DeepAttest: An End-to-End Attestation Framework for Deep
Neural Networks

Huili Chen Cheng Fu Bita Darvish Rouhani
University of California, San Diego University of California, San Diego University of California, San Diego
huc044@ucsd.edu cfu@ucsd.edu Microsoft
bita.rouhani@microsoft.com
Jishen Zhao Farinaz Koushanfar
University of California, San Diego University of California, San Diego
jzhao@ucsd.edu farinaz@ucsd.edu

ABSTRACT

Emerging hardware architectures for Deep Neural Networks
(DNNGs) are being commercialized and considered as the hardware-
level Intellectual Property (IP) of the device providers. However,
these intelligent devices might be abused and such vulnerability
has not been identified. The unregulated usage of intelligent plat-
forms and the lack of hardware-bounded IP protection impair the
commercial advantage of the device provider and prohibit reliable
technology transfer. Our goal is to design a systematic methodol-
ogy that provides hardware-level IP protection and usage control for
DNN applications on various platforms. To address the IP concern,
we present DeepAttest, the first on-device DNN attestation method
that certifies the legitimacy of the DNN program mapped to the
device. DeepAttest works by designing a device-specific fingerprint
which is encoded in the weights of the DNN deployed on the target
platform. The embedded fingerprint (FP) is later extracted with the
support of the Trusted Execution Environment (TEE). The existence
of the pre-defined FP is used as the attestation criterion to deter-
mine whether the queried DNN is authenticated. Our attestation
framework ensures that only authorized DNN programs yield the
matching FP and are allowed for inference on the target device.
DeepAttest provisions the device provider with a practical solution
to limit the application usage of her manufactured hardware and
prevents unauthorized or tampered DNNs from execution.

We take an Algorithm/Software/Hardware co-design approach
to optimize DeepAttest’s overhead in terms of latency and energy
consumption. To facilitate the deployment, we provide a high-level
API of DeepAttest that can be seamlessly integrated into existing
deep learning frameworks and TEEs for hardware-level IP pro-
tection and usage control. Extensive experiments corroborate the
fidelity, reliability, security, and efficiency of DeepAttest on various
DNN benchmarks and TEE-supported platforms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA 19, June 22-26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6669-4/19/06....$15.00
https://doi.org/10.1145/3307650.3322251

CCS CONCEPTS

« Security and privacy — Authentication; Security in hard-
ware; - Computing methodologies — Machine learning,.

KEYWORDS

IP Protection, Deep Neural Networks, Software/Hardware Co-
design, Attestation

ACM Reference Format:

Huili Chen, Cheng Fu, Bita Darvish Rouhani, Jishen Zhao, and Farinaz
Koushanfar. 2019. DeepAttest: An End-to-End Attestation Framework for
Deep Neural Networks. In The 46th Annual International Symposium on
Computer Architecture (ISCA ’19), June 22-26, 2019, Phoenix, AZ, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3307650.3322251

1 INTRODUCTION

Deep Neural Networks (DNNs) are increasingly adopted in var-
ious fields ranging from biomedical diagnosis, nuclear engineer-
ing to computer vision and natural language processing due to
their unprecedented performance [10, 14]. Methodological and
architecture-level advancements have been proposed to improve
the performance and efficiency of DNN training/execution on di-
verse platforms [8, 18, 41]. While the distribution of intelligent
devices facilitates the deployment of DNNs in real-world settings,
IP concerns may arise in the supply chain. The customers might
misuse the device for illegal or unauthorized DNN applications. In
this paper, we are motivated to provide hardware-level IP protec-
tion and usage control via on-device DNN attestation to protect the
commercial advantages of the device providers.

Prior works have identified the IP concern in the deployment of
current Deep Learning (DL) models. Various DNN watermarking
techniques have been proposed to prevent copyright infringement
of soft neural IP [7, 12, 48]. The watermark is embedded in the
distribution of weights/activations [12, 48], or the decision bound-
ary [1, 12]. Existing DNN watermarking provides DNN ownership
proof in the software/functionality level while the authentication
overhead and the underlying computing platform are not taken
into account. Developing an efficient and effective on-device DNN
attestation methodology is challenging since the attestation scheme
is required to: (i) Preserve the performance (e.g., accuracy) of the
deployed DNN; (ii) Provide reliable and secure attestation decision;
(iii) Incur low latency and power consumption to ensure applicability
in real-time DNN applications and resource-constrained systems.


https://doi.org/10.1145/3307650.3322251
https://doi.org/10.1145/3307650.3322251

ISCA 19, June 22-26, 2019, Phoenix, AZ, USA

Methods

Summary of different secured DNN evaluation methods

Required platform Workload Footprint of secure Off-line data Online data Latency overhead on |**Size of secure
in TEE memory in TEE tamper tamper CPU (%) copy
X v

Huili and Cheng, et al.

Fully TEE-based DNN *TCPU (SGX) High >1000% 279 MIB
Execution TGPU (Graviton) Entire DNN evaluation All weights and input data
Outsourced TCPU + CPU Medium
(Slalom) TCPU + GPU Non-linear operations of Partial weights and
DNN inference intermediate activations X v 91.6% 271 MB
On-device Attestation TCPU + CPU Low
(Our work) TCPU + GPU Fingerprint extraction Partial weights
TGPU + GPU operations v v 1.3% 28 MB

*TGPU refers to TEE in GPU, TCPU refers to TEE in CPU. Note that GPU can be substituted by other type of co-processor for attestation.

** Measured with 10 images on VGG16 model

Figure 1: Comparison of existing secure DNN techniques and our work.

We develop an end-to-end on-device attestation framework
called DeepAttest to address the above challenges. DeepAttest, for
the first time, extends IP protection to hardware/device-level lever-
aging the support from the Trusted Execution Environment (TEE).
DeepAttest takes the pre-trained model and security parameters
from the device provider as its inputs, provisioning a trade-off be-
tween security level and attestation overhead. A set of verifiable,
functionality-preserved DNNs are returned. The marked models
pass the customized attestation and execute inference on the perti-
nent device. DeepAttest effectively detects malicious modifications
and prevents illegitimate models from execution.

DeepAttest framework consists of two key phases: (i) Marking
stage (off-line): DeepAttest generates a device-specific signature
(fingerprint) associated with each target hardware for the platform
provider and embeds it in the probabilistic distribution of selected
parameters within the deployed DNN. (ii) Attestation stage (on-
line): DeepAttest utilizes a hybrid trigger mechanism to prevent
static and dynamic data tamper. When the attestation is activated,
DeepAttest securely extracts the fingerprint (FP) of the deployed
DL model with TEE’s support and compares it with the true value
stored in the secure memory. The queried DNN is decided to be
legitimate and permitted for normal inference if it yields a match-
ing FP. Otherwise, the DNN program fails the attestation and its
execution is aborted. By introducing DeepAttest, this paper makes
the following contributions:

e Enabling effective on-device attestation for DNN ap-
plications. The proposed end-to-end attestation framework
is capable of verifying the legitimacy of an unknown DNN
with high reliability (preventing unauthenticated DNNs from
execution) and high integrity (allowing legitimate DNNs to

execute normal inference).
e Characterizing the criteria for a practical attestation

in the domain of deep learning. We introduce a compre-
hensive set of metrics to profile the performance of pending
DNN attestation techniques. The introduced metrics allow
DeepAttest to provide a trade-off between the security level

and the attestation overhead.
e Leveraging an Algorithm/Software/Hardware co-

design approach to devise an efficient attestation
solution. Our device-aware framework is equipped with
careful design optimization to ensure minimal overhead
and enhanced security. As such, our solution provides a
lightweight on-device attestation scheme that can be applied

to resource-constrained systems.
o Investigating DeepAttest’s performance on various

DNN benchmarks and TEE-supported platforms. We

perform extensive experiments on DNNs with different
topologies using TEE-supported CPU (Intel SGX) and GPU
(via simulation) platforms.

DeepAttest opens a new axis for the growing research in secure
DL. Our approach is orthogonal to existing secure DL methods that
aim to verify the correctness of DNN execution or preserve the
privacy of sensitive data. DeepAttest paves the way for on-device
attestation and platform-aware usage control for DNN applications.

2 BACKGROUND AND MOTIVATION
2.1 Secure DNN Evaluation on Hardware
TEE Protection Mechanism. Modern CPU hardware architec-
tures provide TEEs to ensure secure execution of confidential ap-
plications using program isolation. Intel SGX [52], ARM Trust-
Zone [31] and Sanctum [11] are examples of TEEs TEEs are called
enclaves in SGX. To prevent malicious programs from interfering
executions in TEE, data is encrypted by Memory Encryption Engine
(MEE) before its is put into the Enclave Page Cache (EPC) located in
the Processor Reserved Memory (PRM). We refer to this process as
secure memory copy. Programs inside the TEE can read or write the
data outside of the TEE while the programs outside of the TEE is
not allowed to access the EPC. TEEs on other platforms utilize sim-
ilar mechanisms to isolate the execution of the protected program
by securing memory access to the code and data of the confiden-
tial program. Besides the CPU-level TEE support, Graviton [49]
proposes an GPU architecture design to provide TEEs.
Comparison between Secure DNN Techniques. Figure 1 illus-
trates the comparison between the state-of-the-art secure DNN
techniques and DeepAttest in terms of platform requirement, in-
curred workload in TEE, resistance to off-line/online data tamper,
and capability of verifying DNN inference results. A quantitative
overhead comparison is given in the last two columns. Detailed
explanations about the of the overhead are given in Section 6.6.
Existing secure DNN inference can be divided into two categories:
full execution inside the TEE, and outsourcing partial computations
from the TEE to untrusted environments. DeepAttest identifies a
new security dimension named ‘device-level’ IP protection and us-
age control. Note that DeepAttest is orthogonal to the techniques
that provide verifiable results and privacy-preserving property. We
discuss the limitation of the present secure DNN techniques below.
» Fully TEE-based DNN Evaluation. A naive way to ensure
trusted DNN inference is to run all computations inside the TEE.
However, such an approach incurs a prohibitive overhead due to: (i)
Limited PRM size in TEEs for execution. For instance, the enclave
memory size of Intel SGX is 128MB, which is much smaller than the



DeepAttest: An End-to-End Attestation Framework for Deep Neural Networks

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

Security
Parameters

=]
- Z
Unknown DNN on 2 E

Device

tart or D
Modified

@ o5 i |

Online Attestation Phase

Extracted BER
FingerPrint Computation

Timestamp

¥

e
;% o=
Key < ) . . e
Generation Keys &, Model Fine-tuning Marked DNN

mapped to decive

I BN

User FingerPrint

DNN
Evaluation

L_BER=0

Figure 2: DeepAttest’s global flow for on-device DNN attestation. In the off-line marking stage, the device manufacture obtains
her secret FP keys and a set of marked DL models. The FP keys are then stored in the secure memory of the TEE on the target
device. The user is required to purchase the marked DNN from the device provider to pass the online attestation and execute
normal inference. Deployment of unauthorized DNN programs and malicious fault injection will be detected.

parameter size of a contemporary DL model (e.g., 189MB for ResNet-
101). As such, the weights need to be reloaded for different inputs.
(ii) Encryption and decryption by MEE. Data that is communicated
with the secure memory needs to be encrypted/decrypted; (iii) Addi-
tional hardware behaviors due to CPU's context switch [19]. Opera-
tions such as flushing TLBs and out-of-order execution pipeline are
necessary for security consideration [11], incurring extra overhead.

= OQutsource-based Secure DNN Inference. Slalom [47] is a
framework for secure DNN execution on trusted hardware that
guarantees integrity. It partitions DNN computations into non-
linear and linear operations. These two parts are then assigned to
the TEE and the untrusted environment for execution, respectively.
Freivalds® algorithm [35] is used to verify the integrity of linear
computations performed on the untrusted GPU. Slalom reduces the
overhead compared to fully TEE-based inference. However, inter-
mediate results need to be transferred into TEE to complete DNN
forward propagation, incurring large communication overhead.

= TEE-based Attestation (Our Work). Unlike the previous
methods, DeepAttest is the first framework that can prevent both
off-line and online data tamper. More specifically, Slalom and fully
TEE-based DNN evaluation can guarantee result integrity and pro-
tect the weight parameters from online data tamper. However, these
two methods are vulnerable to off-line data tamper (e.g., fault injec-
tion) where the attacker modifies the data stored in the untrusted
memory before it is used in the secure DNN inference.

2.2 Motivation

Prior works have focused on model ownership proof using software-
level DNN watermarking [12, 48]. Existing watermarking tech-
niques are oblivious of the deployed platform and verification over-
head, thus the security and efficiency of their execution on the
hardware are not guaranteed (detailed in Section 7). DeepAttest is
motivated to address the above deficiencies. It provides attestation-
based IP protection that is bounded to hardware and restricts device

usage for DNN applications. We identify three challenges of devel-
oping a practical on-device DNN attestation method below.

(C1) Functionality-preserving. The attestation scheme shall not
degrade the performance of the original DL model. Since authenti-
cated DNNs are allowed for normal inference, their functionality
(e.g., accuracy) shall be preserved to provide the desired service.
(C2) Security and Reliability. On-device attestation shall be se-
cure and yield reliable decisions under a strong threat model. Note
that the attack surface of device-level attestation is larger than the
one of software-level attestation.

(C3) Low Overhead. The attestation protocol shall incur negligible
overhead to ensure its applicability in real-time data applications
and resource-constrained systems.

The constraint C1 imposes the algorithm/software-level chal-
lenge on the design. Challenges C2 and C3 need to be resolved from
algorithm/software/hardware all three levels. We explicitly develop
systematic design principles to tackle the identified challenges C1-
C3 as detailed in Section 3.

3 DEEPATTEST OVERVIEW
DeepAttest is the first DNN attestation framework for device IP pro-

tection/usage control and is applicable to any computing platform
with TEE support. Figure 2 illustrates the global flow of DeepAttest.
The target device can be used with a co-processor (e.g., ASIC, FPGA),
in which case usage control can be extended to it. On-device attes-
tation can be performed on the co-processor if it has TEE support.
In this section, we present the Design Principles (DPs) of DeepAttest
to address the corresponding challenges in Section 2.2.

(DP1) Regularization-based DNN Fingerprinting. To preserve
the functionality of the pertinent DNN program (C1), DeepAttest
explores the over-parameterization of high dimensional DNNs and
utilizes regularization to encode the device-specific FP in the DL
model. Regularization [3, 40] is a common approach to alleviate
model over-fitting [39, 44]. We detail the two key phases of Deep-
Attest’s algorithm/software design below.



ISCA 19, June 22-26, 2019, Phoenix, AZ, USA

Huili and Cheng, et al.

Table 1: Requirements for an effective on-device attestation technique of deep neural networks.

‘ Requirements H Description ‘
Fidelity Functionality of the deployed DNN shall not be degrade as a result of FP embedding in the marking stage.
Reliability Online attestation shall be able to prevent unauthorized DNN programs (including full-DNN program substitution and malicious
fault injection) from executing on the specific device.
Integrity Legitimate DNN programs shall yield the matching FP with high probability and run normal evaluation.
Efficiency The online attestation shall yield negligible overhead in terms of latency and energy consumption.
Security The attestation method shall be secure against potential attacks including fault injection and FP forgery.
Scalability The attestation technique shall be able to verify DNNs of varying sizes.
Generalizability || The DNN attestation framework shall be compatible with various computing platforms.

= Off-line DNN Marking. DeepAttest takes the pre-trained DL
model and the owner-defined! security parameters as its inputs.
DeepAttest then outputs the FP secret keys along with the corre-
sponding set of marked DNNs that are ready-to-be-deployed on the
target device. Note that FP embedding is a one-time task performed
by the owner before the authorized models are deployed on the
target device. Furthermore, the secret FP keys stored in the secure
memory can be updated after device distribution. This is feasible
since current TEEs typically support remote attestation (RA) that
allows secure memory update of the TEE. Details about off-line
DNN marking are given in Section 4.1.

= Online DNN Attestation. DeepAttest utilizes a hybrid trig-
gering scheme where a TEE-based attestation process is instantiated
when the static or the dynamic trigger is activated. During the attes-
tation phase, the marked weights data that carries the FP is copied
to the secure memory inside the TEE. The FP is then extracted
from the weights within the TEE. Finally, the Bit Error Rate (BER)
between the recovered FP and the ground-truth one is computed.
The verified DNN with zero BER is allowed to run normal inference.
Illegitimate DL models with non-zero BERs are aborted. Details
about the attestation protocol are discussed in Section 4.2.

(DP2) TEE-based Attestation. Hardware-bounded attestation has
larger attack surface compared to the one in software-level [32]. The
program might be corrupted by the adversary in an untrusted execu-
tion environment. As such, the computation involved in attestation
shall be performed securely. DeepAttest utilizes TEE-supported
trusted hardware to guarantee the security and reliability of the
attestation result (addressing C2, detailed in Section 4.2).

(DP3) Algorithm/Software/Hardware Co-design. We present
multiple design optimization techniques to enhance the efficiency
and security of DeepAttest. As a result, our framework is applicable
to real-time data applications and resource-constrained systems.
DeepAttest’s hardware optimization includes: (i) Data pipeline that
hides the majority of the TEE latency during attestation; (ii) Early
termination that avoids unnecessary computation; (iii) Shuffled
data storage that provides stronger security against fault injection.
These optimization address challenge C3 as detailed in Section 5.

3.1 DNN Attestation Metrics

We introduce a comprehensive set of criteria to evaluate the perfor-
mance of a DNN attestation technique. Table 1 details the criteria
for an effective DNN attestation methodology. Fidelity requires that
the functionality (e.g., accuracy) of the pre-trained model shall not
be degraded after the off-line DNN marking. Reliability and integrity
means that the attestation approach shall prevent unauthorized

!We use owner and device provider interchangeably in the paper.

DNNs from executing (low false alarm rate of FP detection) and
allow normal inference of legitimate DNNs (high detection rate of
the embedded FP), respectively. A reliable attestation method is
also desired to satisfy the security requirement such that the attes-
tation decision is trustworthy. Efficiency requires that the overhead
(i.e., latency, power consumption) incurred by attestation shall be
negligible. Scalability and generalizability ensure that the attesta-
tion method can be applied to DNNs of various size and diverse
TEE-supported hardware devices, respectively. DeepAttest satisfies
all the requirements listed in Table 1 as shown in Section 6.

3.2 Assumptions and Threat Model

DeepAttest’s Assumptions. We aim to design a robust attestation
scheme that yields reliable decisions in various situations. More
specifically, we consider the following three adversarial levels: (i)
Operating System (OS) is trusted and can lock the pages allocated
for the weight data. In this case, the weights in the main memory
will not be tampered or evicted. (ii) OS cannot lock the memory but
is able to provide information about the pages associated with the
weights (e.g., page fault or page modified); (iii) Hardware provides
a trusted timestamp while OS might be corrupted (does not satisfy
the requirements in (i) and (ii)). DeepAttest tackles with the above
scenarios by designing a hybrid trigger from two sources, OS and
the secure timer, as detailed in Section 4.2.

Threat Model. Adversaries might try to bypass the on-device at-
testation. We detail three potential attacks below and demonstrate
the experimental results of DeepAttest’s security in Section 6.

(i) Full-DNN Program Substitution. Untrusted users may at-
tempt to misuse the distributed device by mapping illegitimate
DL model to it. In this case, the adversary is assumed to know
the physical address of the deployed DNN (e.g., by eavesdropping)
and substitutes the original content with his target unauthorized
DNN. DeepAttest is motivated to address the susceptibility of the
intelligent device to such attacks.

(ii) Fingerprint Forgery Attack. In order to successfully pass

the attestation, the attacker might attempt to forge the device-
specific signature stored in the secure memory inside the TEE.
More specifically, the adversary may use brute-force searching and
try to find the exact secret key used in FP embedding to reconstruct
the device’s fingerprint and yield zero BER.
(iii) Fault Injection. Besides the program-level replacement, the
attacker may also conduct more fine-grained memory content mod-
ification attacks. We assume a strong attack model where the ad-
versary might know the memory allocation on the target device
and randomly selects memory blocks for malicious purpose (e.g.,
malware, pirating sensitive information). Such local memory modi-
fication is stealthier than the DNN-program substitution discussed
above and poses potential threats to the intelligent device.



DeepAttest: An End-to-End Attestation Framework for Deep Neural Networks

4 DEEPATTEST DESIGN

DL models typically feature non-convex loss functions with many
local minima that are likely to yield similar accuracy [9]. DeepAttest
takes advantage of the non-uniqueness of non-convex problems to
embed the device’s FP in the distribution of the selected weights.
The embedded FP is later extracted in the attestation phase as
the identifier to determine the legitimacy of the DNN. We use
Convolution Neural Networks (CNNs) and Residual Networks to
illustrate DeepAttest’s workflow. Note that DeepAttest is generic
and can be applied to other network architectures. We detail the
two key stages discussed in Section 3 below.

4.1 Off-line DNN Marking

Algorithm 1 outlines the steps involved in DeepAttest’s off-line
DNN marking (i.e., FP embedding) for one intermediate layer. The
extension to multi-layer fingerprinting is straightforward. DeepAt-
test’s DNN marking consists of the following three steps:

ALGORITHM 1: Fingerprint embedding for one hidden layer.

INPUT: Pre-trained unmarked DNN (7°); Training data
({xtrain ytrain}). ] ocation of the target layer (/) with
embedding dimension (N); Code length (v); Resilience
level (k); Embedding strength (y).

OUTPUT: A set of marked DNNs ({7,". ... 7" |); FP keys.

@ Key Generation:
Cyxp — Construct_Codebook (v, k, 1)
Uyxoy < Generate_Basis_Matrix (v)
XuxN « Generate_Projection_Matrix (v, N)

e Fingerprint Construction:
Fyxp < Construct_Fingerprints (C,U)

Model Fine-tuning: For each user j (j = 1, ..., b), train the DNN
on {X!rain ytrain} with the corresponding FP-specific loss:

L =Ly + y-Mean_Square_Error(fj — Xw;).

Return: Marked DNNs ({‘7}*, s 7;7*}), FP keys
(l» Cvxb’ Uvxw, vaN)-

o Key Generation. Besides the position of the target layer that
carries the FP, DeepAttest’s FP keys consist of three components: a
codebook C, an orthogonal basis matrix U, and a projection matrix
X. We explain the design of each component as follows:

(i) Devices Codebook: Given the code length v and the maximal
number of supported users b specified by the owner, DeepAttest
generates a codebook C € BY*? for the device provider. The code-
book is randomly generated where each column of C is a unique
code-vector associated with a specific device. The code-vector is
stored in the secure memory within the TEE on the target hardware.
(ii) Orthogonal Basis Matrix: The orthogonal matrix Uyxy is
generated from element-wise Gaussian distribution for security
consideration [51]. The columns of U are used as the basis vectors
for FP construction in step 2.

(iii) Projection Matrix: The owner’s secret projection matrix
XoyxN is generated from standard normal distribution N(0, 1) where
N is the embedding dimension of the target layer. We explicitly
illustrate the design of FP carrier for convolutional (conv) layers
and fully-connected (FC) layers below:

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

= Convolutional Layer. The weight matrix of a conv layer is a
4D tensor W € RPXDXFXH here D is the kernel size, F and H is
the number of input and output channels, respectively. We average
the weight W over the output channel dimension and stretch the
result to a vector w. The FP is embedded in the projection of the
vector w € RN (detailed in step 3) where the embedding dimension
isN=DXDXF.

= Fully-Connected Layer. The weights of the FC layer is a 2D
matrix Wrx g where F is the input dimension and H is the number
of units. Similar to the processing for conv layers, we average W
over the last dimension and use the resulting vector w € RN to
carry the FP. Note that the embedding dimension N = F here.

2] Fingerprint Construction. DeepAttest constructs code mod-
ulated FPs as follows. Given the codebook C,}, obtained in step
1, the coefficient matrix B,y for FPs is computed from the linear
mapping b;; = 2¢;; — 1 where ¢;; € {0,1}. For jt" user, the corre-
sponding FP is crafted as the linear combination of basis vectors in
U (obtained in step 1) with bj € Z){il}v as the coefficient vector:

fj = Zbijlli, (1)
i=1

© Model Fine-tuning. The FP designed from Equation (1) is
embedded in the weight parameters of the selected layer in the
pre-trained model by incorporating the FP-specific embedding loss
to the conventional loss function (£):
L =Ly +y Mean_Square_Error(f — Xw). (2)
Here, y is the embedding strength that controls the contribution
of the additive FP embedding loss Lrp = Mean_Sqaure_Error(f —
Xw). The vector w is the flattened averaged weights of the target
layers that carry the FP information. DeepAttest minimizes Lrp
together with the conventional loss during DNN training to enforce
the FP constraint in the distribution of weights in the selected layer.

4.2 Online DNN Attestation

The secret FP keys generated from the off-line marking stage are
stored in the secure memory inside the TEE. The returned DL
models that carry the device-specific FPs are deployed on the target
platform and stored in the untrusted memory for later execution.
Algorithm 2 outlines the two main steps in the online attestation
stage. It takes the FP keys and the weights in the marked layers
as the inputs. The BER between the extracted FP from the queried
weights and the ground-truth FP (included in FP keys) is returned
as the output. We detail each step as follows.

Hybrid Attestation Trigger. DeepAttest leverages a hybrid
trigger mechanism for activating DNN attestation as shown in Fig-
ure 2. A static trigger signal is generated when the OS detects that
a DNN program requests to start. it enables DeepAttest to prevent
off-line data tamper if the attacker tries to modify the memory con-
tent stored in untrusted environment. During program execution,
the dynamic trigger is generated from two sources: (i) Memory
change signal provided by OS monitoring. OS keeps monitoring the
status change of pages allocated for the DNN program and raises
a dynamic trigger signal if any online data pages modification is
detected; (ii) A timestamp signal from the trusted timer [23]. The
dynamic trigger from the secure timestamp has a fixed interval
and provides enhanced security when the OS memory monitoring
signal is tampered. Incorporating the dynamic triggering scheme is



ISCA 19, June 22-26, 2019, Phoenix, AZ, USA

important to enable online data tamper detection. The final trigger
signal is the logic-OR of the static and the dynamic signal. DeepAt-
test is able to detect both off-line and online data tamper due to the
incorporation of the static and dynamic trigger, respectively.

Secure Fingerprint Detection. When the trigger is enabled,
the queried DNN program is suspended until the attestation fin-
ishes. The fingerprint of the DL model is extracted with the TEE
support and compared with the true value stored in the secure
memory. More specifically, DeepAttest first acquires the weights
of the marked layer by moving them from the untrusted memory
into the secure memory within the TEE. Meanwhile, OS locks the
pages allocated for the queried DNN program if it has the capability.
The core of the online attestation is recovering the code-vector
ce {0,1}? from the weight data W. This reconstruction involves
matrix multiplication and an element-wise hard-thresholding as
shown in Algorithm 2. Note that the recovering of each bit in ¢
is independent, DeepAttest leverages this observation from two
perspectives (detailed in Section 5.2): (i) Data pipeline: DeepAttest
utilizes data independence for parallel computation, thus reduces
the attestation latency; (ii) Scalability: DeepAttest allows transfer-
ring partitioned blocks of the weight data into the secure memory
in TEE. As such, DeepAttest attestation can be applied to arbitrary
large DL model and TEE platforms with limited secure memory.

Algorithm 2 Fingerprint extraction in the attestation stage.

INPUT: Queried DNN (.7'); Decoding threshold (7);
Owner’s FP keys ({/, C, U, X}).
OUTPUT: Computed BER of fingerprint matching.
Trigger Generation: Produce a hybrid trigger signal:
Sh_vbrid — Ssmric \ denmnic
E if Shybrid == True then
Acquire weights in the marked layer:
W'« Get_Marked_Weights (7 'l )
Extract the FP vector: f' + Xw/
Recover the coefficient vector: b’ « f7U
Decode the code-vector:
¢ < Hard_Thresholding M, 1)
Check FP matching:
BER « Compute_BER( ¢ ,¢)
Return: Obtained BER for FP matching.

3: else
Go back to step 1

= Attestation Case Study: We demonstrate how DeepAttest au-
thenticates a DNN program using the extracted FP below. Let us
consider a codebook C7x7 shown in Equation (3). The FPs for 7
users shown in Equation (4) are constructed using the columns of
the codebook C and the basis matrix U as described in Section 4.1.

000 0 1 1 1 1
001 1 1 0 1 1
101 0 1 0 1

c=lo 1 1 1 1 0 o, 3)
1100 1 1 0
101 10 1 0
1101 0 0 1

Huili and Cheng, et al.

f1 =—-uj —uz +uz —ug +us +ug +uy,

4)

fg = +uy +up —us —ug +us +ug — uy,
f7=+ll1 +uz +u3 —ug —u5 —ug + Uy,

Let us take the first device FP as an instance where the ground-truth
FP (f1) is stored in the secure memory. For a legitimate DNN pro-
gram whose weights carry the FP vector f =1, the corresponding
coefficient vector can be recovered by computing the correlation
with the basis vectors:

’ /T
b =f [ug,..,u7] =[-1,-1,+1,-1,+1,+1, +1].

The code-vector is then extracted by the inverse linear mapping
cij = %(bij + 1), resulting in ¢ = [0,0,1,0,1,1,1]. Since the recov-
ered code-vector ¢ exactly matches ¢q (first column of the code-
book in Eq. (3)), DeepAttest returns BER = 0 and allows the queried
DNN program to execute normal inference. This example shows
that DeepAttest respects the integrity requirement in Table 1 can
effectively detect the embedded FP in the legitimate DNN. Further-
more, the computation required to recover the FP code-vector is
simple, rendering DeepAttest lightweight.

Note that for the first device, any DNN program that cannot yield
a matching code-vector (thus non-zero BER) will be aborted by our
attestation protocol. As such, DeepAttest also satisfies reliability
requirement by terminating unauthorized DNN programs. The
secret FP keys are stored in the secure memory inside the TEE and
is tamper-resistant, suggesting DeepAttest’s security.

5 DEEPATTEST OPTIMIZATION

DeepAttest framework integrates innovative hardware optimiza-
tion techniques to ensure high security (Section 5.1) and efficiency
(Section 5.2). We explicitly discuss two design optimization below.

5.1 Shredder Storage

DeepAttest utilizes a ‘shredder’ storage format instead of continu-
ous storage to provide stronger security against the fault injection
attack. More specifically, DeepAttest shuffles the weights and stores
the resulting data in the untrusted memory. Note that the shuffling
pattern is determined by the owner in the off-line stage, thus the at-
tacker has no knowledge about the locations of the marked weights.
This method is intrigued by the idea of Oblivious RAM (ORAM)
where the memory blocks are duplicated and shuffled to hide the
memory access pattern from adversary [16]. However, we consider
a different scenario where data shuffling is performed inside the
model parameters to prevent fault injection.

Figure 3 illustrates the intuition of higher security using shredder
storage. When the marked weights are stored continuously, the
adversary can easily find a safe position to inject malicious memory
blocks without overlapping with the marked region (shadowed
area). If the blocks containing the marked weights are shuffled, our
online attestation scheme is more likely to yield a non-zero BER
and abort the program.

DeepAttest enforces a theoretical upper bound on the success
rate (17) of the attacker who aims to perform fault injection while
ensuring BER=0 in the attestation stage. We formulate the mathe-
matical problem as follows. Assuming all weight parameters of the
deployed DNN takes N memory blocks where n of them carry the



DeepAttest: An End-to-End Attestation Framework for Deep Neural Networks

k
n
—

ion
Failed @

[T T T TTTTT]
- J
Shreadder
model size = N Granularity

Shredded storage W Attestation (p) g

Continuous Injection OO T IEITEL] Success embeded

Continuous storage
Continuous Injection

@ @ @ @ Attestation (c)
Shredded storage Fault

Random Injection Injection

Figure 3: Security optimization using shredder storage

device-specific FP information. The attacker tries to inject k seg-
ments of equal size (s blocks) into the memory while still be able to
pass the online attestation. We assume the attacker does not know
the storing pattern of weights and randomly inserts his malicious
blocks into the memory. One can see that the intervals between the
adjacent marked blocks determine the success probability of the at-
tacker. DeepAttest’s shredder storage independently and randomly
allocates each marked block, thus the distribution of the locations
of the marked blocks can be modeled as a Poisson Process with the
rate A = £. As such, the interval X between the neighboring two
marked blocks is a random variable with the distribution function:
PX >s)=e ™. (5)
For n marked blocks, the corresponding interval sequence has
length n + 1, thus can be denoted as Sx = {X1, X2, ..., Xn+1}. Recall
that X; are i.i.d and satisfies exponential distribution parameterized
by A. To successfully insert a single segment, the adversary can
only select the intervals which have values equal or larger than
the segment size s. The number of such intervals satisfying the
constraints {X; € Sx,X; > s} is a random variable with Binomial
Distribution. More specifically, B is a binomial distributed random
variable where n + 1 independent trials are conducted with the
success rate p = P(X > s) given in Equation (5) for each trial:

P(B =b)=Cpyp’(1-p)"170 (©)
Combining the above analysis, the success rate of attacker (param-
eterized by s and k) can be computed as:

n+1 Clbc
P,=» P(B=b)- . 7
a bz;c ) 7 )
= n+1

DeepAttest provides a tunable security level against fault injec-
tion by selecting the parameter A and the upper bound on the attack
success rate P, < n. Figure 4 illustrates the detection performance
of DeepAttest’s shredder storage. The x-axis is the injection ratio
defined as ¢ = 3 and the y-axis is the marked ratio A = £. In-
creasing the injection ratio or the marked ratio results in lower
attack success rate. Figure 4 suggests tne trade-off between the
resistance against fault injection (tolerated injection ratio) and the
DeepAttest’s overhead (marked ratio for fingerprinting).

5.2 Efficient Attestation

m Customized Attestation Interval. As described in Section 4.2,
DeepAttest utilizes both static and dynamic trigger signals to acti-
vate the attestation. Such a hybrid triggering mechanism provides a
trade-off between security and efficiency. Intuitively, checking the
FP with a smaller interval gives stronger security while incurring
larger overhead. The device provider can leverage this trade-off to

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

0.5 T .

(<} o 7=0.1
= o 7=0.2
© Ui

x 04 7
H

X

=

©

=

®

£

£

=

8.01 0.015 0.02 0.025 0.03 0.035 0.04
Injection Ratio
Figure 4: DeepAttest’s detection performance of fault injec-
tion. The relation between the injection ratio and the mini-
mal marked ratio with varying attack success rate is shown.

customize the configuration of the attestation trigger in her device
based on her resource budget and the desired security level.

» Data Pipeline Due to the limited size of enclave memory, we
pipeline secure memory copy and the FP computation in TEE as
shown in Figure 5. To this end, we create two pipelined TEE threads
to move the partitioned weight data into the TEE and extract the
FP, respectively. The enclave memory occupied by FP extraction is
freed once the computation is finished and no intermediate results
need to be stored. As such, the weight parameters of large sizes
can be easily fitted into the enclave memory. Note that our pipeline
optimization is feasible since the reconstruction of each bit in the FP
is independent and parallelizable as discussed in Section 4.2. Such a
data partitioning scheme further improves DeepAttest’s scalability.
= Early Termination. To further reduce the attestation overhead,
we avoid unnecessary computation and communication using early
termination. More specifically, the online attestation terminates
and yields the abortion command once a mismatch between the
extracted FP segment and the pre-specified device-specific FP is
detected as shown in Figure 5.

Thread 1| M y Copy

Memory Copy l" y Copy |MemoryCopyl%th

Thread 2 Compute

Compute Compute

Checking
Failed

Figure 5: Illustration of DeepAttest’s data pipeline and early
termination for TEE-based attestation.

6 EVALUATIONS

We assess the performance of DeepAttest according to the require-
ments discussed in Table 1. A codebook Cs31x31 that accommo-
dates 31 users is used in our experiments. Without explicit hyper-
parameter tuning, we set the embedding strength to y = 0.1 and
fine-tune pre-trained DNN for 5 epochs with the learning rate in the
last stage for off-line DNN marking. The threshold for code-vector
extraction is set to 7 = 0.85. We investigate DeepAttest’s perfor-
mance on Intel-SGX (TEE-support CPU platform) and Graviton-
based TEE simulation (GPU platform) [49]. DeepAttest is orthog-
onal to the existing secure DNN evaluation techniques shown in
Figure 1 and we provide a horizontal overhead comparison in Sec-
tion 6.6. Details about the hardware platforms and DNN bench-
marks are discussed below.

Experimental Setup. To evaluate DeepAttest on TEE-supported
CPUs, we use SCONE [2], a secure container with Intel SGX [52]
execution support. When the hybrid trigger is activated, DeepAttest



ISCA 19, June 22-26, 2019, Phoenix, AZ, USA

instantiates an attestation process as an enclave inside the SGX en-
gine. We use a host desktop with a i7-7700k processor and measure
the energy consumption using pcm-monitor utility.

For the evaluation on trusted GPU, we build a TEE simulator for
GPUs based on the architecture design proposed in Graviton [49]
since there are no existing TEE-supported GPUs available. GPU
can use the device driver to monitor the state of pages inside its
memory [49], thus providing DeepAttest with the trigger signal for
attestation. Our TEE-supported GPU simulator restricts the size of
the secure memory to 300MB using memory partition technique. To
ensure isolation, our simulator performs encryption and decryption
on the data interacting with the secure memory. More specifically,
the weight data stored in the untrusted DRAM is first encrypted by
our GPU simulator using authenticated encryption (AES in GCM
mode) and copied to the secure memory [49]. The resulting data
is then decrypted before it is used in TEE-based FP extraction in
the online attestation stage. The encryption and decryption latency
follows the [45]. We use Nvidia RTX 2080 as the GPU base and
measure the power consumption using nvidia-smi utility.

DNN Benchmarks Summary. We corroborate DeepAttest’s ef-
fectiveness on various DNN benchmarks and summarize them in
Table 2. Since DeepAttest utilizes a hybrid trigger whose overall
activation interval is uncertain, we assume the average trigger in-
terval is f = 100, meaning that the attestation is run once every
100 images. We emphasize that DeepAttest enables the owner to
customize the trigger configuration and show the attestation over-
head under different intervals in Section 6.5.3. We set the minimal
marked ratio to A, = 0.1, ensuring a maximal success rate of fault
injection 7 = 0.1 under injection ratio ¢ > 0.04 (Figure 4).

Table 2: Evaluated benchmark summary.

Multiply-Add

Benchmark Dataset Mo?\;;&ze Operations Marked}\}[,;yer Size
(MB) ntops) (MB)
MNIST-CNN | MNIST [29] 13 24 0.13 (10.1%)
CIFAR-WRN | CIFAR10 [28] 24 198 0.29 (12.3%)
VGG16 ImageNet [13] 276.7 25180 28.3 (10.2%)
MobileNet | ImageNet [13] 8.4 569 1.05 (12.6%)

DeepAttest API. Our end-to-end solution provides a highly-
optimized API compatible with current DL frameworks and can
perform the two key phases in Algorithm 1 and 2. Furthermore,
DeepAttest API provisions tunable security level and attestation
overhead by allowing the owner to specify the security parameters
including the TEE platform (CPU/GPU/other co-processors) for
attestation, upper bound on fault injection success 7, tolerated in-
jection ratio ¢, code-vector length v, and the trigger configuration.

6.1 Fidelity

Table 3 shows the test accuracy of the baseline model and the corre-
sponding marked model for each benchmark in Table 2. The marked
accuracy is the average value of the total 31 fingerprinted models.
One can see that the accuracy of the marked model is comparable
to the one of the baseline model, indicating that DeepAttest’s off-
line marking phase preserves the functionality of the pre-trained
model. Slight accuracy improvement can be observed in several
benchmarks. This is due to the fact that adding regularization to
the training process helps to mitigate model over-fitting [12, 44].

6.2 Reliability and Integrity
= Reliability. The reliability criterion requires that the unauthenti-
cated DNN program shall not be allowed for execution, which is

Huili and Cheng, et al.

equivalent to yielding a non-zero BER for the queried model in the
online attestation stage. We consider the following two sources of
an illegitimate DNN: (i) Arbitrary unmarked DNN programs. The
malicious user may intend to overuse the device by executing a DL
model that is not authorized by the owner; (ii) Fault injection into
an authenticated DNN program. The adversary may perform fault
injection on the legitimate DNN program for malicious purpose
(e.g..malware insertion). Note that the first scenario can be consid-
ered as a special case of the second one where the level of faulty
injection is sufficiently large.

To evaluate DeepAttest’s reliability under the above unintended
modifications, we add random Gaussian noise with zero mean,
different standard deviation (magnitude of noise) and different
spatial range (percent of modified elements) to the weight matrix in
the marked layer. Figure 6 shows the resulting BER of the extracted
FP after adding noise to the weights in the marked conv layer and
the marked FC layer. One can see that the extracted BER becomes
non-zero for small values of noise range and noise magnitude,
indicating that DeepAttest can effectively forbid the maliciously
modified DNN program from execution.

Mark FC Layer Mark Conv Layer

05
& 05 i 05 04
o4 ‘ 04
- P ‘VQ' ‘ °
03! /‘" “"‘ g03, l& A’ll‘ f'v
g S ‘ < 03
oz l ',/"\ “y“)“ o2 ' ' , \» ‘»
Z o z 0.2
10 10,
1
6 6 0.8 0.1
Noise std 4 o5 ° ise std* N
oise s 2 oo 02 0.4 Noise range Noise std ~ 2 00 0.2 " Noise range

Figure 6: Reliability assessment under noise.

n Integrity. The integrity criterion means that the legitimate DNN
program shall be able to pass the attestation and execute normal
inference. Such a requirement suggests that the attestation protocol
shall yield a high FP detection rate (BER=0) for marked models.
Figure 6 indicates that DeepAttest respects the integrity criterion
since the BER is zero when no noise is added to the marked weights.

6.3 Security

DeepAttest is secure against fingerprint forgery attack. To construct
a DNN program that has the same device FP as the one stored in
the secure memory inside the TEE, the adversary needs to know:
(i) The DNN marking method (i.e., Algorithm 1); (ii) The secret
projection matrix X, orthogonal matrix U, and the code-vector c; (iii)
Memory addresses of the marked weights stored in shredder storage
format. Using brute force search to find all the above information
is prohibitively expensive. DeepAttest might be compromised if
the underlying TEE is attacked. For instance, Intel SGX has been
identified to be vulnerable to side-channel attacks [6, 30]. To address
the susceptibility, hardware- and software-based defenses have been
proposed [30, 33]. DeepAttest is orthogonal to these methods and
can be further secured when integrated with them.

6.4 Qualitative Overhead Analysis

We provide a qualitative analysis of the DeepAttest’s overhead.
Since the DNN marking is an off-line, one-time process, we focus
on the overhead in the online attestation phase here. Recall that the



DeepAttest: An End-to-End Attestation Framework for Deep Neural Networks

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

Table 3: Fidelity requirement. The baseline accuracy is preserved after fingerprint embedding in the underlying benchmarks.

Benchmark MNIST-CNN [25] | CIFAR-WRN [48] VGG16 [42] MobileNet [20]
Setting Baseline | Marked | Baseline | Marked | Baseline | Marked | Baseline | Marked
Test Accuracy (%) 99.52 99.66 91.85 92.03 91.20 91.23 85.83 85.75

weights in the marked layers are transferred from the untrusted
memory to the secure memory inside the TEE to extract the FP
as outlined in Algorithm 2. The data communication overhead is
O(NH) where N is the embedding dimension and H is the number
of output channels/units as described in Section 4.2. To reduce
attestation computation overhead, DeepAttest pre-computes the
product XTU used in FP extraction (b « w7’ -XTU in Algorithm 2).
As such, the computation complexity of online attestation is O(vN).
The above overhead analysis holds for both conv and FC layers.

6.5 Efficiency

We use the latency and energy consumption per image on the
untrusted CPU/GPU as the base value and measure the relative
overhead of DeepAttest. As shown in Figure 7, DeepAttest incurs on
average 7.2% and 4.4% relative latency overhead on the TEE-support
CPU and GPU platforms across all benchmarks, respectively. The
average energy overhead of DeepAttest is 4.1% and 1.2% for CPU
and GPU devices. The normalized energy overhead incurred by
DeepAttest is low since the power in the attestation is much smaller
compared to one of DNN inference on a given platform. The nor-
malized overhead of DeepAttest depends on the DNN architecture
for both TEE-supported CPU and GPU platforms. More specifically,
DeepAttest incurs smaller latency and energy overhead on DL mod-
els with larger size (parameter count) and more operations. This
is due to the fact that small DNNs (e.g., MNIST-CNN) have lower
base overhead compared to large models (e.g., VGG16). Comparing
the overhead on different platforms, DeepAttest is more efficient
when executed in the TEE in GPUs than CPUs.

| H Latency O Energy |
=
?;3 6
£a
MNIST-CNN CIFAR-WRN VGG16 MobileNet Mean
(a)
§10 12.9
= 8
T 6
£ 4 I
g2 ﬂ
3 0 .!_| [ - m_ 1
MNIST-CNN CIFAR-WRN VGG16 MobileNet Mean

(b)

Figure 7: DeepAttest’s normalized latency and energy over-
head on TEE-supported (a) CPU and (b) GPU platforms.

6.5.1 Overhead Breakdown. To better understand the source and
bottleneck of attestation overhead, we analyze the individual run-
time of secure memory copy and FP extraction computation. Fig-
ure 8 shows the runtime contribution of these two processes. One
can see that secure memory copy dominates DeepAttest’s overhead
in small benchmarks. This is due to the fact secure memory copy
involves data loading/encryption and assistant operations executed
when entering and exiting an enclave [19]. DeepAttest’s secure

computation is lightweight since: (i) Secure memory reading is
faster than writing [50]; (ii) The involved operations are simple
(described in Algorithm 2). The overhead of secure FP computation
is affected by the dimensionality of the marked weights, thus varies
across different benchmarks as detailed in Section 6.5.3.

c l Secure Copy O Secure Computation
3100%
)

2

= 75%
o

@ 50%
Q

:E 25%
s

x 0%

MNIST-CNN  CIFAR-WRN VGG16 MobileNet

Figure 8: Runtime contribution breakdown of DeepAttest on
Intel SGX without dataflow optimization.

6.5.2 Optimization Improvements. We optimize DeepAttest’s
dataflow using data pipeline as discussed in Section 5.2 to hide
the latency of secure FP computation Figure 9 illustrates the ef-
fectiveness of data pipeline to reduce the attestation latency. On
average, DeepAttest’s optimized dataflow engenders 1.42X speedup
and further improves its efficiency. Early termination optimization
also helps to reduce the overhead. According to Algorithm 2, it is
intuitive that the amount of overhead saving benefited from early
termination is approximately linear with respect to the position of
the first identified FP mismatch segment.

2x
1.5x

1
0.5x
0x

MNIST-CNN CIFAR-WRN  VGG16 MobileNet
Figure 9: Speedup of DeepAttest’s data pipeline optimization
for secure FP extraction on Intel SGX.

Speedup
x

Mean

6.5.3 Sensitivity Analysis. m Sensitivity to attestation interval.

DeepAttest leverages a hybrid trigger mechanism to activate the
attestation as discussed in Section 4.2. Recall that we denote the
average activation interval of the hybrid signal as f (one round of
attestation every f inputs). Figure 10 shows DeepAttest’s overhead
with various attestation interval f on CIFAR-WRN benchmark
and Intel-SGX platform. One can see that DeepAttest’s overhead
decreases linearly when f increases. Higher trigger interval results
in smaller normalized attestation overhead for arbitrary DNNs. For
instance, the relative latency overhead drops to 1.1% on CIFAR-
WRN when f = 800.

» Sensitivity to the the marked ratio. The possible values of
marked ratio A for a specific DNN are discrete since DeepAttest
performs FP embedding with the granularity of a single layer. Given
the owner-specified security level 1 and the tolerant injection ratio
¢, DeepAttest finds the minimal marked ratio A5, (Section 5.1) and
the optimal combination of layers that yields the minimal latency.



ISCA 19, June 22-26, 2019, Phoenix, AZ, USA

[ ®latency OEnergy

N

o
B
o

=

w
N W
o o

w

Overhead (%)
=
o
Latency Overhead (%)
=
o

IH s .

50 100 200 400 800

o
o

0 10 20 30 40 50 60 70 80 90 100

Am (%
5 m

)
Figure 10: Sensitivity of DeepAttest’s normalized overhead
to the (a) attestation interval f, (b) minimal marked ratio
Am on CIFAR-WRN (tested on Intel-SGX).

A large marked ratio A (i.e., percentage of marked weights) results
in a larger latency overhead as shown in Figure 10 (b). Note that A
also impacts the security level of DeepAttest against fault injection
as discussion in Section 5.1, thus providing a trade-off between
overhead and security.

= Sensitivity to kernel size. DeepAttest’s overhead is affected
by the kernel dimension of the marked layer as we analyze in
Section 6.5. Figure 10 shows the breakdown of relative runtime
overhead for TEE-based attestation and evaluation process as the
kernel size changes. For attestation of a conv layer, the runtime over-
head is dominated by secure memory copy. However, the runtime
discrepancy between secure copy and secure computation becomes
smaller as the kernel size increasing since the contribution of the
fixed overhead in secure copy (extra hardware operations) is re-
duced. For TEE-based inference, the runtime of conv kernels is
dominated by secure computation. As for FC layers, secure mem-
ory copy is the performance bottleneck for both TEE attestation
and evaluation due to the large parameter size.

‘ l Secure Copy [J Secure Compute ‘

c
3100%
o
T 80%
==
O 60%
0 409
£ 20%
=]
5 0%
g3 HERIER KB
g g g g
w w w w w
Conv Conv Conv Conv FC FC

(32,32) (64,64) (128,128) (256,256) (512,512) (10%4096) (4096,1024)

Figure 11: Runtime (relative) breakdown of TEE attestation
and evaluation with varying kernel size on Intel-SGX with-
out dataflow optimization. We use conv(F, H) to denote a con-
volutional layer with size (3, 3, F, H), and FC(F, H) to denote a
fuly-connected layer with size (F, H), respectively.

6.6 Comparison with Related Works

In this section, we compared DeepAttest with the state-of-the-art
secure DNN evaluation techniques listed in Figure 1. Note that
DeepAttest aims to address a new security concern (i.e., hardware-
level IP protection and usage control) for DNN applications that has
not been identified by previous works. DeepAttest is orthogonal to
the existing secure DNN techniques that target at different vulner-
abilities of DL models and can be easily integrated within them. As
such, we present a horizontal performance comparison to demon-
strate the relative overhead required by different security/privacy-
protection DNN methods.

Huili and Cheng, et al.

In our experiments, we use the open-sourced code of [47] to eval-

uate the performance of Slalom which aims to verify the integrity
of DNN evaluation. Slalom requires quantization of all weights
and input data to satisfy their finite-field assumption. We adhere
to the quantization technique and the pre-processing method that
yields the highest throughput in [47] throughout our experiments.
We emphasize that our framework does not require any model
compression. As such, our assessment of DeepAttest’s overhead
is conservative. We use the trusted GPU simulator discussed in
Section 6 in the experiments requiring TEE-supported GPU. The
design optimization discussed in Section 5 are used. We detail the
comparison with related works below.
6.6.1 Comparison of Secure Memory Copy. Figure 12 illustrates
the theoretical (minimal) size of secure memory copy required by
different secure DNN techniques assuming the TEE is not memory-
bounded. Slalom [47] incurs large overhead of secure memory copy
since it outsources linear operations of DNN inference to the un-
trusted GPU. Therefore, all intermediate activations need to be
transferred into the TEE to complete non-linear operations. This
results in an approximately linear secure copy size with respect
to the number of evaluated images as shown in Figure 12 (a) and
(b). Fully TEE-based DNN evaluation only requires to transfer all
weight data and input data, thus is less sensitive to the number
of inputs. DeepAttest’s memory copy size is not sensitive to the
number of inputs since it adopts a hybrid triggering scheme where
the attestation is performed every batch of f images. Furthermore,
the secure copy size of DeepAttest is small for a given attestation
interval due to the deployment of shredder storage optimization,
which ensures security for a smaller value of the marked ratio A.

- 6 i 4.98
o 1
4
E 2.38 : 2.44
) :
@ 030 050 1 0.30
0 | —— m— f—
1 Image @ 10 Images
300 276.70 | 271.13 279.70
[--]
S 200 :
~ 1
& 100 !
] 28.33 27.11 ' 28.33
0 1 I P
1 Image (b) 10 Images
‘ O DeepAttest B Slalom O Fully TEE ‘

Figure 12: Comparison of the theoretical secure memory
copy size to the TEE required by different secure DNN tech-
niques on (a) CIFAR-WRN and (b) VGG16 benchmark.

6.6.2 Comparison of Latency. w Overhead on CPU-based Infer-
ence. Figure 13 shows the normalized latency required by different
secure DNN evaluation methods and DeepAttest where the baseline
inference is performed on the untrusted CPU. Implementing DNN
inference fully inside TEE is on average 12.34X slower than the
baseline evaluation on the untrusted CPU. Slalom [47] outsources
linear operations to the untrusted CPU and non-linear parts to
Intel-SGX, resulting in an average normalized latency of 1.72X to
provide verifiable results. DeepAttest incurs negligible relative la-
tency of 0.7% and 1.9% on VGG16 and MobileNet respectively, thus
is highly efficient.



DeepAttest: An End-to-End Attestation Framework for Deep Neural Networks

6x 13.869
>
(%]
€ 4x
2
© 1.690
— 2x 1.000 1.007 -

0x

(a)

6X 10.815
§4x
2 2.143
82x| 1000 1.019 -

0)( (b)

[JBaseline M TCPU Attest B TCPU Slalom [ Fully TCPU \

Figure 13: Comparison of relative latency between different
secure DNN techniques when the inference is run on CPU.
VGG16 (a) and MobileNet (b) are evaluated.

= Overhead on GPU-based Inference: Figure 14 shows the nor-
malized overhead of different secure DNN methods and DeepAttest
where the baseline inference is performed on the untrusted GPU.
Full DNN inference in the TEE-supported GPU results in an aver-
age normalized latency of 8.75X due to the overhead of isolated
execution and secure memory access. In this setting, Slalom [47] out-
sources the linear operations to the untrusted GPU and computes
the nonlinear part in Intel-SGX (TCPU), resulting in a normalized
latency of 6.43x and 5.69x on VGG16 and MobileNet, respectively.
DeepAttest can perform the FP extraction computation either
in the trusted CPU or the trusted GPU if the TEE exists on the
pertinent GPU. More specifically, DeepAttest results in 19.1% and
15.7% additional latency when attesting VGG16 and MobileNet on
the TEE-supported CPU (Intel-SGX), respectively. Alternatively,
DeepAttest can attest the target DNN program using the TEE sup-
port inside the GPU to avoid data communication between CPU
and GPU. In this case, DeepAttest incurs only 1.3% and 1.8% extra
latency on VGG16 and MobileNet, respectively.
10x 3
> 8x ‘ 6.429
6x
4x

2x 1.000 1.013 1.191
0x
(a)

12.372

Latenc

10x
8x
6Xx
4x

2X 1.000
0x

5.690 5.121

Latency

1.018 1.157
(b)

C1Baseline [JTGPU Attest M TCPU Attest B TCPU Slalom [ Fully TGPU |

Figure 14: Comparison of normalized latency incurred by
different secure DNN methods when the inference is run on
GPU. VGG16 (a) and MobileNet (b) are assessed here.

7 RELATED WORK

= DNN Watermarking. A line of research has focused on address-
ing the soft-IP concern of DL models using digital watermark-
ing [1, 12, 34, 48]. The authors in [48] encode the WM in the trans-
formation of weights by adding constraints to the original objective

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

function. [1, 34] extend DNN watermarking to remote cloud ser-
vice. They craft specific image-label pairs and embed them in the
decision boundary of the model. [12] presents the first data-aware
watermarking approach by embedding the WM in the activations.

All of the above mentioned DNN watermarking techniques target
at software-level model authorship proof. Note that a naive implemen-
tation of DNN watermarking on the hardware device is insufficient
to provide an efficient and trustworthy attestation solution due to
the unawareness of resource management and potential attacks. As
such, these methods are not suitable for hardware-level IP protec-
tion. [1, 34] require DNN inference of multiple inputs on the local
device and TEE-supported WM checking, which is prohibitively
costly. Compared to weight-based watermarking [48], DeepAttest’s
FP extraction involves fewer computations since no extra sigmoid
function is required. In this paper, we develop an efficient on-device
attestation scheme that ensures the legitimacy of deployed DNN
with negligible overhead.

s Trusted Execution Environment. Previous research [4, 46] has
paved the path for secure isolated execution on general purpose
processors. Intel SGX [52] is the most widely used TEE with user
interface. The vulnerabilities of SGX to potential attacks such as
spectre[26], cache[17] or other side-channel attacks are later identi-
fied. Besides TEE for CPU platforms, a growing amount of research
has been done to provide TEE for other hardware platforms. For
instance, TyTan [5] and TrustLite [27] are TEEs proposed for em-
bedded systems. DeepAttest is generic and can be extended to these
computing platforms with TEE support.

= Privacy-Preserving DNN. Beyond integrity and data tamper,
privacy is another critical concern in the DL domain. Various tech-
niques have been suggested for privacy-preserving (PP) DNN infer-
ence and training [21, 22, 36, 37]. CryptoNet [15] leverages Homo-
morphic Encryption (HE) to achieve PP-inference with prohibitive
latency due to extensive computations. Gazelle [24] accelerates
the LHE-based inference by exploiting SIMD operations. Garbled
Circuit (GC) is an alternative approach [38, 43] to HE which has
smaller computation overhead but requires more communication.

8 CONCLUSION

In this paper, we develop a systematic solution to provide device-
level IP protection and usage control for DNN applications. We
propose DeepAttest, the first on-device DNN attestation framework
that verifies the legitimacy of the deployed DNN before allow-
ing it to execute normal inference. DeepAttest leverages an Al-
gorithm/Software/Hardware co-design principle and incorporates
various design optimization techniques to minimize the overhead.
Our framework allows the device providers to explore the trade-off
between security level and atteesation overhead by specifying secu-
rity parameters including tolerance level of fault injection, marked
ratio, and trigger configuration. Extensive experimental results
corroborate that DeepAttest satisfies all criteria for a practical at-
testation scheme including fidelity, reliability, integrity, security,
scalability, and efficiency.

ACKNOWLEDGMENTS

This work was supported by ONR under grant number N00014-17-
1-2500 and AFOSR MURI under award number FA9550-14-1-0351.



ISCA 19, June 22-26, 2019, Phoenix, AZ, USA

REFERENCES

(1]

[2

[

[10

(1]

[12

[13]

[14]

[15

[16

[17]

(18]

[19]

[20

[21]

[22]

[23

[24]

[25

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.
2018. Turning Your Weakness Into a Strength: Watermarking Deep Neural
Networks by Backdooring. arXiv preprint (2018).

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Riidiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold regulariza-
tion: A geometric framework for learning from labeled and unlabeled examples.
Journal of machine learning research 7, Nov (2006), 2399-2434.

Rick Boivie and Peter Williams. 2012. SecureBlue++: CPU support for secure
execution. IBM, IBM Research Division, RC25287 (WAT1205-070) (2012), 1-9.

F. Brasser, B. El Mahjoub, A. Sadeghi, C. Wachsmann, and P. Koeberl. 2015.
TyTAN: Tiny trust anchor for tiny devices. In 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC).

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand exposure: SGX cache
attacks are practical. arXiv (2017).

Huili Chen, Bita Darvish Rohani, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar.
2019. DeepMarks: A Secure Fingerprinting Framework for Digital Rights Manage-
ment of Deep Learning Models. In ACM International Conference on Multimedia
Retrieval (ICMR).

Y. Chen, J. Emer, and V. Sze. 2016. Eyeriss: A Spatial Architecture for Energy-
Efficient Dataflow for Convolutional Neural Networks. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA). 367-379.
Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and
Yann LeCun. 2015. The loss surfaces of multilayer networks. In Artificial Intelli-
gence and Statistics.

Ronan Collobert and Jason Weston. 2008. A Unified Architecture for Natural Lan-
guage Processing: Deep Neural Networks with Multitask Learning. In Proceedings
of the 25th International Conference on Machine Learning. ACM.

Victor Costan, Ilia Lebedev, Srinivas Devadas, et al. 2017. Secure processors part
II: Intel SGX security analysis and MIT sanctum architecture. Foundations and
Trends® in Electronic Design Automation 11, 3 (2017), 249-361.

Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. 2019. DeepSigns:
An End-to-End Watermarking Framework for Ownership Protection of Deep
Neural Networks. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. ACM.
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09.

C Fu, A Di Fulvio, SD Clarke, D Wentzloff, SA Pozzi, and HS Kim. 2018. Artificial
neural network algorithms for pulse shape discrimination and recovery of piled-
up pulses in organic scintillators. Annals of Nuclear Energy 120 (2018), 410-421.
Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International Conference on Machine
Learning. 201-210.

Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation
on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431-473.
Johannes Gétzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Miiller. 2017.
Cache attacks on Intel SGX. In Proceedings of the 10th European Workshop on
Systems Security. ACM, 2.

Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

Danny Harnik. 2017. Impressions of Intel SGX performance. https://medium.
com/@danny_harnik/impressions- of-intel-sgx-performance-22442093595a.
Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint (2017).

Siam U Hussain and Farinaz Koushanfar. 2019. FASE: FPGA Acceleration of Secure
Function Evaluation. In Field-Programmable Custom Computing Machines.

Siam U Hussain, Bita Darvish Rouhani, Mohammad Ghasemzadeh, and Fari-
naz Koushanfar. 2018. MAXelerator: FPGA accelerator for privacy preserving
multiply-accumulate (MAC) on cloud servers. In 2018 55th ACM/ESDA/IEEE De-
sign Automation Conference (DAC). IEEE, 1-6.

Intel. 2017. Intel Software Guard Extensions SDK. https://software.intel.com/
en-us/sgx-sdk-dev-reference- sgx- get-trusted-time.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In
27th USENIX Security Symposium (USENIX Security 18). 1651-1669.

Yash Katariya. 2016. MNIST CNN benchmark. https://github.com/yashk2810/
MNIST-Keras/tree/master/Notebook.

Huili and Cheng, et al.

[26] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz

Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre attacks: Exploiting speculative execution. arXiv (2018).

Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan.
2014. TrustLite: A Security Architecture for Tiny Embedded Devices. In Proceed-
ings of the Ninth European Conference on Computer Systems.

Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images. Technical Report. Citeseer.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86 (1998), 2278-2324.
Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In 26th USENIX Security Symposium, USENIX Security. 16—18.
ARM LIMITED. 2009. ARM Security Technology - Building a Secure System
using TrustZone Technology.

Pieter Maene, Johannes Gotzfried, Ruan De Clercq, Tilo Miiller, Felix Freiling,
and Ingrid Verbauwhede. 2018. Hardware-based trusted computing architectures
for isolation and attestation. IEEE Trans. Comput. 67, 3 (2018), 361-374.

Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection
for Trusted Execution. In 26th USENIX Security Symposium (USENIX Security 17).
Erwan Le Merrer, Patrick Perez, and Gilles Trédan. 2017. Adversarial frontier
stitching for remote neural network watermarking. arXiv preprint (2017).
Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized algorithms. Cam-
bridge university press.

M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter, and
Farinaz Koushanfar. 2019. XONN: XNOR-based Oblivious Deep Neural Network
Inference. USENIX Security (2019).

M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A hybrid secure
computation framework for machine learning applications. In Proceedings of the
2018 on Asia Conference on Computer and Communications Security. ACM.

Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. 2018. Deepsecure:
Scalable Provably-secure Deep Learning. In Proceedings of the 55th Annual Design
Automation Conference. ACM, 2:1-2:6.

Bita Darvish Rouhani, Mohammad Samragh, Mojan Javaheripi, Tara Javidi, and
Farinaz Koushanfar. 2018. Deepfense: Online accelerated defense against adversar-
ial deep learning. In Proceedings of the International Conference on Computer-Aided
Design. ACM, 134.

Bernhard Scholkopf and Alexander J Smola. 2001. Learning with kernels: support
vector machines, regularization, optimization, and beyond. MIT press.

Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas
Chandra, and Hadi Esmaeilzadeh. 2018. Bit fusion: Bit-level dynamically compos-
able architecture for accelerating deep neural network. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 764-775.
Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv (2014).

Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, Thomas Schneider,
and Farinaz Koushanfar. 2015. Tinygarble: Highly compressed and scalable
sequential garbled circuits. In 2015 IEEE Symposium on Security and Privacy.
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929-1958.
Synopsys. 2017. DesignWare pipelined AES-GCM/CTR core. https://www.
synopsys.com/dw/ipdir.php?ds=security-aes-gcm-ctr..

Richard Ta-Min, Lionel Litty, and David Lie. 2006. Splitting interfaces: Making
trust between applications and operating systems configurable. In Proceedings of
the 7th symposium on Operating systems design and implementation.

Florian Tramer and Dan Boneh. 2018. Slalom: Fast, Verifiable and Private Execu-
tion of Neural Networks in Trusted Hardware. arXiv (2018).

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. 2017.
Embedding watermarks into deep neural networks. https://github.com/yu4u/
dnn-watermark. In Proceedings of the 2017 ACM on International Conference on
Multimedia Retrieval. ACM, 269-277.

Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton: Trusted
Execution Environments on GPUs. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). 681-696.

Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves. In Proceedings of the 44th
Annual International Symposium on Computer Architecture. ACM, 81-93.

Min Wu, Wade Trappe, Z Jane Wang, and KJ Ray Liu. 2004. Collusion-resistant
multimedia fingerprinting: a unified framework. In Security, Steganography, and
Watermarking of Multimedia Contents VI, Vol. 5306. International Society for
Optics and Photonics, 748-760.

Bin Cedric Xing, Mark Shanahan, and Rebekah Leslie-Hurd. 2016. Intel&Reg; Soft-
ware Guard Extensions (Intel&Reg; SGX) Software Support for Dynamic Memory
Allocation Inside an Enclave. In Proceedings of the Hardware and Architectural
Support for Security and Privacy. ACM.


https://medium.com/@danny_harnik/impressions-of-intel-sgx-performance-22442093595a
https://medium.com/@danny_harnik/impressions-of-intel-sgx-performance-22442093595a
https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-get-trusted-time
https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-get-trusted-time
https://github.com/yashk2810/MNIST-Keras/tree/master/Notebook
https://github.com/yashk2810/MNIST-Keras/tree/master/Notebook
https://www.synopsys.com/dw/ipdir.php? ds=security-aes-gcm-ctr.
https://www.synopsys.com/dw/ipdir.php? ds=security-aes-gcm-ctr.
https://github.com/yu4u/dnn-watermark
https://github.com/yu4u/dnn-watermark

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Secure DNN Evaluation on Hardware
	2.2 Motivation

	3 DeepAttest Overview
	3.1 DNN Attestation Metrics
	3.2 Assumptions and Threat Model

	4 DeepAttest Design
	4.1 Off-line DNN Marking
	4.2 Online DNN Attestation

	5 DeepAttest Optimization
	5.1 Shredder Storage
	5.2 Efficient Attestation

	6 Evaluations
	6.1 Fidelity
	6.2 Reliability and Integrity
	6.3 Security
	6.4 Qualitative Overhead Analysis
	6.5 Efficiency
	6.6 Comparison with Related Works

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

