that semantic information can flow into the structural node representations
of V I . For each intermediate node vI

i , it calculates the attention vector xI←L
i over leaf

nodes. Rather than attending all the leaf nodes (attention over full nodes, AOF), vI
i only

cares about its descendants determined by the SQL tree. We call this strategy attention
over descendants (AOD). Let V I←L(vI

i ) be the set of leaf nodes that are descendants of
intermediate node vI

i , the update equation for intermediate node vI
i is

âI←L
ij = (xI

i We)(xL
j )

T , vL
j ∈ V I←L(vI

i ),

aI←L
ij = softmaxj(âI←L

ij ),

xI←L
i = ∑

j
aI←L

ij xL
j ,

xI
i = LayerNorm{xI

i + xI←L
i },

where We ∈ dx × dx is trainable parameters.
Similarly, module CrossAttentionL←I(·, ·) collects features from intermediate nodes

V I to leaf nodes VL, such that the semantic information can be organized referring to the



Appl. Sci. 2022, 12, 369 9 of 16

structural information. Rather than attending all the intermediate nodes, vL
i only cares

about its ancestors in the SQL tree. We call this strategy attention over ancestors (AOA),
similar to AOD.

3.7. Decoder

After obtaining the final node embeddings XI
out, XL

out of intermediate and leaf nodes,
we apply an LSTM-based [43] sequential decoder with copy mechanism [44] to generating
the natural language sentence. Representations of the raw table and column words in
leaf nodes will be extracted for a direct copy before decoding. Placeholders for entities
such as val0 will be replaced with corresponding nouns (called lexicalization) during post-
processing. Specifically, we distinguish intermediate nodes from leaf nodes to capture the
semantic and structural information differently. Given the final node embeddings XI

out,
XL

out, the initial hidden state is

h0 = MaxPooling(XI
out) + MaxPooling(XL

out),

where MaxPooling(·) is a function of transforming Xn×d into xd×1. In particular,

x = MaxPooling(X),

xj = max
i

Xi,j.

For each time step t, we get the context vectors cI
t and cL

t , respectively.

cI
t = Attention(ht−1, XI

out),

cL
t = Attention(ht−1, XL

out),

where Attention(·) is the same as the cross attention mentioned in Section 3.6.
Afterward, the concatenation of the context vectors and previous hidden state ht−1 is

fed into the next step.
ht = LSTM([ht−1; cI

t ; cL
t ])

Considering there are many low-frequency words, we incorporate copy mechanism
into the decoder. We use Pvocab(yt) and Pcopy(yt) to denote the generation probability and
copy probability of yt, respectively. Let pgen

t denote the probability of generating a word at
time t. Pout(yt) is the final output probability of yt. Then,

Pvocab(yt) =softmax(htWout),

Pcopy(yt) =softmax((htWcopy)(XL
out)

T),

pgen
t =sigmoid(htWgen),

Pout(yt) =pgen
t Pvocab(yt) + (1− pgen

t )Pcopy(yt),

where Wout, Wcopy, and Wgen are trainable parameters.

4. Experiments
4.1. Dataset

WikiSQL We conduct experiments on WikiSQL with the latest version (The size of the
latest version is 7019 less than used by [15]). SQLs in WikiSQL only contain SELECT and
WHERE clauses with a short length. We utilize the official train/dev/test splits, ensuring
each table only appears in a single split. This setup requires the model to generalize to
unseen tables during inference.

Spider We also use Spider, a much more complex dataset. SQLs in Spider are much
longer and the data size is much smaller compared to WikiSQL. Furthermore, some other
complex grammars such as JOIN, HAVING and nested SQLs are also involved in Spider.



Appl. Sci. 2022, 12, 369 10 of 16

Thus, the task on Spider is much more difficult. Considering the test split is not public, we
only use the train and dev splits.

The statistics of the two datasets are illustrated in Table 3.

Table 3. Statistics for WikiSQL and Spider.

Statistics
WikiSQL Spider

Train Dev Test Train Dev

SQL number 56,355 8421 15,878 8658 1034
table number 18,585 2716 5230 795 81

database number 18,585 2716 5230 146 20
table number per database 1 1 1 5.45 4.05

average SQL length 8.67 8.70 8.71 29.57 25.93
average question length 11.64 11.73 11.69 12.05 12.36

4.2. Experiment Setup

Hyper parameters All our codes are implemented by Pytorch [45]. We utilize Adam [46]
optimizer to train our models with a learning rate of 0.0001. The batch size is 32 for WikiSQL
and 16 for Spider. Other hyperparameters can be found in Table 4. Note that the layer number
of RGT of leaf nodes and intermediate nodes may not be identical. The update cycle (K) is
equal to the minimum layer number. For example, RGT of intermediate nodes has 6 layers
and 3 layers of leaf nodes. Thus, K is 3. Two RGT layers encode the intermediate nodes,
and a single RGT layer encodes the leaf nodes for each cycle. The motivation is that the
structure of SQLs in Spider are complex and vital. Thus, the intermediate nodes (structural
part of SQL) require more layers to encode. To ensure fairness, all our embeddings (nodes and
relations) are initialized randomly (the same as all baselines). We can also initialize all token
embeddings (leaf nodes) with some pre-trained vectors (e.g., GloVe [47] and BERT [48]) to
further boost the performance.

Table 4. Hyper parameters for our model on WikiSQL and Spider.

Parameters WikiSQL Spider

Embedding dimension
leaf nodes 300 300

intermediate nodes 100 100

Relation
maximum depth 4 4

maximum distance 4 4

RGT for intermediate nodes
layer number 3 6
head number 8 8
hidden size 256 256

feed-forward hidden size 1024 1024

RGT for leaf nodes
layer number 6 3
head number 8 8
hidden size 512 512

feed-forward hidden size 2048 2048

others
epoch number 50 50

dropout 0.1 0.1
decoder hidden size 300 300

Metric We use BLEU-4 [49] and NIST [50] as automatic metrics. Each SQL has a single
reference in WikiSQL. In Spider, most SQLs have double references because many SQLs



Appl. Sci. 2022, 12, 369 11 of 16

are corresponding to two different natural language expressions. However, there are two
threats of this metric: (1) The results may fluctuate seriously. (2) BLUE-4 cannot fully
evaluate the quality of the generated text. To alleviate the fluctuation of results, we run
all our experiments 5 times with different random seeds. All results are obtained from
the mteval-v14.pl(https://github.com/moses-smt/mosesdecoder/blob/master/scripts/
generic/mteval-v14.pl, accessed on 9 November 2021) script. Furthermore, we conduct a
human evaluation on Spider to compare our model with the strongest baseline.

Data preprocessing For WikiSQL, we omit the FROM clause since all SQLs are only
related to a single table. For Spider, we replace the table alias with its original name and
remove the AS grammar. Additionally, the questions are delexicalized as mentioned before.

4.3. Baselines

For all baselines, the same attention-based [51] LSTM decoder with a copy mecha-
nism is utilized, where only the schema-dependent items (table and column tokens) will
be copied.

BiLSTM The encoder is a BiLSTM encoder with SQL sequences as input. We report
both results with and without a copy mechanism for this baseline.

TreeLSTM The encoder is a Child-Sum TreeLSTM encoder [33] with our SQL Tree
as input.

Transformer We investigate the effect of position embedding on the transformer.
Specifically, we consider transformer encoder without position embedding, with absolute
position embedding [41] and relative position embedding [37].

GCN/GAT Regarding the SQL Tree as a graph, we can employ Graph Neural Net-
works (GNN), such as Graph Convolutional Network (GCN) and Graph Attention Network
(GAT). Additionally, we rerun the code of Xu et al. [15] (https://github.com/IBM/SQL-to-
Text, accessed on 10 November 2020).

4.4. Main Results

Table 5 shows the main results, including seq2seq baselines, graph2seq baselines and
our model. Our model relation-aware graph transformer (RGT) outperforms all baseline
models on both WikiSQL and Spider in both BLEU and NIST. Specifically, RGT outperforms
the strongest baseline transformer with relative position by 1.17 BLEU and 0.23 NIST on
Spider, 0.42 BLEU, and 0.1 NIST on WikiSQL, indicating the effectiveness of our model.

Table 5. Main results for all models. Bold means the best result.

Model
WikiSQL Spider

BLEU (%) NIST BLEU (%) NIST

BiLSTM without copy 29.59± 0.81 7.45± 0.17 22.22± 0.43 4.64± 0.06
BiLSTM 30.45± 0.17 7.75± 0.03 26.09± 0.70 5.55± 0.14

Transformer-w/o position 25.74± 0.32 7.08± 0.09 23.06± 0.75 5.07± 0.18
Transformer-absolute position 29.98± 0.30 7.70± 0.05 25.85± 0.50 5.61± 0.06

Transformer-relative position (REL) 30.78± 0.42 7.76± 0.05 27.67± 0.60 5.71± 0.07

TreeLSTM 29.18± 0.43 7.59± 0.09 24.15± 0.51 5.35± 0.10
Graph2Seq [15] 28.70 7.34 - -

GCN 28.86± 0.17 7.51± 0.04 24.65± 0.38 5.26± 0.05
GAT 29.58± 0.81 7.63± 0.12 25.94± 1.08 5.50± 0.09

RGT (ours) 31.20± 0.23 7.86± 0.04 28.84± 0.22 5.94± 0.06

We discover that the GCN does not perform well compared to other baselines. GCN
only cares about the structure of the graph without considering any special relations
between nodes. We also notice that the transformer with a relative position works well
even it only considers the relative position relation. This finding encourages us to consider
more relations than the structure.

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/mteval-v14.pl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/mteval-v14.pl
https://github.com/IBM/SQL-to-Text
https://github.com/IBM/SQL-to-Text


Appl. Sci. 2022, 12, 369 12 of 16

4.5. Ablation Study

To investigate the influence of relations and cross attention, we conduct two ablation
studies, respectively. All our ablation studies are conducted on Spider.

Relation ablation In Table 6, pruning any relation leads to lower performance, indi-
cating that all relations introduced to RGT are reasonable. Specifically, relations among leaf
nodes seem more important, verifying the motivation of strengthening relations among
semantic SQL tokens (column, table, and so on). We explain the effects of four relations
as follows:

• structural relations: Both DBS (DataBase Schema) and DRD (Directional Relative
Depth) strengthen the structural representation, but they work differently. DBS is
to capture relations about the database schema, such as relations between table and
table, table and column, and so on. DRD is to capture the hierarchical structure in
SQL. For example (see Figure 2), both DESC node and COLUMN node (the most right
two abstract nodes) are descendants of OrderBy node. To express the hierarchy, we
incorporate direction into DRD.

• semantic relations: Both LCA (Lowest Common Ancestor) and RPR (Relative Position
Relation) enhance the semantic representation. For instance (see Figure 2), the model
can realize month and salary are close and may belong to the same column or table
with RPR. With LCA, the model ensures they belong to the same column then.

Table 6. Relation ablation. The upper part is to investigate relations among intermediate nodes and
the lower is among leaf nodes. Bold means the best result.

Model BLEU (%) NIST

RGT 28.84± 0.22 5.94± 0.06
w/o DBS 28.47± 0.38 5.94± 0.11
w/o DRD 28.56± 0.59 5.90± 0.10
w/o both 28.43± 0.52 5.89± 0.08

RGT 28.84± 0.22 5.94± 0.06
w/o RPR 27.52± 0.36 5.80± 0.09
w/o LCA 28.02± 1.05 5.85± 0.12
w/o both 26.72± 0.57 5.70± 0.12

Cross attention ablation To investigate how the cross attention mechanism affects
the performance, we apply different combination of attention strategies in cross attention,
namely attention over descendants (AOD), attention over ancestors (AOA), attention over
full nodes (AOF) and no attention (None). Table 7 shows the experiment result.

Table 7. Cross attention ablation. The combination is in the format of intermediate to leaf + leaf to
intermediate such as AOD + AOA. None symbol means no attention. For leaf nodes, AOF means at-
tending all intermediate nodes. Similarly, AOF means attending all leaf nodes for intermediate nodes.
Bold means the best result.

Cross Attention Combination BLEU (%) NIST

AOD + AOA 28.84± 0.22 5.94± 0.06
+ AOF 28.19± 0.37 5.82± 0.07
+ None 28.65± 0.41 5.89± 0.08

AOF + AOA 28.42± 0.66 5.83± 0.10
+ AOF 27.61± 0.91 5.77± 0.12
+ None 27.40± 0.61 5.76± 0.13

None + AOA 28.42± 0.54 5.86± 0.09
+ AOF 28.48± 0.65 5.87± 0.09
+ None 28.29± 0.39 5.82± 0.09

AOD + AOA works best, consistent with our expectations. We consider the cross
attention is a balance problem. AOF can capture all kinds of relations, but may introduce



Appl. Sci. 2022, 12, 369 13 of 16

more noises (information from less related nodes), while None would lose some vital infor-
mation. For example, AOD + None performs better than AOD + AOF, which means in this
case AOF would introduce more noises. Besides, AOD + None outperforms None + None,
indicating that ignoring all relations would lead to poorer performance. In this task, we
choose AOD + AOA as our attention strategy, which can catch relations among different
types of nodes without introducing too much noise.

4.6. Human Evaluation

We randomly select 100 samples (∼20%) from the dev set of Spider to conduct the
human evaluation. For the SQL-to-text task, we should evaluate the correctness and fluency
of the generation. To assess the correctness, we recruited two CS students familiar with
SQL to score generations. They were first asked to select the better one for correctness from
two generations. Furthermore, we asked them to objectively count the number of correct
generation for aggregator (MIN, MAX and so on), column (column in SQL) and operator (+,
-, DESC, IN and so on). Then, we calculated the metrics (precision, recall, and f1), respec-
tively. Additionally, we asked three native English speakers to evaluate the fluency and
grammar correctness. Our model is evaluated against the strongest baseline (transformer
with relative position). The results are illustrated in Table 8. The lower part of Table 8 shows
the percentage of choosing the generation as more correct (line correctness) or fluent (line
fluency), and the percentage of a generation being chosen both correct and fluent (line both).
From the evaluation result, we can conclude that our model can generate more correct
sentences with a comparable fluency.

Table 8. Human evaluation for our model (RGT) and transformer with relative position (REL). Bold
means the best result.

Aspect
REL RGT

Precision Recall F1 Precision Recall F1

agg 0.72 0.71 0.71 0.77 0.74 0.75
col 0.67 0.51 0.56 0.78 0.63 0.68
op 0.56 0.49 0.51 0.62 0.54 0.56

correctness 34% 66%
fluency 53% 47%

both 37.25% 62.75%

4.7. Case Study

We show two examples generated by our model RGT and the transformer with relative
position (Figure 5). For the first example, both models can realize the type correctly, but the
baseline fails to generate the pet. Our model can strengthen relations among tokens in one
column, so the pet in the SQL would be a strong signal. For the second example, the baseline
generates a more fluent sentence. There is a grammar error in the generation of our model
(teacher is not correct), but teacher is matched with the SQL teacher in SQL. This phenomenon
indicates that our model is more concerned with the relations among nodes. These two
cases are consistent with our human evaluation conclusion.



Appl. Sci. 2022, 12, 369 14 of 16

Figure 5. Case study: REF is the reference; REL is transformer with relative position; RGT is our model.

5. Conclusions

In this paper, we propose a relation-aware graph transformer (RGT) for complex
SQL-to-Text generation. When learning the representation of each token in a SQL, multiple
relations are considered in our model. Extensive experiments on two datasets WikiSQL
and Spider show that our proposed model outperforms strong baselines including Seq2Seq
models and Graph2Seq models.

There are two lines of work we can finish in the future. First, we can apply our SQL-to-
text model to augment more text and SQL pairs to boost the performance of the text-to-SQL
model by generating lots of SQLs automatically. In detail, we can make some SQL templates
by handcrafting rules. Based on these templates, a lot of SQL queries can be generated,
and then our SQL-to-text model transforms them into texts. These augmented text and
SQL pairs can assist to train the text-to-SQL model. Second, we can extend our method
to a more general task, e.g., code-to-text. Our model is appropriate to encode the abstract
syntax tree of the programming language.

Author Contributions: Conceptualization, D.M. and L.C.; data curation, D.M.; formal analysis, Z.C.;
supervision, Z.C., L.C. and K.Y.; writing—original draft, D.M., R.C. and X.C.; writing—review and
editing, L.C. and K.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data supporting the conclusions of this article is avaliable at
https://github.com/salesforce/WikiSQL and https://yale-lily.github.io/spider, accessed on 10
November 2020.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liang, P. Learning executable semantic parsers for natural language understanding. Commun. ACM 2016, 59, 68–76. [CrossRef]
2. Sorokin, D.; Gurevych, I. Modeling semantics with gated graph neural networks for knowledge base question answering. arXiv

2018, arXiv:1808.04126.
3. Livowsky, J.M. Natural Language Interface for Searching Database. U.S. Patent 6,598,039, 22 July 2003.
4. Shwartz, S.; Fratarcangeli, C.; Cullingford, R.E.; Aimi, G.S.; Strasburger, D.P. Database Retrieval System Having a Natural

Language Interface. U.S. Patent 5,197,005, 23 March 1993.
5. Nihalani, N.; Silakari, S.; Motwani, M. Natural language interface for database: A brief review. Int. J. Comput. Sci. Issues (IJCSI)

2011, 8, 600.

https://github.com/salesforce/WikiSQL
https://yale-lily.github.io/spider
http://doi.org/10.1145/2866568


Appl. Sci. 2022, 12, 369 15 of 16

6. Guo, D.; Sun, Y.; Tang, D.; Duan, N.; Yin, J.; Chi, H.; Cao, J.; Chen, P.; Zhou, M. Question Generation from SQL Queries Improves
Neural Semantic Parsing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels,
Belgium, 31 October–4 November 2018; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 1597–1607.

7. Wu, K.; Wang, L.; Li, Z.; Zhang, A.; Xiao, X.; Wu, H.; Zhang, M.; Wang, H. Data Augmentation with Hierarchical SQL-to-Question
Generation for Cross-domain Text-to-SQL Parsing. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, Online and Punta Cana, Dominican Republic, 7–11 November 2021; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2021; pp. 8974–8983.

8. Cao, R.; Chen, L.; Chen, Z.; Zhao, Y.; Zhu, S.; Yu, K. LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local and
Non-Local Relations. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing, Online, 2–4 August 2021; pp. 2541–2555.

9. Chen, Z.; Chen, L.; Li, H.; Cao, R.; Ma, D.; Wu, M.; Yu, K. Decoupled Dialogue Modeling and Semantic Parsing for Multi-Turn
Text-to-SQL. arXiv 2021, arXiv:2106.02282.

10. Cao, R.; Zhu, S.; Liu, C.; Li, J.; Yu, K. Semantic Parsing with Dual Learning. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Association for Computational Linguistics:
Stroudsburg, PA, USA, 2019; pp. 51–64.

11. Chen, Z.; Chen, L.; Zhao, Y.; Cao, R.; Xu, Z.; Zhu, S.; Yu, K. ShadowGNN: Graph Projection Neural Network for Text-to-SQL
Parser. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Online, 6–11 June 2021; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021;
pp. 5567–5577.

12. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Advances in Neural Information
Processing Systems; Curran Associates, Inc: Red Hook, NY, USA, 2014; pp. 3104–3112.

13. Iyer, S.; Konstas, I.; Cheung, A.; Zettlemoyer, L. Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 2073–2083.

14. Xu, K.; Wu, L.; Wang, Z.; Feng, Y.; Witbrock, M.; Sheinin, V. Graph2seq: Graph to sequence learning with attention-based neural
networks. arXiv 2018, arXiv:1804.00823.

15. Xu, K.; Wu, L.; Wang, Z.; Feng, Y.; Sheinin, V. SQL-to-Text Generation with Graph-to-Sequence Model. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2–4 November 2018; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 931–936.

16. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw.
2008, 20, 61–80. [CrossRef] [PubMed]

17. Zhong, V.; Xiong, C.; Socher, R. Seq2sql: Generating structured queries from natural language using reinforcement learning. arXiv
2017, arXiv:1709.00103.

18. Yu, T.; Zhang, R.; Yang, K.; Yasunaga, M.; Wang, D.; Li, Z.; Ma, J.; Li, I.; Yao, Q.; Roman, S.; et al. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic parsing and text-to-sql task. arXiv 2018, arXiv:1809.08887.

19. Gatt, A.; Krahmer, E. Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation.
J. Artif. Intell. Res. 2018, 61, 65–170.

20. Gardent, C.; Shimorina, A.; Narayan, S.; Perez-Beltrachini, L. The WebNLG Challenge: Generating Text from RDF Data. In
Proceedings of the 10th International Conference on Natural Language Generation, Santiago de Compostela, Spain, 4–7 September
2017; Association for Computational Linguistics: Stroudsburg, PA, USA, 2017; pp. 124–133.

21. Novikova, J.; Dušek, O.; Rieser, V. The E2E Dataset: New Challenges For End-to-End Generation. In Proceedings of the 18th
Annual SIGdial Meeting on Discourse and Dialogue, Saarbrücken, Germany, 15–17 August 2017; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2017; pp. 201–206.

22. Banarescu, L.; Bonial, C.; Cai, S.; Georgescu, M.; Griffitt, K.; Hermjakob, U.; Knight, K.; Koehn, P.; Palmer, M.; Schneider, N. Abstract
Meaning Representation for Sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with
Discourse, Sofia, Bulgaria, 8–9 August 2013; Association for Computational Linguistics: Stroudsburg, PA, USA, 2013; pp. 178–186.

23. Konstas, I.; Iyer, S.; Yatskar, M.; Choi, Y.; Zettlemoyer, L. Neural AMR: Sequence-to-Sequence Models for Parsing and Generation.
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver,
BC, Canada, 30 July–4 August 2017; Association for Computational Linguistics: Stroudsburg, PA, USA, 2017; pp. 146–157.

24. Castro Ferreira, T.; Calixto, I.; Wubben, S.; Krahmer, E. Linguistic realisation as machine translation: Comparing different MT
models for AMR-to-text generation. In Proceedings of the 10th International Conference on Natural Language Generation,
Santiago de Compostela, Spain, 4–7 September 2017; Association for Computational Linguistics: Stroudsburg, PA, USA, 2017;
pp. 1–10.

25. Marcheggiani, D.; Perez-Beltrachini, L. Deep Graph Convolutional Encoders for Structured Data to Text Generation. In
Proceedings of the 11th International Conference on Natural Language Generation, Tilburg, The Netherlands, 5–8 November
2018; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 1–9.

26. Beck, D.; Haffari, G.; Cohn, T. Graph-to-Sequence Learning using Gated Graph Neural Networks. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, 16–18 July
2018; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 273–283.

http://dx.doi.org/10.1109/TNN.2008.2005605
http://www.ncbi.nlm.nih.gov/pubmed/19068426


Appl. Sci. 2022, 12, 369 16 of 16

27. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th Interna-
tional Conference on Learning Representations, ICLR ’17, Toulon, France, 24–26 April 2017.

28. Koncel-Kedziorski, R.; Bekal, D.; Luan, Y.; Lapata, M.; Hajishirzi, H. Text Generation from Knowledge Graphs with Graph Trans-
formers. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 3–5 June 2019; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 2284–2293.

29. Xu, X.; Liu, C.; Song, D. Sqlnet: Generating structured queries from natural language without reinforcement learning. arXiv 2017,
arXiv:1711.04436.

30. Koutrika, G.; Simitsis, A.; Ioannidis, Y.E. Explaining structured queries in natural language. In Proceedings of the 2010 IEEE 26th
International Conference on Data Engineering (ICDE 2010), Long Beach, CA, USA, 1–6 March 2010; pp. 333–344.

31. Ngonga Ngomo, A.C.; Bühmann, L.; Unger, C.; Lehmann, J.; Gerber, D. Sorry, i don’t speak SPARQL: Translating SPARQL queries
into natural language. In Proceedings of the 22nd International Conference on World Wide Web, Riode Janeiro, Brazil, 13–17 May
2013; pp. 977–988.

32. Eriguchi, A.; Hashimoto, K.; Tsuruoka, Y. Tree-to-sequence attentional neural machine translation. arXiv 2016, arXiv:1603.06075.
33. Tai, K.S.; Socher, R.; Manning, C.D. Improved semantic representations from tree-structured long short-term memory networks.

arXiv 2015, arXiv:1503.00075.
34. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
35. Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; Van Den Berg, R.; Titov, I.; Welling, M. Modeling relational data with graph convolutional

networks. In European Semantic Web Conference; Springer: Heraklion, Crete, Greece, 2018; pp. 593–607.
36. De Cao, N.; Aziz, W.; Titov, I. Question answering by reasoning across documents with graph convolutional networks. arXiv

2018, arXiv:1808.09920.
37. Shaw, P.; Uszkoreit, J.; Vaswani, A. Self-attention with relative position representations. arXiv 2018, arXiv:1803.02155.
38. Xiao, F.; Li, J.; Zhao, H.; Wang, R.; Chen, K. Lattice-based transformer encoder for neural machine translation. arXiv 2019,

arXiv:1906.01282.
39. Wang, B.; Shin, R.; Liu, X.; Polozov, O.; Richardson, M. Rat-sql: Relation-aware schema encoding and linking for text-to-sql

parsers. arXiv 2019, arXiv:1911.04942.
40. Li, X.; Yan, H.; Qiu, X.; Huang, X. FLAT: Chinese NER Using Flat-Lattice Transformer. arXiv 2020, arXiv:2004.11795.
41. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In

Advances in Neural Information Processing Systems; MIT Press: Long Beach, CA, USA, 2017; pp. 5998–6008.
42. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
43. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
44. See, A.; Liu, P.J.; Manning, C.D. Get to the point: Summarization with pointer-generator networks. arXiv 2017, arXiv:1704.04368.
45. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems; Vancouver
Convention Center: Vancouver, BC, Canada, 2019; pp. 8026–8037.

46. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
47. Pennington, J.; Socher, R.; Manning, C. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 26–28 October 2014; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2014 ; pp. 1532–1543.

48. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MU, USA, 29–31 July 2019; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 4171–4186.

49. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. BLEU: A method for automatic evaluation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 8–10 July 2002; pp. 311–318.

50. Wołk, K.; Koržinek, D. Comparison and adaptation of automatic evaluation metrics for quality assessment of re-speaking. arXiv
2016, arXiv:1601.02789.

51. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.

http://dx.doi.org/10.1162/neco.1997.9.8.1735

	Introduction
	Related Work
	Model
	SQL Tree Construction
	Encoder Overview
	Relation-Aware Graph Transformer
	Relations among Intermediate Nodes
	Relations among Leaf Nodes
	Cross-Attention between Leaf and Intermediate Nodes
	Decoder

	Experiments
	Dataset
	Experiment Setup
	Baselines
	Main Results
	Ablation Study
	Human Evaluation
	Case Study

	Conclusions
	References

