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social systems, social search, social 
media, collective intelligence, wiki-
nomics, crowd wisdom, smart mobs, 
mass collaboration, and human 
computation. The topic has been dis-
cussed extensively in books, popular 
press, and academia.1,5,15,23,29,35 But this 
body of work has considered mostly 
efforts in the physical world.23,29,30 
Some do consider crowdsourcing 
systems on the Web, but only certain 
system types28,33 or challenges (for ex-
ample, how to evaluate users12).

This survey attempts to provide a 
global picture of crowdsourcing sys-
tems on the Web. We define and clas-
sify such systems, then describe a 
broad sample of systems. The sample 

Crowdsourcing systems enlist a multitude of 
humans to help solve a wide variety of problems. 
Over the past decade, numerous such systems 
have appeared on the World-Wide Web. Prime 
examples include Wikipedia, Linux, Yahoo! Answers, 
Mechanical Turk-based systems, and much effort is 
being directed toward developing many more.

As is typical for an emerging area, this effort 
has appeared under many names, including peer 
production, user-powered systems, user-generated 
content, collaborative systems, community systems, 
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The practice of crowdsourcing is transforming 
the Web and giving rise to a new field.
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 key insights

 �Crowdsourcing systems face four key 
challenges: How to recruit contributors, 
what they can do, how to combine their 
contributions, and how to manage abuse. 
Many systems “in the wild” must also 
carefully balance openness with quality.

 �The race is on to build general crowd-
sourcing platforms that can be used to 
quickly build crowdsourcing applications 
in many domains. Using these, we can 
already build databases previously 
unimaginable at lightning speed.
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ranges from relatively simple well-es-
tablished systems such as reviewing 
books to complex emerging systems 
that build structured knowledge bas-
es to systems that “piggyback” onto 
other popular systems. We discuss 
fundamental challenges such as how 
to recruit and evaluate users, and to 
merge their contributions. Given the 
space limitation, we do not attempt 
to be exhaustive. Rather, we sketch 
only the most important aspects of 
the global picture, using real-world 
examples. The goal is to further our 
collective understanding—both con-
ceptual and practical—of this im-
portant emerging topic.

It is also important to note that 
many crowdsourcing platforms have 
been built. Examples include Me-
chanical Turk, Turkit, Mob4hire, uT-
est, Freelancer, eLance, oDesk, Guru, 
Topcoder, Trada, 99design, Inno-
centive, CloudCrowd, and Cloud-
Flower. Using these platforms, we 
can quickly build crowdsourcing 
systems in many domains. In this 
survey, we consider these systems 
(that is, applications), not the 
crowdsourcing platforms them-
selves.

Crowdsourcing Systems
Defining crowdsourcing (CS) systems 
turns out to be surprisingly tricky. 
Since many view Wikipedia and Linux 
as well-known CS examples, as a natu-
ral starting point, we can say that a 
CS system enlists a crowd of users to 
explicitly collaborate to build a long-
lasting artifact that is beneficial to the 
whole community. 

This definition, however, appears 
too restricted. It excludes, for example, 
the ESP game,32 where users implicitly 
collaborate to label images as a side 
effect while playing the game. ESP 
clearly benefits from a crowd of users. 
More importantly, it faces the same hu-
man-centric challenges of Wikipedia 
and Linux, such as how to recruit and 
evaluate users, and to combine their 
contributions. Given this, it seems un-
satisfactory to consider only explicit 
collaborations; we ought to allow im-
plicit ones as well.

The definition also excludes, for ex-
ample, an Amazon’s Mechanical Turk-
based system that enlists users to find 
a missing boat in thousands of satellite 
images.18 Here, users do not build any 
artifact, arguably nothing is long last-
ing, and no community exists either 

(just users coming together for this 
particular task). And yet, like ESP, this 
system clearly benefits from users, and 
faces similar human-centric challeng-
es. Given this, it ought to be considered 
a CS system, and the goal of building 
artifacts ought to be relaxed into the 
more general goal of solving problems. 
Indeed, it appears that in principle any 
non-trivial problem can benefit from 
crowdsourcing: we can describe the 
problem on the Web, solicit user in-
puts, and examine the inputs to devel-
op a solution. This system may not be 
practical (and better systems may ex-
ist), but it can arguably be considered 
a primitive CS system. 

Consequently, we do not restrict 
the type of collaboration nor the target 
problem. Rather, we view CS as a gen-
eral-purpose problem-solving method. 
We say that a system is a CS system if 
it enlists a crowd of humans to help solve 
a problem defined by the system owners, 
and if in doing so, it addresses the fol-
lowing four fundamental challenges: 

Ten Thousand Cents is a digital artwork by 
Aaron Koblin that creates a representation 
of a $100 bill. Using a custom drawing tool, 
thousands of individuals, working in isolation 
from one another, painted a tiny part of the 
bill without knowledge of the overall task.
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coordination”31) can be relevant to CS 
contexts. But the two system classes 
are clearly distinct.

In this survey we focus on CS sys-
tems that leverage the Web to solve the 
four challenges mentioned here (or a 
significant subset of them). The Web is 
unique in that it can help recruit a large 
number of users, enable a high degree 
of automation, and provide a large set 
of social software (for example, email, 
wiki, discussion group, blogging, and 
tagging) that CS systems can use to 
manage their users. As such, compared 
to the physical world, the Web can dra-
matically improve existing CS systems 
and give birth to novel system types.

How to recruit and retain users? What 
contributions can users make? How to 
combine user contributions to solve 
the target problem? How to evaluate 
users and their contributions?

Not all human-centric systems ad-
dress these challenges. Consider a 
system that manages car traffic in 
Madison, WI. Its goal is to, say, coor-
dinate the behaviors of a crowd of hu-
man drivers (that already exist within 
the system) in order to minimize traf-
fic jams. Clearly, this system does not 
want to recruit more human drivers (in 
fact, it wants far fewer of them). We call 
such systems crowd management (CM) 
systems. CM techniques (a.k.a., “crowd 

Classifying CS systems. CS systems 
can be classified along many dimen-
sions. Here, we discuss nine dimen-
sions we consider most important. The 
two that immediately come to mind are 
the nature of collaboration and type of 
target problem. As discussed previously, 
collaboration can be explicit or implic-
it, and the target problem can be any 
problem defined by the system owners 
(for example, building temporary or 
permanent artifacts, executing tasks).

The next four dimensions refer re-
spectively to how a CS system solves 
the four fundamental challenges de-
scribed earlier: how to recruit and retain 
users; what can users do; how to combine 

A sample of basic CS system types on the World-Wide Web.

Nature of 
Collaboration Architecture

Must 
recruit 
users? What users do? Examples Target Problems Comments

Explicit Standalone Yes

Evaluating
•	 review, vote, tag

•	 reviewing and voting at Amazon, 
tagging Web pages at del.ici.ous.com 
and Google Co-op

Evaluating a 
collection of items 
(e.g., products, users)

Humans as perspective 
providers. No or loose 
combination of inputs.

Sharing
•	 items
•	 textual knowledge
•	 structured knowledge

•	 Napster, YouTube, Flickr, CPAN, 
programmableweb.com

•	 Mailing lists, Yahoo! Answers, QUIQ, 
ehow.com, Quora

•	 Swivel, Many Eyes, Google Fusion 
Tables, Google Base, bmrb.wisc.edu, 
galaxyzoo, Piazza, Orchestra

Building a (distributed 
or central) collection 
of items that can be 
shared among users.

Humans as content 
providers. No or loose 
combination of inputs.

Networking •	 LinkedIn, MySpace, Facebook Building social 
networks

Humans as component 
providers. Loose 
combination of inputs.

Building artifacts
•	 software
•	 textual knowledge 

bases
•	 structured knowledge 

bases
•	 systems
•	 others

•	 Linux, Apache, Hadoop
•	 Wikipedia, openmind, Intellipedia, 

ecolicommunity
•	 Wikipedia infoboxes/DBpedia, IWP, 

Google Fusion Tables, YAGO-NAGA, 
Cimple/DBLife

•	 Wikia Search, mahalo, Freebase, 
Eurekster

•	 newspaper at Digg.com, Second Life

Building physical 
artifacts

Humans can play all 
roles. Typically tight 
combination of inputs. 
Some systems ask both 
humans and machines 
to contribute.

Task execution •	 Finding extraterrestrials, elections, 
finding people, content creation (e.g., 
Demand Media, Associated Content)

Possibly any problem

 Implicit

Standalone Yes •	 play games with a 
purpose

•	 bet on prediction 
markets

•	 use private accounts
•	 solve captchas
•	 buy/sell/auction, play 

massive multiplayer 
games

•	 ESP
•	 intrade.com, Iowa Electronic Markets
•	 IMDB private accounts
•	 recaptcha.net
•	 eBay, World of Warcraft

•	 labeling images
•	 predicting events
•	 rating movies
•	 digitizing written 

text
•	 building a user 

community (for 
purposes such 
as charging fees, 
advertising)

Humans can play 
all roles. Input 
combination can be 
loose or tight.

Piggyback on 
another system

No •	 keyword search
•	 buy products
•	 browse Web sites

•	 Google, Microsoft, Yahoo
•	 recommendation feature of Amazon
•	 adaptive Web sites 

(e.g., Yahoo! front page)

•	 spelling correction, 
epidemic prediction

•	 recommending 
products

•	 reorganizing 
a Web site for 
better access

Humans can play 
all roles. Input 
combination can be 
loose or tight.
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Compared to the 
physical world, 
the Web can 
dramatically 
improve existing 
crowdsourcing 
systems and give 
birth to novel 
system types.

their inputs; and how to evaluate them. 
Later, we will discuss these challenges 
and the corresponding dimensions in 
detail. Here, we discuss the remaining 
three dimensions: degree of manual 
effort, role of human users, and stand-
alone versus piggyback architectures. 

Degree of manual effort. When build-
ing a CS system, we must decide how 
much manual effort is required to solve 
each of the four CS challenges. This can 
range from relatively little (for example, 
combining ratings) to substantial (for 
example, combining code), and clearly 
also depends on how much the system 
is automated. We must decide how to 
divide the manual effort between the 
users and the system owners. Some 
systems ask the users to do relatively 
little and the owners a great deal. For 
example, to detect malicious users, 
the users may simply click a button to 
report suspicious behaviors, whereas 
the owners must carefully examine all 
relevant evidence to determine if a user 
is indeed malicious. Some systems do 
the reverse. For example, most of the 
manual burden of merging Wikipedia 
edits falls on the users (who are cur-
rently editing), not the owners.

Role of human users. We consider 
four basic roles of humans in a CS 
system. Slaves: humans help solve 
the problem in a divide-and-conquer 
fashion, to minimize the resources 
(for example, time, effort) of the own-
ers. Examples are ESP and finding a 
missing boat in satellite images using 
Mechanical Turk. Perspective provid-
ers: humans contribute different per-
spectives, which when combined often 
produce a better solution (than with a 
single human). Examples are review-
ing books and aggregating user bets to 
make predictions.29 Content providers: 
humans contribute self-generated con-
tent (for example, videos on YouTube, 
images on Flickr). Component provid-
ers: humans function as components 
in the target artifact, such as a social 
network, or simply just a community 
of users (so that the owner can, say, sell 
ads). Humans often play multiple roles 
within a single CS system (for example, 
slaves, perspective providers, and con-
tent providers in Wikipedia). It is im-
portant to know these roles because 
that may determine how to recruit. For 
example, to use humans as perspective 
providers, it is important to recruit a 

diverse crowd where each human can 
make independent decisions, to avoid 
“group think.”29 

Standalone versus piggyback. When 
building a CS system, we may decide to 
piggyback on a well-established system, 
by exploiting traces that users leave in 
that system to solve our target problem. 
For example, Google’s “Did you mean” 
and Yahoo’s Search Assist utilize the 
search log and user clicks of a search 
engine to correct spelling mistakes. An-
other system may exploit user purchas-
es in an online bookstore (Amazon) to 
recommend books. Unlike standalone 
systems, such piggyback systems do not 
have to solve the challenges of recruit-
ing users and deciding what they can 
do. But they still have to decide how to 
evaluate users and their inputs (such 
as traces in this case), and to combine 
such inputs to solve the target problem.

Sample CS Systems on the Web
Building on this discussion of CS di-
mensions, we now focus on CS systems 
on the Web, first describing a set of 
basic system types, and then showing 
how deployed CS systems often com-
bine multiple such types.

The accompanying table shows a 
set of basic CS system types. The set is 
not meant to be exhaustive; it shows 
only those types that have received 
most attention. From left to right, it 
is organized by collaboration, archi-
tecture, the need to recruit users, and 
then by the actions users can take. We 
now discuss the set, starting with ex-
plicit systems.

Explicit Systems: These standalone 
systems let users collaborate explicitly. 
In particular, users can evaluate, share, 
network, build artifacts, and execute 
tasks. We discuss these systems in turn.

Evaluating: These systems let users 
evaluate “items” (for example, books, 
movies, Web pages, other users) using 
textual comments, numeric scores, or 
tags.10 

Sharing: These systems let users 
share “items” such as products, servic-
es, textual knowledge, and structured 
knowledge. Systems that share prod-
ucts and services include Napster, You-
Tube, CPAN, and the site programma-
bleweb.com (for sharing files, videos, 
software, and mashups, respectively). 
Systems that share textual knowledge 
include mailing lists, Twitter, how-to 
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repositories (such as ehow.com, which 
lets users contribute and search how-
to articles), Q&A Web sites (such as Ya-
hoo! Answers2), online customer sup-
port systems (such as QUIQ,22 which 
powered Ask Jeeves’ AnswerPoint, a 
Yahoo! Answers-like site). Systems 
that share structured knowledge (for 
example, relational, XML, RDF data) 
include Swivel, Many Eyes, Google 
Fusion Tables, Google Base, many e-
science Web sites (such as bmrb.wisc.
edu, galaxyzoo.org), and many peer-to-
peer systems developed in the Seman-
tic Web, database, AI, and IR commu-
nities (such as Orchestra8,27). Swivel, for 
example, bills itself as the “YouTube 

A key distinguishing aspect of sys-
tems that evaluate, share, or network is 
that they do not merge user inputs, or 
do so automatically in relatively simple 
fashions. For example, evaluation sys-
tems typically do not merge textual user 
reviews. They often merge user inputs 
such as movie ratings, but do so auto-
matically using some formulas. Simi-
larly, networking systems automati-
cally merge user inputs by adding them 
as nodes and edges to a social network 
graph. As a result, users of such systems 
do not need (and, in fact, often are not 
allowed) to edit other users’ input. 

Building Artifacts: In contrast, sys-
tems that let users build artifacts such 

of structured data,” which lets users 
share, query, and visualize census- and 
voting data, among others. In general, 
sharing systems can be central (such as 
YouTube, ehow, Google Fusion Tables, 
Swivel) or distributed, in a peer-to-peer 
fashion (such as Napster, Orchestra).

Networking: These systems let users 
collaboratively construct a large social 
network graph, by adding nodes and 
edges over time (such as homepages, 
friendships). Then they exploit the 
graph to provide services (for example, 
friend updates, ads, and so on). To a 
lesser degree, blogging systems are 
also networking systems in that blog-
gers often link to other bloggers. 
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as Wikipedia often merge user in-
puts tightly, and require users to edit 
and merge one another’s inputs. A 
well-known artifact is software (such 
as Apache, Linux, Hadoop). Another 
popular artifact is textual knowledge 
bases (KBs). To build such KBs (such as 
Wikipedia), users contribute data such 
as sentences, paragraphs, Web pages, 
then edit and merge one another’s 
contributions. The knowledge capture 
(k-cap.org) and AI communities have 
studied building such KBs for over a 
decade. A well-known early attempt is 
openmind,28 which enlists volunteers 
to build a KB of commonsense facts 
(for example, “the sky is blue”). Re-

cently, the success of Wikipedia has in-
spired many “community wikipedias,” 
such as Intellipedia (for the U.S. intel-
ligence community) and EcoliHub (at 
ecolicommunity.org, to capture all in-
formation about the E. coli bacterium). 

Yet another popular target artifact 
is structured KBs. For example, the 
set of all Wikipedia infoboxes (that is, 
attribute-value pairs such as city-name 
= Madison, state = WI) can be viewed as 
a structured KB collaboratively created 
by Wikipedia users. Indeed, this KB 
has recently been extracted as DBpedia 
and used in several applications (see 
dbpedia.org). Freebase.com builds an 
open structured database, where us-

ers can create and populate schemas 
to describe topics of interest, and build 
collections of interlinked topics using 
a flexible graph model of data. As yet 
another example, Google Fusion Ta-
bles (tables.googlelabs.com) lets users 
upload tabular data and collaborate 
on it by merging tables from different 
sources, commenting on data items, 
and sharing visualizations on the Web. 

Several recent academic projects 
have also studied building structured 

The Sheep Market by Aaron Koblin is a 
collection of 10,000 sheep made by workers 
on Amazon’s Mechanical Turk. Workers were 
paid $0.02 (USD) to “draw a sheep facing to 
the left.” Animations of each sheep’s creation 
may be viewed at TheSheepMarket.com.
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(such as the Metaweb query language 
and a hosted development environ-
ment). Eurekster.com lets users col-
laboratively build vertical search en-
gines called swickis, by customizing 
a generic search engine (for example, 
specifying all URLs the system should 
crawl). Finally, MOBS, an academic 
project,12,13 studies how to collabora-
tively build data integration systems, 
those that provide a uniform query in-
terface to a set of data sources. MOBS 
enlists users to create a crucial system 
component, namely the semantic 
mappings (for example, “location” = 
“address”) between the data sources.

In general, users can help build and 
improve a system running on the Web 
in several ways. First, they can edit the 
system’s code. Second, the system typi-
cally contains a set of internal compo-
nents (such as URLs to crawl, semantic 
mappings), and users can help improve 
these without even touching the sys-
tem’s code (such as adding new URLs, 
correcting mappings). Third, users can 
edit system inputs and outputs. In the 
case of a search engine, for instance, 
users can suggest that if someone que-
ries for “home equity loan for seniors,” 
the system should also suggest query-
ing for “reverse mortgage.” Users can 
also edit search result pages (such as 
promoting and demoting URLs, as 
mentioned earlier). Finally, users can 
monitor the running system and pro-
vide feedback.

We note that besides software, KBs, 
and systems, many other target arti-
facts have also been considered. Ex-
amples include community newspa-
pers built by asking users to contribute 
and evaluate articles (such as Digg) and 
massive multi-player games that build 
virtual artifacts (such as Second Life, a 
3D virtual world partly built and main-
tained by users). 

Executing Tasks: The last type of 
explicit systems we consider is the 
kind that executes tasks. Examples 
include finding extraterrestrials, min-
ing for gold, searching for missing 
people,23,29,30,31 and cooperative debug-
ging (cs.wisc.edu/cbi, early work of this 
project received the ACM Doctoral Dis-
sertation Award in 2005). The 2008 elec-
tion is a well-known example, where 
the Obama team ran a large online CS 
operation asking numerous volunteers 
to help mobilize voters. To apply CS to 

KBs in a CS fashion. The IWP project35 
extracts structured data from the tex-
tual pages of Wikipedia, then asks us-
ers to verify the extraction accuracy. 
The Cimple/DBLife project4,5 lets us-
ers correct the extracted structured 
data, expose it in wiki pages, then add 
even more textual and structured data. 
Thus, it builds structured “commu-
nity wikipedias,” whose wiki pages mix 
textual data with structured data (that 
comes from an underlying structured 
KB). Other related works include YAG-
ONAGA,11 BioPortal,17 and many recent 
projects in the Web, Semantic Web, 
and AI communities.1,16,36 

In general, building a structured KB 
often requires selecting a set of data 
sources, extracting structured data 
from them, then integrating the data 
(for example, matching and merging 
“David Smith” and “D.M. Smith”). Us-
ers can help these steps in two ways. 
First, they can improve the automatic 
algorithms of the steps (if any), by edit-
ing their code, creating more training 
data,17 answering their questions12,13 or 
providing feedback on their output.12,35 
Second, users can manually partici-
pate in the steps. For example, they can 
manually add or remove data sources, 
extract or integrate structured data, or 
add even more structured data, data 
not available in the current sources 
but judged relevant.5 In addition, a CS 
system may perform inferences over 
its KB to infer more structured data. To 
help this step, users can contribute in-
ference rules and domain knowledge.25 
During all such activities, users can 
naturally cross-edit and merge one an-
other’s contributions, just like in those 
systems that build textual KBs.

Another interesting target prob-
lem is building and improving sys-
tems running on the Web. The project 
Wikia Search (search.wikia.com) lets 
users build an open source search en-
gine, by contributing code, suggest-
ing URLs to crawl, and editing search 
result pages (for example, promoting 
or demoting URLs). Wikia Search was 
recently disbanded, but similar fea-
tures (such as editing search pages) 
appear in other search engines (such 
as Google, mahalo.com). Freebase 
lets users create custom browsing 
and search systems (deployed at Free-
base), using the community-curated 
data and a suite of development tools 

a task, we must find task parts that can 
be “crowdsourced,” such that each user 
can make a contribution and the con-
tributions in turn can be combined to 
solve the parts. Finding such parts and 
combining user contributions are of-
ten task specific. Crowdsourcing the 
parts, however, can be fairly general, 
and plaforms have been developed to 
assist that process. For example, Ama-
zon’s Mechanical Turk can help distrib-
ute pieces of a task to a crowd of users 
(and several recent interesting toolkits 
have even been developed for using Me-
chanical Turk13,37). It was used recently 
to search for Jim Gray, a database re-
searcher lost at sea, by asking volun-
teers to examine pieces of satellite im-
ages for any sign of Jim Gray’s boat.18 

Implicit Systems: As discussed ear-
lier, such systems let users collaborate 
implicitly to solve a problem of the sys-
tem owners. They fall into two groups: 
standalone and piggyback.

A standalone system provides a ser-
vice such that when using it users im-
plicitly collaborate (as a side effect) to 
solve a problem. Many such systems 
exist, and the table here lists a few rep-
resentative examples. The ESP game32 
lets users play a game of guessing 
common words that describe images 
(shown independently to each user), 
then uses those words to label images. 
Google Image Labeler builds on this 
game, and many other “games with a 
purpose” exist.33 Prediction markets23,29 
let users bet on events (such as elec-
tions, sport events), then aggregate the 
bets to make predictions. The intuition 
is that the “collective wisdom” is often 
accurate (under certain conditions)31 
and that this helps incorporate inside 
information available from users. The 
Internet Movie Database (IMDB) lets 
users import movies into private ac-
counts (hosted by IMDB). It designed 
the accounts such that users are strong-
ly motivated to rate the imported mov-
ies, as doing so bring many private ben-
efits (such as they can query to find all 
imported action movies rated at least 
7/10, or the system can recommend ac-
tion movies highly rated by people with 
similar taste). IMDB then aggregates all 
private ratings to obtain a public rating 
for each movie, for the benefit of the 
public. reCAPTCHA asks users to solve 
captchas to prove they are humans (to 
gain access to a site), then leverages 
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the results for digitizing written text.34 
Finally, it can be argued that the target 
problem of many systems (that provide 
user services) is simply to grow a large 
community of users, for various reasons 
(such as personal satisfaction, charging 
subscription fees, selling ads, selling 
the systems to other companies). Buy/
sell/auction websites (such as eBay) 
and massive multiplayer games (such 
as World of Warcraft) for instance fit this 
description. Here, by simply joining the 
system, users can be viewed as implicit-
ly collaborating to solve the target prob-
lem (of growing user communities).

The second kind of implicit system 
we consider is a piggyback system that 
exploits the user traces of yet another 
system (thus, making the users of this 
latter system implicitly collaborate) to 
solve a problem. For example, over time 
many piggyback CS systems have been 
built on top of major search engines, 
such as Google, Yahoo!, and Micro-
soft. These systems exploit the traces 
of search engine users (such as search 
logs, user clicks) for a wide range of 
tasks (such as spelling correction, find-
ing synonyms, flu epidemic predic-
tion, and keyword generation for ads6). 
Other examples include exploiting user 
purchases to recommend products,26 
and exploiting click logs to improve the 
presentation of a Web site.19

CS Systems on the Web
We now build on basic system types 
to discuss deployed CS systems on the 
Web. Founded on static HTML pages, 
the Web soon offered many interactive 
services. Some services serve machines 
(such as DNS servers, Google Map API 
server), but most serve humans. Many 
such services do not need to recruit us-
ers (in the sense that the more the bet-
ter). Examples include pay-parking-
ticket services (for city residents) and 
room-reservation services. (As noted, 
we call these crowd management sys-
tems). Many services, however, face 
CS challenges, including the need to 
grow large user bases. For example, 
online stores such as Amazon want a 
growing user base for their services, 
to maximize profits, and startups such 
as epinions.com grow their user bases 
for advertising. They started out as 
primitive CS systems, but quickly im-
proved over time with additional CS 
features (such as reviewing, rating, 

networking). Then around 2003, aided 
by the proliferation of social software 
(for example, discussion groups, wiki, 
blog), many full-fledged CS systems 
(such as Wikipedia, Flickr, YouTube, 
Facebook, MySpace) appeared, mark-
ing the arrival of Web 2.0. This Web 
is growing rapidly, with many new CS 
systems being developed and non-CS 
systems adding CS features.

These CS systems often combine 
multiple basic CS features. For example, 
Wikipedia primarily builds a textual KB. 
But it also builds a structured KB (via 
infoboxes) and hosts many knowledge 
sharing forums (for example, discus-
sion groups). YouTube lets users both 
share and evaluate videos. Community 
portals often combine all CS features 
discussed so far. Finally, we note that 
the Semantic Web, an ambitious at-
tempt to add structure to the Web, can 
be viewed as a CS attempt to share struc-
tured data, and to integrate such data to 
build a Web-scale structured KB. The 
World-Wide Web itself is perhaps the 
largest CS system of all, encompassing 
everything we have discussed.

Challenges and Solutions
Here, we discuss the key challenges of 
CS systems:

How to recruit and retain users? Re-
cruiting users is one of the most impor-
tant CS challenges, for which five ma-
jor solutions exist. First, we can require 
users to make contributions if we have 
the authority to do so (for example, a 
manager may require 100 employees 
to help build a company-wide system). 
Second, we can pay users. Mechanical 
Turk for example provides a way to pay 
users on the Web to help with a task. 
Third, we can ask for volunteers. This 
solution is free and easy to execute, 
and hence is most popular. Most cur-
rent CS systems on the Web (such as 
Wikipedia, YouTube) use this solution. 
The downside of volunteering is that it 
is hard to predict how many users we 
can recruit for a particular application.

The fourth solution is to make users 
pay for service. The basic idea is to re-
quire the users of a system A to “pay” for 
using A, by contributing to a CS system 
B. Consider for example a blog website 
(that is, system A), where a user U can 
leave a comment only after solving a 
puzzle (called a captcha) to prove that U 
is a human. As a part of the puzzle, we 

The user interface 
should make it 
easy for users to 
contribute. This is 
highly non-trivial.
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can ask U to retype a word that an OCR 
program has failed to recognize (the 
“payment”), thereby contributing to a 
CS effort on digitizing written text (that 
is, system B). This is the key idea behind 
the reCAPTCHA project.34 The MOBS 
project12,13 employs the same solution. 
In particular, it ran experiments where 
a user U can access a Web site (such as 
a class homepage) only after answering 
a relatively simple question (such as, is 
string “1960” in “born in 1960” a birth 
date?). MOBS leverages the answers to 
help build a data integration system. 
This solution works best when the “pay-
ment” is unintrusive or cognitively sim-
ple, to avoid deterring users from using 
system A.

The fifth solution is to piggyback on 
the user traces of a well-established sys-
tem (such as building a spelling correc-
tion system by exploiting user traces of 
a search engine, as discussed previous-
ly). This gives us a steady stream of us-
ers. But we must still solve the difficult 
challenge of determining how the trac-
es can be exploited for our purpose.

Once we have selected a recruit-
ment strategy, we should consider 
how to further encourage and retain 
users. Many encouragement and reten-
tion (E&R) schemes exist. We briefly 
discuss the most popular ones. First, 
we can provide instant gratification, by 
immediately showing a user how his or 
her contribution makes a difference.16 
Second, we can provide an enjoyable ex-
perience or a necessary service, such as 
game playing (while making a contri-
bution).32 Third, we can provide ways to 
establish, measure, and show fame/trust/
reputation.7,13,24,25 Fourth, we can set up 
competitions, such as showing top rat-
ed users. Finally, we can provide own-
ership situations, where a user may feel 
he or she “owns” a part of the system, 
and thus is compelled to “cultivate” 
that part. For example, zillow.com dis-
plays houses and estimates their mar-
ket prices. It provides a way for a house 
owner to claim his or her house and 
provide the correct data (such as num-
ber of bedroomss), which in turn helps 
improve the price estimation. 

These E&R schemes apply naturally 
to volunteering, but can also work well 
for other recruitment solutions. For 
example, after requiring a set of users 
to contribute, we can still provide in-
stant gratification, enjoyable experi-

ence, fame management, and so on, to 
maximize user participation. Finally, 
we note that deployed CS systems often 
employ a mixture of recruitment meth-
ods (such as bootstrapping with “re-
quirement” or “paying,” then switch-
ing to “volunteering” once the system 
is sufficiently “mature”). 

What contributions can users 
make? In many CS systems the kinds 
of contributions users can make are 
somewhat limited. For example, to 
evaluate, users review, rate, or tag; to 
share, users add items to a central Web 
site; to network, users link to other us-
ers; to find a missing boat in satellite 
images, users examine those images.

In more complex CS systems, how-
ever, users often can make a far wider 
range of contributions, from simple 
low-hanging fruit to cognitively com-
plex ones. For example, when build-
ing a structured KB, users can add a 
URL, flag incorrect data, and supply 
attribute-value pairs (as low-hanging 
fruit).3,5 But they can also supply in-
ference rules, resolve controversial is-
sues, and merge conflicting inputs (as 
cognitively complex contributions).25 
The challenge is to define this range of 
possible contributions (and design the 
system such that it can gather a critical 
crowd of such contributions).

Toward this goal, we should con-
sider four important factors. First, 
how cognitively demanding are the 
contributions? A CS system often has 
a way to classify users into groups, 
such as guests, regulars, editors, ad-
mins, and “dictators.” We should take 
care to design cognitively appropriate 
contribution types for different user 
groups. Low-ranking users (such as 
guests, regulars) often want to make 
only “easy” contributions (such as an-
swering a simple question, editing one 
to two sentences, flagging an incor-
rect data piece). If the cognitive load is 
high, they may be reluctant to partici-
pate. High-ranking users (such as edi-
tors, admins) are more willing to make 
“hard” contributions (such as resolv-
ing controversial issues).

Second, what should be the impact 
of a contribution? We can measure the 
potential impact by considering how 
the contribution potentially affects 
the CS system. For example, editing a 
sentence in a Wikipedia page largely 
affects only that page, whereas revis-

Given the success 
of current 
crowdsourcing 
systems,  
we expect that  
this emerging field 
will grow rapidly.
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ing an edit policy may potentially affect 
million of pages. As another example, 
when building a structured KB, flag-
ging an incorrect data piece typically 
has less potential impact than supply-
ing an inference rule, which may be 
used in many parts of the CS system. 
Quantifying the potential impact of 
a contribution type in a complex CS 
system may be difficult.12,13 But it is im-
portant to do so, because we typically 
have far fewer high-ranking users such 
as editors and admins (than regulars, 
say). To maximize the total contribu-
tion of these few users, we should ask 
them to make potentially high-impact 
contributions whenever possible.

Third, what about machine contribu-
tions? If a CS system employs an algo-
rithm for a task, then we want human 
users to make contributions that are 
easy for humans, but difficult for ma-
chines. For example, examining textual 
and image descriptions to decide if 
two products match is relatively easy 
for humans but very difficult for ma-
chines. In short, the CS work should 
be distributed between human users 
and machines according to what each 
of them is best at, in a complementary 
and synergistic fashion.

Finally, the user interface should 
make it easy for users to contribute. 
This is highly non-trivial. For example, 
how can users easily enter domain 
knowledge such as “no current living 
person was born before 1850” (which 
can be used in a KB to detect, say, in-
correct birth dates)? A natural lan-
guage format (such as in openmind.
org) is easy for users, but difficult for 
machines to understand and use, and a 
formal language format has the reverse 
problem. As another example, when 
building a structured KB, contributing 
attribute-value pairs is relatively easy 
(as Wikipedia infoboxes and Freebase 
demonstrate). But contributing more 
complex structured data pieces can be 
quite difficult for naive users, as this 
often requires them to learn the KB 
schema, among others.5 

How to combine user contributions? 
Many CS systems do not combine con-
tributions, or do so in a loose fashion. 
For example, current evaluation sys-
tems do not combine reviews, and com-
bine numeric ratings using relatively 
simple formulas. Networking systems 
simply link contributions (homepages 

and friendships) to form a social net-
work graph. More complex CS systems, 
however, such as those that build soft-
ware, KBs, systems, and games, com-
bine contributions more tightly. Exactly 
how this happens is application depen-
dent. Wikipedia, for example, lets users 
manually merge edits, while ESP does 
so automatically, by waiting until two 
users agree on a common word.

No matter how contributions are 
combined, a key problem is to decide 
what to do if users differ, such as when 
three users assert “A” and two users 
“not A.” Both automatic and manual 
solutions have been developed for 
this problem. Current automatic solu-
tions typically combine contributions 
weighted by some user scores. The 
work12,13 for example lets users vote on 
the correctness of system components 
(the semantic mappings of a data in-
tegration systems in this case20), then 
combines the votes weighted by the 
trustworthiness of each user. The 
work25 lets users contribute structured 
KB fragments, then combines them 
into a coherent probabilistic KB by 
computing the probabilities that each 
user is correct, then weighting contrib-
uted fragments by these probabilities.

Manual dispute management solu-
tions typically let users fight and settle 
among themselves. Unresolved issues 
then percolate up the user hierarchy. 
Systems such as Wikipedia and Linux 
employ such methods. Automatic so-
lutions are more efficient. But they 
work only for relatively simple forms 
of contributions (such as voting), or 
forms that are complex but amenable 
to algorithmic manipulation (such 
as structured KB fragments). Manual 
solutions are still the currently pre-
ferred way to combine “messy” con-
flicting contributions.

To further complicate the matter, 
sometimes not just human users, but 
machines also make contributions. 
Combining such contributions is dif-
ficult. To see why, suppose we employ a 
machine M to help create Wikipedia in-
foboxes.35 Suppose on Day 1 M asserts 
population = 5500 in a city infobox. On 
Day 2, a user U may correct this into 
population = 7500, based on his or her 
knowledge. On Day 3, however, M may 
have managed to process more Web 
data, and obtained higher confidence 
that population = 5500 is indeed cor-

rect. Should M override U’s assertion? 
And if so, how can M explain its reason-
ing to U? The main problem here is it 
is difficult for a machine to enter into 
a manual dispute with a human user. 
The currently preferred method is for 
M to alert U, and then leave it up to U 
to decide what to do. But this method 
clearly will not scale with the number 
of conflicting contributions.

How to evaluate users and con-
tributions? CS systems often must 
manage malicious users. To do so, we 
can use a combination of techniques 
that block, detect, and deter. First, 
we can block many malicious users 
by limiting who can make what kinds 
of contributions. Many e-science CS 
systems, for example, allow anyone to 
submit data, but only certain domain 
scientists to clean and merge this data 
into the central database.

Second, we can detect malicious 
users and contributions using a vari-
ety of techniques. Manual techniques 
include monitoring the system by the 
owners, distributing the monitoring 
workload among a set of trusted us-
ers, and enlisting ordinary users (such 
as flagging bad contributions on mes-
sage boards). Automatic methods typ-
ically involve some tests. For example, 
a system can ask users questions for 
which it already knows the answers, 
then use the answers of the users to 
compute their reliability scores.13,34 
Many other schemes to compute us-
ers’ reliability/trust/fame/reputation 
have been proposed.9,26 

Finally, we can deter malicious us-
ers with threats of “punishment.” A 
common punishment is banning. A 
newer, more controversial form of pun-
ishment is “public shaming,” where a 
user U judged malicious is publicly 
branded as a malicious or “crazy” user 
for the rest of the community (possibly 
without U’s knowledge). For example, a 
chat room may allow users to rate other 
users. If the (hidden) score of a user U 
goes below a threshold, other users 
will only see a mechanically garbled 
version of U’s comments, whereas U 
continues to see his or her comments 
exactly as written.

No matter how well we manage ma-
licious users, malicious contributions 
often still seep into the system. If so, 
the CS system must find a way to undo 
those. If the system does not combine 
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contributions (such as reviews) or 
does so only in a loose fashion (such 
as ratings), undoing is relatively easy. 
If the system combines contributions 
tightly, but keeps them localized, then 
we can still undo with relatively sim-
ple logging. For example, user edits 
in Wikipedia can be combined exten-
sively within a single page, but kept 
localized to that page (not propagated 
to other pages). Consequently, we can 
undo with page-level logging, as Wiki-
pedia does. Hoever, if the contribu-
tions are pushed deep into the system, 
then undoing can be very difficult. For 
example, suppose an inference rule 
R is contributed to a KB on Day 1. We 
then use R to infer many facts, apply 
other rules to these facts and other 
facts in the KB to infer more facts, let 
users edit the facts extensively, and so 
on. Then on Day 3, should R be found 
incorrect, it would be very difficult to 
remove R without reverting the KB to 
its state on Day 1, thereby losing all 
good contributions made between 
Day 1 and Day 3.

At the other end of the user spec-
trum, many CS systems also iden-
tify and leverage influential users, 
using both manual and automatic 
techniques. For example, productive 
users in Wikipedia can be recom-
mended by other users, promoted, 
and given more responsibilities. As an-
other example, certain users of social 
networks highly influence buy/sell de-
cisions of other users. Consequently, 
some work has examined how to auto-
matically identify these users, and le-
verage them in viral marketing within 
a user community.24

Conclusion
We have discussed CS systems on 
the World-Wide Web. Our discussion 
shows that crowdsourcing can be ap-
plied to a wide variety of problems, 
and that it raises numerous interesting 
technical and social challenges. Given 
the success of current CS systems, we 
expect that this emerging field will 
grow rapidly. In the near future, we 
foresee three major directions: more 
generic platforms, more applications 
and structure, and more users and 
complex contributions.

First, the various systems built in the 
past decade have clearly demonstrated 
the value of crowdsourcing. The race is 

now on to move beyond building indi-
vidual systems, toward building gen-
eral CS platforms that can be used to 
develop such systems quickly. 

Second, we expect that crowdsourc-
ing will be applied to ever more classes 
of applications. Many of these applica-
tions will be formal and structured in 
some sense, making it easier to employ 
automatic techniques and to coordi-
nate them with human users.37–40 In 
particular, a large chunk of the Web is 
about data and services. Consequent-
ly, we expect crowdsourcing to build 
structured databases and structured 
services (Web services with formalized 
input and output) will receive increas-
ing attention.

Finally, we expect many techniques 
will be developed to engage an ever 
broader range of users in crowdsourc-
ings, and to enable them, especially 
naïve users, to make increasingly 
complex contributions, such as creat-
ing software programs and building 
mashups (without writing any code), 
and specifying complex structured 
data pieces (without knowing any 
structured query languages).	
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