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Abstract
In this paper a new method of generating identities for Fibonacci and Lu-

cas numbers is presented. This method is based on some fundamental iden-
tities for powers of the golden ratio and its conjugate. These identities give
interesting connections between Fibonacci and Lucas numbers and Bernoulli
numbers, Catalan numbers, binomial coefficients, δ-Fibonacci numbers, etc.
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1. Introduction

The authors’ fascination with Fibonacci, Lucas and complex numbers has been
reflected in the following two nice identities (discovered independently by Rabi-
nowitz [10] and Wituła [7] and, probably, many other, former and future admirers
of the Fibonacci and Lucas numbers):

(1+ξ+ξ4)n = Fn+1+Fn(ξ+ξ
4) and (1+ξ2+ξ3)n = Fn+1+Fn(ξ

2+ξ3), (1.1)

where ξ5 = 1, ξ ∈ C and ξ 6= 1, and Fn denotes the nth Fibonacci number.

2. Basic identities

Let

α := 2 cos
π

5
=

1 +
√
5

2
and β := −2 cos

(
2

5
π

)
=

1−
√
5

2
.
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Then we have
α+ β = 1, αβ = −1 (2.1)

Fn =
αn − βn
α− β , n ∈ Z, (2.2)

Ln = αn + βn, n = 0, 1, 2, . . . , (2.3)

where Ln denotes the nth Lucas number [3, 9].
Then, identities (1.1) can be written in the form

Fn+1 + x−1Fn = xn, (2.4)

for every x ∈ {α, β}. In other words, we get the divisibility relation of polynomials

(x2 − x− 1) | (xn+1 − Fn+1x− Fn).

Similarly (by induction) we can generate the identity

Ln+1 + x−1Ln = (2x− 1)xn, (2.5)

for every x ∈ {α, β}. This implies the following divisibility relation of polynomials

(x2 − x− 1) | ((2x− 1)xn+1 − Ln+1x− Ln).

Remark 2.1. If the values Fn and Ln were defined for real subscripts n ∈ [0, 1)
(see [15]), then from formulae (2.4) and (2.5) we could easily extend these definitions
for any other real subscripts.

In particular, if functions [0, 1] 3 n 7→ Fn and [0, 1] 3 n 7→ Ln are continuous,
then from formulae (2.4) and (2.5) we could obtain the continuous extensions of
these functions. With this problem also some special problem is connected (see
Corollary 2.6 – Dobinski’s formula problem).

Immediately from identities (2.4) and (2.5) the next result follows.

Theorem 2.2 (Golden ratio power factorization theorem). Let {kn}∞n=1 be a se-
quence of positive integers. Then the following identities hold true

N∏

n=1

(
Fkn+1 +

√
5− 1

2
Fkn

)
=
(1 +

√
5

2

) N∑
n=1

kn
,

N∏

n=1

(
Fkn+1 −

√
5 + 1

2
Fkn

)
=
(1−

√
5

2

) N∑
n=1

kn
,

or in equivalent compact form

N∏

n=1

(
Fkn+1 + x−1Fkn

)
= x

N∑
n=1

kn
,
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N∏

n=1

(
Lkn + (2x− 1)Fkn

)
= 2N x

N∑
n=1

kn
,

for every x ∈ {α, β}, and
N∏

n=1

(
Lkn+1 +

√
5− 1

2
Lkn

)
=
(√

5
)N (1 +

√
5

2

) N∑
n=1

kn
,

N∏

n=1

(
Lkn+1 −

√
5 + 1

2
Lkn

)
=
(
−
√
5
)N (1−

√
5

2

) N∑
n=1

kn
,

or in equivalent compact form

N∏

n=1

(
Lkn+1 + x−1Lkn

)
= (2x− 1)Nx

N∑
n=1

kn
,

for every x ∈ {α, β}. The above identities are called "Golden Gate" relations.

We note that these identities act as links between Fibonacci and Lucas se-
quences and many other special sequences of numbers, especially many known
linear recurrence sequences. Now we will present the collection of such relations.

First let us consider the Bernoulli numbers Br defined by the following recursion
formula [6, 11]:

B0 = 1,

(
n

n− 1

)
Bn−1 +

(
n

n− 2

)
Bn−2 + . . .+

(
n

0

)
B0 = 0, n = 2, 3, . . .

(we note that B2k+1 = 0, k = 1, 2, . . .). Moreover, Bk(y) denotes here the k-th
Bernoulli polynomial defined by

Bk(y) =

k∑

l=0

(
k

l

)
Bl y

k−l.

Corollary 2.3 (A bridge between Fibonacci, Lucas and Bernoulli numbers). We
have

N−1∏

n=1

(
Fnk+1 + x−1Fnk

)
= x

N∫
0

Bk(y) dy
,

N−1∏

n=1

(
Lnk + (2x− 1)Fnk

)
= 2N−1 x

N∫
0

Bk(y) dy

and
N−1∏

n=1

(
Lnk+1 + x−1Lnk

)
= (2x− 1)N−1x

N∫
0

Bk(y) dy
,

for every x ∈ {α, β}.
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Proof. The identities result from the following known relation [6, 11]:

N−1∑

n=1

nk =

N∫

0

Bk(y) dy =
k∑

r=0

(
k

r

)
Br

Nk−r+1

k − r + 1
.

Corollary 2.4 (A bridge between Fibonacci numbers, Lucas numbers and binomial
coefficients). We have

b(n+1)/2c∏

k=1

(
F(n−k

k−1)+1 + x−1F(n−k
k−1)

)
= xFn ,

b(n+1)/2c∏

k=1

(
L(n−k

k−1)
±
√
5F(n−k

k−1)

)
= 2b(n+1)/2c

(1±
√
5

2

)Fn

,

b(n+1)/2c∏

k=1

(
L(n−k

k−1)+1 + x−1L(n−k
k−1)

)
= (2x− 1)b(n+1)/2c xFn ,

for every x ∈ {α, β}.
Proof. All the above identities follow from relation (see [9]):

Fn =

b(n+1)/2c∑

k=1

(
n− k
k − 1

)
.

Note that similar and simultaneously more general relations could be obtained
for the incomplete Fibonacci and Lucas p−numbers (see [12, 13]).

Next corollary concerns the Catalan numbers defined in the following way

Cn :=
1

n+ 1

(
2n

n

)
, n = 0, 1, . . .

Corollary 2.5 (A bridge between Fibonacci numbers, Lucas numbers and Catalan
numbers). We have

N∏

n=0

(
F1+CN−nCn

+ x−1FCN−nCn

)
= xCN+1 , (2.6)

N∏

n=0

(
LCN−nCn + (2x− 1)FCN−nCn

)
= 2N+1xCN+1 (2.7)

and
N∏

n=0

(
L1+CN−nCn + x−1LCN−nCn

)
= (2x− 1)N+1xCN+1 , (2.8)

for every x ∈ {α, β}.
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Moreover, if p is prime and p ≡ 3 (mod 4), then we have

p

√
x2F1+C p−1

2

+ xFC p−1
2

= x
2+C(p−1)/2

p , (2.9)

p2

√(
F1+ 1

2C p2−1
2

+ x−1F 1
2C p2−1

2

)(
F
1+(

p−1
p−1
2
)
+ x−1F

(
p−1
p−1
2
)

)
= x

1
2
C
(p2−1)/2

+( p−1
p−1
2
)

p2 ,

(2.10)

for every x ∈ {α, β}.
Proof. Identities (2.6)-(2.8) can be obtained from the recursive relation for Cn

CN+1 =

N∑

n=0

CN−nCn, N = 0, 1, . . .

Whereas relations (2.9) and (2.10) result from the fact that if p is prime and
p ≡ 3 (mod 4), then p|(2 + C p−1

2
) and p2|

(
1
2C p2−1

2

+
(p−1

p−1
2

))
(see [1]).

Next conclusion is connected with the Bell numbers Bn, n = 0, 1, ... [6].

Corollary 2.6 (A bridge between Fibonacci numbers, Lucas numbers and Bell
numbers). We have

N∏

n=0

(
F(Nn)Bn+1 + x−1F(Nn)Bn

)
= xBN+1 ,

N∏

n=0

(
L(Nn)Bn

+ (2x− 1)F(Nn)Bn

)
= 2N+1xBN+1 ,

N∏

n=0

(
L(Nn)Bn+1 + x−1L(Nn)Bn

)
= (2x− 1)N+1xBN+1 ,

for every x ∈ {α, β}.
Proof. All the above identities follow from the well known recursive relation

B0 := 1,

BN+1 =
N∑

n=0

(
N

n

)
Bn, N = 0, 1, . . .

We note that for the Bell numbers the following interesting relation, called
Dobinski’s formula [6], holds:

BN =
1

e

∞∑

k=0

kN

k!
, N = 0, 1, 2, . . .
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In connection with the above formula we formulate a certain problem which can
be expressed in the following way. Is it possible to generalize the definition of
Fibonacci numbers Fn onto real indices (of Lucas numbers Ln, respectively) such
that the following equality will be fulfilled:

∞∏

k=0

(
F
1+ e−1kN

k!

+ x−1F e−1kN

k!

)
= xBN ,

for every x ∈ {α, β} and N ∈ N, or

∞∏

k=0

L
1+ e−1kN

k!

+ x−1L e−1kN

k!

2x− 1
= xBN ,

for every x ∈ {α, β} and N ∈ N, respectively?
Next corollary concerns the connection with the δ-Fibonacci numbers defined

by relations (see [14]):

an(δ) =

n∑

k=0

(
n

k

)
Fk−1 (−δ)k (2.11)

and

bn(δ) =

n∑

k=1

(
n

k

)
(−1)k−1 Fk δk, (2.12)

for δ ∈ C.

Corollary 2.7 (A bridge between Fibonacci, Lucas and δ-Fibonacci numbers).
For positive integers δ and n we get

n∏

k=0

(
F1+(nk)Fk−1δk

+ x−1F(nk)Fk−1δk

)
= xan(−δ),

n∏

k=1

(
F1+(nk)Fkδk

+ x−1F(nk)Fkδk

)
= x−bn(−δ),

n∏

k=0

(
L(nk)Fk−1δk

+ (2x− 1)F(nk)Fk−1δk

)
= 2n+1 xan(−δ),

n∏

k=1

(
L(nk)Fkδk

±
√
5F(nk)Fkδk

)
= 2n x−bn(−δ),

n∏

k=0

(
L1+(nk)Fk−1δk

+ x−1L(nk)Fk−1δk

)
= (2x− 1)n+1xan(−δ),

n∏

k=1

(
L1+(nk)Fkδk

+ x−1L(nk)Fkδk

)
= (2x− 1)nx−bn(−δ),

etc., for every x ∈ {α, β}. Moreover, we define here Fn+1 = Fn + Fn−1, n ∈ Z.
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Let us note that similar relations we have for the incomplete δ−Fibonacci num-
bers an,r(δ) and bn,s(δ) where

an,r(δ) :=
r∑

k=0

(
n

k

)
Fk−1(−δ)k, 0 ≤ r ≤ n,

bn,s(δ) :=

s∑

k=1

(
n

k

)
(−1)k−1Fkδk, 1 ≤ s ≤ n.

Now we consider the r−generalized Fibonacci sequence {Gn} defined as follows

Gn =





0, if 0 ≤ n < r − 1,
1, if n = r − 1,
Gn−1 +Gn−2 + . . .+Gn−r, if n ≥ r.

Corollary 2.8 (A bridge between Fibonacci, Lucas and classic r-Fibonacci num-
bers). Let r ∈ N, r ≥ 2. Then the following identities hold true [8]:

(
F1+2r−1Gn−r

+ x−1F2r−1Gn−r

) r−1∏

k=1

(
F
1+(

r−1∑
i=k

2i−1)Gn−r−k

+ x−1F
(
r−1∑
i=k

2i−1)Gn−r−k

)

= xGn ,

for every n ≥ 2 r − 1, and

[ n∏

k=0

(
F1+G2

k
+ x−1FG2

k

)]
×
[ r−1∏

i=2

n−i∏

k=0

(
F1+GkGk+i

+ x−1FGkGk+i

)]

= xGnGn+1 ,

the special case of which is the following Lucas identity
n∏

k=1

(
F1+F 2

k
+ x−1FF 2

k

)
= xFnFn+1 ,

for every x ∈ {α, β}.
Corollary 2.9. We have also (x ∈ {α, β}):

(
FFn+1+1 + x−1FFn+1

)(
FFn−1+1 + x−1FFn−1

)
= xLn ,

(
LFn+1 ±

√
5FFn+1

)(
LFn−1

±
√
5FFn−1

)
= 4

(1±
√
5

2

)Ln

,
(
LFn+1+1 + x−1LFn+1

)(
LFn−1+1 + x−1LFn−1

)
= 5xLn ,

since Fn+1 + Fn−1 = Ln, n ∈ N. Furthermore, we have
(
FLn+1+1 + x−1FLn+1

)(
FLn−1+1 + x−1FLn−1

)
= x5Fn ,
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(
LLn+1

±
√
5FLn+1

)(
LLn−1

±
√
5FLn−1

)
= 4

(1±
√
5

2

)5Fn

,
(
LLn+1+1 + x−1LLn+1

)(
LLn−1+1 + x−1LLn−1+1

)
= 5x5Fn ,

since Ln+1 + Ln−1 = 5Fn, n ∈ N.

Remark 2.10. Note that Theorem 2.2 is connected, in some way, with the following
very important Zeckendorf’s theorem [6]:

For every number n ∈ N there exists exactly one increasing sequence 2 ≤ k1 <
. . . < kr, where r = r(n) ∈ N, such that ki+1 − ki ≥ 2 for i = 1, 2, . . . , r − 1, and

n = Fk1 + Fk2 + . . .+ Fkr .

For example, we have
1000 = 987 + 13 = F16 + F7,

that is (√
5F987 ± L987

)(√
5F13 ± L13

)
= 2L1000 ± 2

√
5F1000 =

=
(
L987 ±

√
5F987

)(
L13 ±

√
5F13

)
= 4

(1±
√
5

2

)1000
.

3. Final remark

Finally, we note that identities (2.4), considered at the beginning of this paper,
were discussed by many authors. For example, S. Alikhani and Y. Peng [2] basing
on (2.4) have proven that αn, for every n ∈ N, cannot be a root of any chromatic
polynomial. Furthermore, D. Gerdemann [5] has used the first of identities (2.4)
for analyzing the, so called, Golden Ratio Division Algorithm. Consequently, he
has discovered a semi-combinatorial proof of the following beautiful theorem.

Theorem 3.1. For nonconsecutive integers a1, . . . , ak, the following two state-
ments are equivalent (for every m ∈ N):

mFn = Fn+a1 + Fn+a2 + . . .+ Fn+ak ,

m = αa1 + αa2 + . . .+ αak .

Acknowledgements. The Authors are grateful to the valuable remarks of the
Referee which gave the possibility to improve presentation of the paper.
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