
86 communications of the acm | april 2011 | vol. 54 | no. 4

review articles

social systems, social search, social
media, collective intelligence, wiki-
nomics, crowd wisdom, smart mobs,
mass collaboration, and human
computation. The topic has been dis-
cussed extensively in books, popular
press, and academia.1,5,15,23,29,35 But this
body of work has considered mostly
efforts in the physical world.23,29,30
Some do consider crowdsourcing
systems on the Web, but only certain
system types28,33 or challenges (for ex-
ample, how to evaluate users12).

This survey attempts to provide a
global picture of crowdsourcing sys-
tems on the Web. We define and clas-
sify such systems, then describe a
broad sample of systems. The sample

Crowdsourcing systems enlist a multitude of
humans to help solve a wide variety of problems.
Over the past decade, numerous such systems
have appeared on the World-Wide Web. Prime
examples include Wikipedia, Linux, Yahoo! Answers,
Mechanical Turk-based systems, and much effort is
being directed toward developing many more.

As is typical for an emerging area, this effort
has appeared under many names, including peer
production, user-powered systems, user-generated
content, collaborative systems, community systems,

Crowdsourcing
Systems
on the
World-Wide
Web

doi:10.1145/1924421.1924442

The practice of crowdsourcing is transforming
the Web and giving rise to a new field.

by AnHai Doan, Raghu Ramakrishnan, and Alon Y. Halevy

 key insights

 �Crowdsourcing systems face four key
challenges: How to recruit contributors,
what they can do, how to combine their
contributions, and how to manage abuse.
Many systems “in the wild” must also
carefully balance openness with quality.

 �The race is on to build general crowd-
sourcing platforms that can be used to
quickly build crowdsourcing applications
in many domains. Using these, we can
already build databases previously
unimaginable at lightning speed.

april 2011 | vol. 54 | no. 4 | communications of the acm 87

A
r

t
w

o
r

k
 b

y
 a

a
r

o
n

 k
o

b
l

i
n

 a
n

d
 T

a
k

a
s

h
i

 K
a

w
a

s
h

im

a

ranges from relatively simple well-es-
tablished systems such as reviewing
books to complex emerging systems
that build structured knowledge bas-
es to systems that “piggyback” onto
other popular systems. We discuss
fundamental challenges such as how
to recruit and evaluate users, and to
merge their contributions. Given the
space limitation, we do not attempt
to be exhaustive. Rather, we sketch
only the most important aspects of
the global picture, using real-world
examples. The goal is to further our
collective understanding—both con-
ceptual and practical—of this im-
portant emerging topic.

It is also important to note that
many crowdsourcing platforms have
been built. Examples include Me-
chanical Turk, Turkit, Mob4hire, uT-
est, Freelancer, eLance, oDesk, Guru,
Topcoder, Trada, 99design, Inno-
centive, CloudCrowd, and Cloud-
Flower. Using these platforms, we
can quickly build crowdsourcing
systems in many domains. In this
survey, we consider these systems
(that is, applications), not the
crowdsourcing platforms them-
selves.

Crowdsourcing Systems
Defining crowdsourcing (CS) systems
turns out to be surprisingly tricky.
Since many view Wikipedia and Linux
as well-known CS examples, as a natu-
ral starting point, we can say that a
CS system enlists a crowd of users to
explicitly collaborate to build a long-
lasting artifact that is beneficial to the
whole community.

This definition, however, appears
too restricted. It excludes, for example,
the ESP game,32 where users implicitly
collaborate to label images as a side
effect while playing the game. ESP
clearly benefits from a crowd of users.
More importantly, it faces the same hu-
man-centric challenges of Wikipedia
and Linux, such as how to recruit and
evaluate users, and to combine their
contributions. Given this, it seems un-
satisfactory to consider only explicit
collaborations; we ought to allow im-
plicit ones as well.

The definition also excludes, for ex-
ample, an Amazon’s Mechanical Turk-
based system that enlists users to find
a missing boat in thousands of satellite
images.18 Here, users do not build any
artifact, arguably nothing is long last-
ing, and no community exists either

(just users coming together for this
particular task). And yet, like ESP, this
system clearly benefits from users, and
faces similar human-centric challeng-
es. Given this, it ought to be considered
a CS system, and the goal of building
artifacts ought to be relaxed into the
more general goal of solving problems.
Indeed, it appears that in principle any
non-trivial problem can benefit from
crowdsourcing: we can describe the
problem on the Web, solicit user in-
puts, and examine the inputs to devel-
op a solution. This system may not be
practical (and better systems may ex-
ist), but it can arguably be considered
a primitive CS system.

Consequently, we do not restrict
the type of collaboration nor the target
problem. Rather, we view CS as a gen-
eral-purpose problem-solving method.
We say that a system is a CS system if
it enlists a crowd of humans to help solve
a problem defined by the system owners,
and if in doing so, it addresses the fol-
lowing four fundamental challenges:

Ten Thousand Cents is a digital artwork by
Aaron Koblin that creates a representation
of a $100 bill. Using a custom drawing tool,
thousands of individuals, working in isolation
from one another, painted a tiny part of the
bill without knowledge of the overall task.

88 communications of the acm | april 2011 | vol. 54 | no. 4

review articles

coordination”31) can be relevant to CS
contexts. But the two system classes
are clearly distinct.

In this survey we focus on CS sys-
tems that leverage the Web to solve the
four challenges mentioned here (or a
significant subset of them). The Web is
unique in that it can help recruit a large
number of users, enable a high degree
of automation, and provide a large set
of social software (for example, email,
wiki, discussion group, blogging, and
tagging) that CS systems can use to
manage their users. As such, compared
to the physical world, the Web can dra-
matically improve existing CS systems
and give birth to novel system types.

How to recruit and retain users? What
contributions can users make? How to
combine user contributions to solve
the target problem? How to evaluate
users and their contributions?

Not all human-centric systems ad-
dress these challenges. Consider a
system that manages car traffic in
Madison, WI. Its goal is to, say, coor-
dinate the behaviors of a crowd of hu-
man drivers (that already exist within
the system) in order to minimize traf-
fic jams. Clearly, this system does not
want to recruit more human drivers (in
fact, it wants far fewer of them). We call
such systems crowd management (CM)
systems. CM techniques (a.k.a., “crowd

Classifying CS systems. CS systems
can be classified along many dimen-
sions. Here, we discuss nine dimen-
sions we consider most important. The
two that immediately come to mind are
the nature of collaboration and type of
target problem. As discussed previously,
collaboration can be explicit or implic-
it, and the target problem can be any
problem defined by the system owners
(for example, building temporary or
permanent artifacts, executing tasks).

The next four dimensions refer re-
spectively to how a CS system solves
the four fundamental challenges de-
scribed earlier: how to recruit and retain
users; what can users do; how to combine

A sample of basic CS system types on the World-Wide Web.

Nature of
Collaboration Architecture

Must
recruit
users? What users do? Examples Target Problems Comments

Explicit Standalone Yes

Evaluating
•	 review, vote, tag

•	 reviewing and voting at Amazon,
tagging Web pages at del.ici.ous.com
and Google Co-op

Evaluating a
collection of items
(e.g., products, users)

Humans as perspective
providers. No or loose
combination of inputs.

Sharing
•	 items
•	 textual knowledge
•	 structured knowledge

•	 Napster, YouTube, Flickr, CPAN,
programmableweb.com

•	 Mailing lists, Yahoo! Answers, QUIQ,
ehow.com, Quora

•	 Swivel, Many Eyes, Google Fusion
Tables, Google Base, bmrb.wisc.edu,
galaxyzoo, Piazza, Orchestra

Building a (distributed
or central) collection
of items that can be
shared among users.

Humans as content
providers. No or loose
combination of inputs.

Networking •	 LinkedIn, MySpace, Facebook Building social
networks

Humans as component
providers. Loose
combination of inputs.

Building artifacts
•	 software
•	 textual knowledge

bases
•	 structured knowledge

bases
•	 systems
•	 others

•	 Linux, Apache, Hadoop
•	 Wikipedia, openmind, Intellipedia,

ecolicommunity
•	 Wikipedia infoboxes/DBpedia, IWP,

Google Fusion Tables, YAGO-NAGA,
Cimple/DBLife

•	 Wikia Search, mahalo, Freebase,
Eurekster

•	 newspaper at Digg.com, Second Life

Building physical
artifacts

Humans can play all
roles. Typically tight
combination of inputs.
Some systems ask both
humans and machines
to contribute.

Task execution •	 Finding extraterrestrials, elections,
finding people, content creation (e.g.,
Demand Media, Associated Content)

Possibly any problem

 Implicit

Standalone Yes •	 play games with a
purpose

•	 bet on prediction
markets

•	 use private accounts
•	 solve captchas
•	 buy/sell/auction, play

massive multiplayer
games

•	 ESP
•	 intrade.com, Iowa Electronic Markets
•	 IMDB private accounts
•	 recaptcha.net
•	 eBay, World of Warcraft

•	 labeling images
•	 predicting events
•	 rating movies
•	 digitizing written

text
•	 building a user

community (for
purposes such
as charging fees,
advertising)

Humans can play
all roles. Input
combination can be
loose or tight.

Piggyback on
another system

No •	 keyword search
•	 buy products
•	 browse Web sites

•	 Google, Microsoft, Yahoo
•	 recommendation feature of Amazon
•	 adaptive Web sites

(e.g., Yahoo! front page)

•	 spelling correction,
epidemic prediction

•	 recommending
products

•	 reorganizing
a Web site for
better access

Humans can play
all roles. Input
combination can be
loose or tight.

review articles

april 2011 | vol. 54 | no. 4 | communications of the acm 89

Compared to the
physical world,
the Web can
dramatically
improve existing
crowdsourcing
systems and give
birth to novel
system types.

their inputs; and how to evaluate them.
Later, we will discuss these challenges
and the corresponding dimensions in
detail. Here, we discuss the remaining
three dimensions: degree of manual
effort, role of human users, and stand-
alone versus piggyback architectures.

Degree of manual effort. When build-
ing a CS system, we must decide how
much manual effort is required to solve
each of the four CS challenges. This can
range from relatively little (for example,
combining ratings) to substantial (for
example, combining code), and clearly
also depends on how much the system
is automated. We must decide how to
divide the manual effort between the
users and the system owners. Some
systems ask the users to do relatively
little and the owners a great deal. For
example, to detect malicious users,
the users may simply click a button to
report suspicious behaviors, whereas
the owners must carefully examine all
relevant evidence to determine if a user
is indeed malicious. Some systems do
the reverse. For example, most of the
manual burden of merging Wikipedia
edits falls on the users (who are cur-
rently editing), not the owners.

Role of human users. We consider
four basic roles of humans in a CS
system. Slaves: humans help solve
the problem in a divide-and-conquer
fashion, to minimize the resources
(for example, time, effort) of the own-
ers. Examples are ESP and finding a
missing boat in satellite images using
Mechanical Turk. Perspective provid-
ers: humans contribute different per-
spectives, which when combined often
produce a better solution (than with a
single human). Examples are review-
ing books and aggregating user bets to
make predictions.29 Content providers:
humans contribute self-generated con-
tent (for example, videos on YouTube,
images on Flickr). Component provid-
ers: humans function as components
in the target artifact, such as a social
network, or simply just a community
of users (so that the owner can, say, sell
ads). Humans often play multiple roles
within a single CS system (for example,
slaves, perspective providers, and con-
tent providers in Wikipedia). It is im-
portant to know these roles because
that may determine how to recruit. For
example, to use humans as perspective
providers, it is important to recruit a

diverse crowd where each human can
make independent decisions, to avoid
“group think.”29

Standalone versus piggyback. When
building a CS system, we may decide to
piggyback on a well-established system,
by exploiting traces that users leave in
that system to solve our target problem.
For example, Google’s “Did you mean”
and Yahoo’s Search Assist utilize the
search log and user clicks of a search
engine to correct spelling mistakes. An-
other system may exploit user purchas-
es in an online bookstore (Amazon) to
recommend books. Unlike standalone
systems, such piggyback systems do not
have to solve the challenges of recruit-
ing users and deciding what they can
do. But they still have to decide how to
evaluate users and their inputs (such
as traces in this case), and to combine
such inputs to solve the target problem.

Sample CS Systems on the Web
Building on this discussion of CS di-
mensions, we now focus on CS systems
on the Web, first describing a set of
basic system types, and then showing
how deployed CS systems often com-
bine multiple such types.

The accompanying table shows a
set of basic CS system types. The set is
not meant to be exhaustive; it shows
only those types that have received
most attention. From left to right, it
is organized by collaboration, archi-
tecture, the need to recruit users, and
then by the actions users can take. We
now discuss the set, starting with ex-
plicit systems.

Explicit Systems: These standalone
systems let users collaborate explicitly.
In particular, users can evaluate, share,
network, build artifacts, and execute
tasks. We discuss these systems in turn.

Evaluating: These systems let users
evaluate “items” (for example, books,
movies, Web pages, other users) using
textual comments, numeric scores, or
tags.10

Sharing: These systems let users
share “items” such as products, servic-
es, textual knowledge, and structured
knowledge. Systems that share prod-
ucts and services include Napster, You-
Tube, CPAN, and the site programma-
bleweb.com (for sharing files, videos,
software, and mashups, respectively).
Systems that share textual knowledge
include mailing lists, Twitter, how-to

90 communications of the acm | april 2011 | vol. 54 | no. 4

review articles

repositories (such as ehow.com, which
lets users contribute and search how-
to articles), Q&A Web sites (such as Ya-
hoo! Answers2), online customer sup-
port systems (such as QUIQ,22 which
powered Ask Jeeves’ AnswerPoint, a
Yahoo! Answers-like site). Systems
that share structured knowledge (for
example, relational, XML, RDF data)
include Swivel, Many Eyes, Google
Fusion Tables, Google Base, many e-
science Web sites (such as bmrb.wisc.
edu, galaxyzoo.org), and many peer-to-
peer systems developed in the Seman-
tic Web, database, AI, and IR commu-
nities (such as Orchestra8,27). Swivel, for
example, bills itself as the “YouTube

A key distinguishing aspect of sys-
tems that evaluate, share, or network is
that they do not merge user inputs, or
do so automatically in relatively simple
fashions. For example, evaluation sys-
tems typically do not merge textual user
reviews. They often merge user inputs
such as movie ratings, but do so auto-
matically using some formulas. Simi-
larly, networking systems automati-
cally merge user inputs by adding them
as nodes and edges to a social network
graph. As a result, users of such systems
do not need (and, in fact, often are not
allowed) to edit other users’ input.

Building Artifacts: In contrast, sys-
tems that let users build artifacts such

of structured data,” which lets users
share, query, and visualize census- and
voting data, among others. In general,
sharing systems can be central (such as
YouTube, ehow, Google Fusion Tables,
Swivel) or distributed, in a peer-to-peer
fashion (such as Napster, Orchestra).

Networking: These systems let users
collaboratively construct a large social
network graph, by adding nodes and
edges over time (such as homepages,
friendships). Then they exploit the
graph to provide services (for example,
friend updates, ads, and so on). To a
lesser degree, blogging systems are
also networking systems in that blog-
gers often link to other bloggers.

review articles

april 2011 | vol. 54 | no. 4 | communications of the acm 91

A
r

t
w

o
r

k
 b

y
 a

a
r

o
n

 k
o

b
l

i
n

as Wikipedia often merge user in-
puts tightly, and require users to edit
and merge one another’s inputs. A
well-known artifact is software (such
as Apache, Linux, Hadoop). Another
popular artifact is textual knowledge
bases (KBs). To build such KBs (such as
Wikipedia), users contribute data such
as sentences, paragraphs, Web pages,
then edit and merge one another’s
contributions. The knowledge capture
(k-cap.org) and AI communities have
studied building such KBs for over a
decade. A well-known early attempt is
openmind,28 which enlists volunteers
to build a KB of commonsense facts
(for example, “the sky is blue”). Re-

cently, the success of Wikipedia has in-
spired many “community wikipedias,”
such as Intellipedia (for the U.S. intel-
ligence community) and EcoliHub (at
ecolicommunity.org, to capture all in-
formation about the E. coli bacterium).

Yet another popular target artifact
is structured KBs. For example, the
set of all Wikipedia infoboxes (that is,
attribute-value pairs such as city-name
= Madison, state = WI) can be viewed as
a structured KB collaboratively created
by Wikipedia users. Indeed, this KB
has recently been extracted as DBpedia
and used in several applications (see
dbpedia.org). Freebase.com builds an
open structured database, where us-

ers can create and populate schemas
to describe topics of interest, and build
collections of interlinked topics using
a flexible graph model of data. As yet
another example, Google Fusion Ta-
bles (tables.googlelabs.com) lets users
upload tabular data and collaborate
on it by merging tables from different
sources, commenting on data items,
and sharing visualizations on the Web.

Several recent academic projects
have also studied building structured

The Sheep Market by Aaron Koblin is a
collection of 10,000 sheep made by workers
on Amazon’s Mechanical Turk. Workers were
paid $0.02 (USD) to “draw a sheep facing to
the left.” Animations of each sheep’s creation
may be viewed at TheSheepMarket.com.

92 communications of the acm | april 2011 | vol. 54 | no. 4

review articles

(such as the Metaweb query language
and a hosted development environ-
ment). Eurekster.com lets users col-
laboratively build vertical search en-
gines called swickis, by customizing
a generic search engine (for example,
specifying all URLs the system should
crawl). Finally, MOBS, an academic
project,12,13 studies how to collabora-
tively build data integration systems,
those that provide a uniform query in-
terface to a set of data sources. MOBS
enlists users to create a crucial system
component, namely the semantic
mappings (for example, “location” =
“address”) between the data sources.

In general, users can help build and
improve a system running on the Web
in several ways. First, they can edit the
system’s code. Second, the system typi-
cally contains a set of internal compo-
nents (such as URLs to crawl, semantic
mappings), and users can help improve
these without even touching the sys-
tem’s code (such as adding new URLs,
correcting mappings). Third, users can
edit system inputs and outputs. In the
case of a search engine, for instance,
users can suggest that if someone que-
ries for “home equity loan for seniors,”
the system should also suggest query-
ing for “reverse mortgage.” Users can
also edit search result pages (such as
promoting and demoting URLs, as
mentioned earlier). Finally, users can
monitor the running system and pro-
vide feedback.

We note that besides software, KBs,
and systems, many other target arti-
facts have also been considered. Ex-
amples include community newspa-
pers built by asking users to contribute
and evaluate articles (such as Digg) and
massive multi-player games that build
virtual artifacts (such as Second Life, a
3D virtual world partly built and main-
tained by users).

Executing Tasks: The last type of
explicit systems we consider is the
kind that executes tasks. Examples
include finding extraterrestrials, min-
ing for gold, searching for missing
people,23,29,30,31 and cooperative debug-
ging (cs.wisc.edu/cbi, early work of this
project received the ACM Doctoral Dis-
sertation Award in 2005). The 2008 elec-
tion is a well-known example, where
the Obama team ran a large online CS
operation asking numerous volunteers
to help mobilize voters. To apply CS to

KBs in a CS fashion. The IWP project35
extracts structured data from the tex-
tual pages of Wikipedia, then asks us-
ers to verify the extraction accuracy.
The Cimple/DBLife project4,5 lets us-
ers correct the extracted structured
data, expose it in wiki pages, then add
even more textual and structured data.
Thus, it builds structured “commu-
nity wikipedias,” whose wiki pages mix
textual data with structured data (that
comes from an underlying structured
KB). Other related works include YAG-
ONAGA,11 BioPortal,17 and many recent
projects in the Web, Semantic Web,
and AI communities.1,16,36

In general, building a structured KB
often requires selecting a set of data
sources, extracting structured data
from them, then integrating the data
(for example, matching and merging
“David Smith” and “D.M. Smith”). Us-
ers can help these steps in two ways.
First, they can improve the automatic
algorithms of the steps (if any), by edit-
ing their code, creating more training
data,17 answering their questions12,13 or
providing feedback on their output.12,35
Second, users can manually partici-
pate in the steps. For example, they can
manually add or remove data sources,
extract or integrate structured data, or
add even more structured data, data
not available in the current sources
but judged relevant.5 In addition, a CS
system may perform inferences over
its KB to infer more structured data. To
help this step, users can contribute in-
ference rules and domain knowledge.25
During all such activities, users can
naturally cross-edit and merge one an-
other’s contributions, just like in those
systems that build textual KBs.

Another interesting target prob-
lem is building and improving sys-
tems running on the Web. The project
Wikia Search (search.wikia.com) lets
users build an open source search en-
gine, by contributing code, suggest-
ing URLs to crawl, and editing search
result pages (for example, promoting
or demoting URLs). Wikia Search was
recently disbanded, but similar fea-
tures (such as editing search pages)
appear in other search engines (such
as Google, mahalo.com). Freebase
lets users create custom browsing
and search systems (deployed at Free-
base), using the community-curated
data and a suite of development tools

a task, we must find task parts that can
be “crowdsourced,” such that each user
can make a contribution and the con-
tributions in turn can be combined to
solve the parts. Finding such parts and
combining user contributions are of-
ten task specific. Crowdsourcing the
parts, however, can be fairly general,
and plaforms have been developed to
assist that process. For example, Ama-
zon’s Mechanical Turk can help distrib-
ute pieces of a task to a crowd of users
(and several recent interesting toolkits
have even been developed for using Me-
chanical Turk13,37). It was used recently
to search for Jim Gray, a database re-
searcher lost at sea, by asking volun-
teers to examine pieces of satellite im-
ages for any sign of Jim Gray’s boat.18

Implicit Systems: As discussed ear-
lier, such systems let users collaborate
implicitly to solve a problem of the sys-
tem owners. They fall into two groups:
standalone and piggyback.

A standalone system provides a ser-
vice such that when using it users im-
plicitly collaborate (as a side effect) to
solve a problem. Many such systems
exist, and the table here lists a few rep-
resentative examples. The ESP game32
lets users play a game of guessing
common words that describe images
(shown independently to each user),
then uses those words to label images.
Google Image Labeler builds on this
game, and many other “games with a
purpose” exist.33 Prediction markets23,29
let users bet on events (such as elec-
tions, sport events), then aggregate the
bets to make predictions. The intuition
is that the “collective wisdom” is often
accurate (under certain conditions)31
and that this helps incorporate inside
information available from users. The
Internet Movie Database (IMDB) lets
users import movies into private ac-
counts (hosted by IMDB). It designed
the accounts such that users are strong-
ly motivated to rate the imported mov-
ies, as doing so bring many private ben-
efits (such as they can query to find all
imported action movies rated at least
7/10, or the system can recommend ac-
tion movies highly rated by people with
similar taste). IMDB then aggregates all
private ratings to obtain a public rating
for each movie, for the benefit of the
public. reCAPTCHA asks users to solve
captchas to prove they are humans (to
gain access to a site), then leverages

review articles

april 2011 | vol. 54 | no. 4 | communications of the acm 93

the results for digitizing written text.34
Finally, it can be argued that the target
problem of many systems (that provide
user services) is simply to grow a large
community of users, for various reasons
(such as personal satisfaction, charging
subscription fees, selling ads, selling
the systems to other companies). Buy/
sell/auction websites (such as eBay)
and massive multiplayer games (such
as World of Warcraft) for instance fit this
description. Here, by simply joining the
system, users can be viewed as implicit-
ly collaborating to solve the target prob-
lem (of growing user communities).

The second kind of implicit system
we consider is a piggyback system that
exploits the user traces of yet another
system (thus, making the users of this
latter system implicitly collaborate) to
solve a problem. For example, over time
many piggyback CS systems have been
built on top of major search engines,
such as Google, Yahoo!, and Micro-
soft. These systems exploit the traces
of search engine users (such as search
logs, user clicks) for a wide range of
tasks (such as spelling correction, find-
ing synonyms, flu epidemic predic-
tion, and keyword generation for ads6).
Other examples include exploiting user
purchases to recommend products,26
and exploiting click logs to improve the
presentation of a Web site.19

CS Systems on the Web
We now build on basic system types
to discuss deployed CS systems on the
Web. Founded on static HTML pages,
the Web soon offered many interactive
services. Some services serve machines
(such as DNS servers, Google Map API
server), but most serve humans. Many
such services do not need to recruit us-
ers (in the sense that the more the bet-
ter). Examples include pay-parking-
ticket services (for city residents) and
room-reservation services. (As noted,
we call these crowd management sys-
tems). Many services, however, face
CS challenges, including the need to
grow large user bases. For example,
online stores such as Amazon want a
growing user base for their services,
to maximize profits, and startups such
as epinions.com grow their user bases
for advertising. They started out as
primitive CS systems, but quickly im-
proved over time with additional CS
features (such as reviewing, rating,

networking). Then around 2003, aided
by the proliferation of social software
(for example, discussion groups, wiki,
blog), many full-fledged CS systems
(such as Wikipedia, Flickr, YouTube,
Facebook, MySpace) appeared, mark-
ing the arrival of Web 2.0. This Web
is growing rapidly, with many new CS
systems being developed and non-CS
systems adding CS features.

These CS systems often combine
multiple basic CS features. For example,
Wikipedia primarily builds a textual KB.
But it also builds a structured KB (via
infoboxes) and hosts many knowledge
sharing forums (for example, discus-
sion groups). YouTube lets users both
share and evaluate videos. Community
portals often combine all CS features
discussed so far. Finally, we note that
the Semantic Web, an ambitious at-
tempt to add structure to the Web, can
be viewed as a CS attempt to share struc-
tured data, and to integrate such data to
build a Web-scale structured KB. The
World-Wide Web itself is perhaps the
largest CS system of all, encompassing
everything we have discussed.

Challenges and Solutions
Here, we discuss the key challenges of
CS systems:

How to recruit and retain users? Re-
cruiting users is one of the most impor-
tant CS challenges, for which five ma-
jor solutions exist. First, we can require
users to make contributions if we have
the authority to do so (for example, a
manager may require 100 employees
to help build a company-wide system).
Second, we can pay users. Mechanical
Turk for example provides a way to pay
users on the Web to help with a task.
Third, we can ask for volunteers. This
solution is free and easy to execute,
and hence is most popular. Most cur-
rent CS systems on the Web (such as
Wikipedia, YouTube) use this solution.
The downside of volunteering is that it
is hard to predict how many users we
can recruit for a particular application.

The fourth solution is to make users
pay for service. The basic idea is to re-
quire the users of a system A to “pay” for
using A, by contributing to a CS system
B. Consider for example a blog website
(that is, system A), where a user U can
leave a comment only after solving a
puzzle (called a captcha) to prove that U
is a human. As a part of the puzzle, we

The user interface
should make it
easy for users to
contribute. This is
highly non-trivial.

94 communications of the acm | april 2011 | vol. 54 | no. 4

review articles

can ask U to retype a word that an OCR
program has failed to recognize (the
“payment”), thereby contributing to a
CS effort on digitizing written text (that
is, system B). This is the key idea behind
the reCAPTCHA project.34 The MOBS
project12,13 employs the same solution.
In particular, it ran experiments where
a user U can access a Web site (such as
a class homepage) only after answering
a relatively simple question (such as, is
string “1960” in “born in 1960” a birth
date?). MOBS leverages the answers to
help build a data integration system.
This solution works best when the “pay-
ment” is unintrusive or cognitively sim-
ple, to avoid deterring users from using
system A.

The fifth solution is to piggyback on
the user traces of a well-established sys-
tem (such as building a spelling correc-
tion system by exploiting user traces of
a search engine, as discussed previous-
ly). This gives us a steady stream of us-
ers. But we must still solve the difficult
challenge of determining how the trac-
es can be exploited for our purpose.

Once we have selected a recruit-
ment strategy, we should consider
how to further encourage and retain
users. Many encouragement and reten-
tion (E&R) schemes exist. We briefly
discuss the most popular ones. First,
we can provide instant gratification, by
immediately showing a user how his or
her contribution makes a difference.16
Second, we can provide an enjoyable ex-
perience or a necessary service, such as
game playing (while making a contri-
bution).32 Third, we can provide ways to
establish, measure, and show fame/trust/
reputation.7,13,24,25 Fourth, we can set up
competitions, such as showing top rat-
ed users. Finally, we can provide own-
ership situations, where a user may feel
he or she “owns” a part of the system,
and thus is compelled to “cultivate”
that part. For example, zillow.com dis-
plays houses and estimates their mar-
ket prices. It provides a way for a house
owner to claim his or her house and
provide the correct data (such as num-
ber of bedroomss), which in turn helps
improve the price estimation.

These E&R schemes apply naturally
to volunteering, but can also work well
for other recruitment solutions. For
example, after requiring a set of users
to contribute, we can still provide in-
stant gratification, enjoyable experi-

ence, fame management, and so on, to
maximize user participation. Finally,
we note that deployed CS systems often
employ a mixture of recruitment meth-
ods (such as bootstrapping with “re-
quirement” or “paying,” then switch-
ing to “volunteering” once the system
is sufficiently “mature”).

What contributions can users
make? In many CS systems the kinds
of contributions users can make are
somewhat limited. For example, to
evaluate, users review, rate, or tag; to
share, users add items to a central Web
site; to network, users link to other us-
ers; to find a missing boat in satellite
images, users examine those images.

In more complex CS systems, how-
ever, users often can make a far wider
range of contributions, from simple
low-hanging fruit to cognitively com-
plex ones. For example, when build-
ing a structured KB, users can add a
URL, flag incorrect data, and supply
attribute-value pairs (as low-hanging
fruit).3,5 But they can also supply in-
ference rules, resolve controversial is-
sues, and merge conflicting inputs (as
cognitively complex contributions).25
The challenge is to define this range of
possible contributions (and design the
system such that it can gather a critical
crowd of such contributions).

Toward this goal, we should con-
sider four important factors. First,
how cognitively demanding are the
contributions? A CS system often has
a way to classify users into groups,
such as guests, regulars, editors, ad-
mins, and “dictators.” We should take
care to design cognitively appropriate
contribution types for different user
groups. Low-ranking users (such as
guests, regulars) often want to make
only “easy” contributions (such as an-
swering a simple question, editing one
to two sentences, flagging an incor-
rect data piece). If the cognitive load is
high, they may be reluctant to partici-
pate. High-ranking users (such as edi-
tors, admins) are more willing to make
“hard” contributions (such as resolv-
ing controversial issues).

Second, what should be the impact
of a contribution? We can measure the
potential impact by considering how
the contribution potentially affects
the CS system. For example, editing a
sentence in a Wikipedia page largely
affects only that page, whereas revis-

Given the success
of current
crowdsourcing
systems,
we expect that
this emerging field
will grow rapidly.

review articles

april 2011 | vol. 54 | no. 4 | communications of the acm 95

ing an edit policy may potentially affect
million of pages. As another example,
when building a structured KB, flag-
ging an incorrect data piece typically
has less potential impact than supply-
ing an inference rule, which may be
used in many parts of the CS system.
Quantifying the potential impact of
a contribution type in a complex CS
system may be difficult.12,13 But it is im-
portant to do so, because we typically
have far fewer high-ranking users such
as editors and admins (than regulars,
say). To maximize the total contribu-
tion of these few users, we should ask
them to make potentially high-impact
contributions whenever possible.

Third, what about machine contribu-
tions? If a CS system employs an algo-
rithm for a task, then we want human
users to make contributions that are
easy for humans, but difficult for ma-
chines. For example, examining textual
and image descriptions to decide if
two products match is relatively easy
for humans but very difficult for ma-
chines. In short, the CS work should
be distributed between human users
and machines according to what each
of them is best at, in a complementary
and synergistic fashion.

Finally, the user interface should
make it easy for users to contribute.
This is highly non-trivial. For example,
how can users easily enter domain
knowledge such as “no current living
person was born before 1850” (which
can be used in a KB to detect, say, in-
correct birth dates)? A natural lan-
guage format (such as in openmind.
org) is easy for users, but difficult for
machines to understand and use, and a
formal language format has the reverse
problem. As another example, when
building a structured KB, contributing
attribute-value pairs is relatively easy
(as Wikipedia infoboxes and Freebase
demonstrate). But contributing more
complex structured data pieces can be
quite difficult for naive users, as this
often requires them to learn the KB
schema, among others.5

How to combine user contributions?
Many CS systems do not combine con-
tributions, or do so in a loose fashion.
For example, current evaluation sys-
tems do not combine reviews, and com-
bine numeric ratings using relatively
simple formulas. Networking systems
simply link contributions (homepages

and friendships) to form a social net-
work graph. More complex CS systems,
however, such as those that build soft-
ware, KBs, systems, and games, com-
bine contributions more tightly. Exactly
how this happens is application depen-
dent. Wikipedia, for example, lets users
manually merge edits, while ESP does
so automatically, by waiting until two
users agree on a common word.

No matter how contributions are
combined, a key problem is to decide
what to do if users differ, such as when
three users assert “A” and two users
“not A.” Both automatic and manual
solutions have been developed for
this problem. Current automatic solu-
tions typically combine contributions
weighted by some user scores. The
work12,13 for example lets users vote on
the correctness of system components
(the semantic mappings of a data in-
tegration systems in this case20), then
combines the votes weighted by the
trustworthiness of each user. The
work25 lets users contribute structured
KB fragments, then combines them
into a coherent probabilistic KB by
computing the probabilities that each
user is correct, then weighting contrib-
uted fragments by these probabilities.

Manual dispute management solu-
tions typically let users fight and settle
among themselves. Unresolved issues
then percolate up the user hierarchy.
Systems such as Wikipedia and Linux
employ such methods. Automatic so-
lutions are more efficient. But they
work only for relatively simple forms
of contributions (such as voting), or
forms that are complex but amenable
to algorithmic manipulation (such
as structured KB fragments). Manual
solutions are still the currently pre-
ferred way to combine “messy” con-
flicting contributions.

To further complicate the matter,
sometimes not just human users, but
machines also make contributions.
Combining such contributions is dif-
ficult. To see why, suppose we employ a
machine M to help create Wikipedia in-
foboxes.35 Suppose on Day 1 M asserts
population = 5500 in a city infobox. On
Day 2, a user U may correct this into
population = 7500, based on his or her
knowledge. On Day 3, however, M may
have managed to process more Web
data, and obtained higher confidence
that population = 5500 is indeed cor-

rect. Should M override U’s assertion?
And if so, how can M explain its reason-
ing to U? The main problem here is it
is difficult for a machine to enter into
a manual dispute with a human user.
The currently preferred method is for
M to alert U, and then leave it up to U
to decide what to do. But this method
clearly will not scale with the number
of conflicting contributions.

How to evaluate users and con-
tributions? CS systems often must
manage malicious users. To do so, we
can use a combination of techniques
that block, detect, and deter. First,
we can block many malicious users
by limiting who can make what kinds
of contributions. Many e-science CS
systems, for example, allow anyone to
submit data, but only certain domain
scientists to clean and merge this data
into the central database.

Second, we can detect malicious
users and contributions using a vari-
ety of techniques. Manual techniques
include monitoring the system by the
owners, distributing the monitoring
workload among a set of trusted us-
ers, and enlisting ordinary users (such
as flagging bad contributions on mes-
sage boards). Automatic methods typ-
ically involve some tests. For example,
a system can ask users questions for
which it already knows the answers,
then use the answers of the users to
compute their reliability scores.13,34
Many other schemes to compute us-
ers’ reliability/trust/fame/reputation
have been proposed.9,26

Finally, we can deter malicious us-
ers with threats of “punishment.” A
common punishment is banning. A
newer, more controversial form of pun-
ishment is “public shaming,” where a
user U judged malicious is publicly
branded as a malicious or “crazy” user
for the rest of the community (possibly
without U’s knowledge). For example, a
chat room may allow users to rate other
users. If the (hidden) score of a user U
goes below a threshold, other users
will only see a mechanically garbled
version of U’s comments, whereas U
continues to see his or her comments
exactly as written.

No matter how well we manage ma-
licious users, malicious contributions
often still seep into the system. If so,
the CS system must find a way to undo
those. If the system does not combine

96 communications of the acm | april 2011 | vol. 54 | no. 4

review articles

Mangrove: Enticing ordinary people onto the semantic
web via instant gratification. In Proceedings of ISWC,
2003.

15.	 Mihalcea, R. and Chklovski, T. Building sense tagged
corpora with volunteer contributions over the Web. In
Proceedings of RANLP, 2003.

16.	N oy, N.F., Chugh, A. and Alani, H. The CKC challenge:
Exploring tools for collaborative knowledge
construction. IEEE Intelligent Systems 23, 1, (2008)
64–68.

17.	N oy, N.F., Griffith, N. and Munsen, M.A. Collecting
community-based mappings in an ontology repository.
In Proceedings of ISWC, 2008.

18.	O lson, M. The amateur search. SIGMOD Record 37, 2
(2008), 21–24.

19.	 Perkowitz, M. and Etzioni, O. Adaptive web sites.
Comm. ACM 43, 8 (Aug. 2000).

20.	R ahm, E. and Bernstein, P.A. A survey of approaches
to automatic schema matching. VLDB J. 10, 4, (2001),
334–350.

21.	R amakrishnan, R. Collaboration and data mining,
2001. Keynote talk, KDD.

22.	R amakrishnan, R., Baptist, A., Ercegovac, A.,
Hanselman, M., Kabra, N., Marathe, A. and Shaft, U.
Mass collaboration: A case study. In Proceedings of
IDEAS, 2004.

23.	R heingold, H. Smart Mobs. Perseus Publishing, 2003.
24.	R ichardson, M. and Domingos, P. Mining knowledge-

sharing sites for viral marketing. In Proceedings of
KDD, 2002.

25.	R ichardson, M. and Domingos, P. Building large
knowledge bases by mass collaboration. In
Proceedings of K-CAP, 2003.

26.	S arwar, B.M., Karypis, G., Konstan, J.A. and Riedl, J.
Item-based collaborative filtering recommendation
algorithms. In Proceedings of WWW, 2001.

27.	S teinmetz, R. and Wehrle, K. eds. Peer-to-peer
systems and applications. Lecture Notes in Computer
Science. 3485; Springer, 2005.

28.	S tork, D.G. Using open data collection for intelligent
software. IEEE Computer 33, 10, (2000), 104–106.

29.	S urowiecki, J. The Wisdom of Crowds. Anchor Books,
2005.

30.	Tapscott, D. and Williams, A.D. Wikinomics. Portfolio,
2006.

31.	T ime. Special Issue Person of the year: You,
2006; http://www.time.com/time/magazine/
article/0,9171,1569514,00.html.

32.	 von Ahn, L. and Dabbish, L. Labeling images with a
computer game. In Proc. of CHI, 2004.

33.	 von Ahn, L. and Dabbish, L. Designing games with a
purpose. Comm. ACM 51, 8 (Aug. 2008), 58–67.

34.	 von Ahn, L., Maurer, B., McMillen, C., Abraham, D.
and Blum, M. Recaptcha: Human-based character
recognition via Web security measures. Science 321,
5895, (2008), 1465–1468.

35.	W eld, D.S., Wu, F., Adar, E., Amershi, S., Fogarty, J.,
Hoffmann, R., Patel, K. and Skinner, M. Intelligence in
Wikipedia. AAAI, 2008.

36.	W orkshop on collaborative construction, management
and linking of structured knowledge (CK 2009), 2009.
http://users.ecs.soton.ac.uk/gc3/iswc-workshop.

37.	 Franklin, M, Kossman, D., Kraska, T, Ramesh, S,
and Xin, R. CrowdDB: Answering queries with
crowdsourcing. In Proceedings of SIGMOD 2011.

38.	 Marcus, A., Wu, E. and Madden, S. Crowdsourcing
databases: Query processing with people. In
Proceedings of CRDR 2011.

39.	 Parameswaran, A., Sarma, A., Garcia-Molina, H.,
Polyzotis, N. and Widom, J. Human-assisted graph
search: It’s okay to ask questions. In Proceedings of
VLDB 2011.

40.	Parameswaran, A. and Polyzotis, N. Answering
queries using humans, algorithms, and databases.
In Proceedings of CIDR 2011.

AnHai Doan (anhai@cs.wisc.edu) is an associate
professor of computer science at the University of
Wisconsin-Madison and Chief Scientist at Kosmix Corp.

Raghu Ramakrishnan (ramakris@yahoo-inc.com)
is Chief Scientist for Search & Cloud Computing,
and a Fellow at Yahoo! Research, Silicon Valley, CA,
where he heads the Community Systems group.

Alon Y. Halevy (halevy@google.com) heads the
Structured Data Group at Google Research, Mountain
View, CA.

© 2011 ACM 0001-0782/11/04 $10.00

contributions (such as reviews) or
does so only in a loose fashion (such
as ratings), undoing is relatively easy.
If the system combines contributions
tightly, but keeps them localized, then
we can still undo with relatively sim-
ple logging. For example, user edits
in Wikipedia can be combined exten-
sively within a single page, but kept
localized to that page (not propagated
to other pages). Consequently, we can
undo with page-level logging, as Wiki-
pedia does. Hoever, if the contribu-
tions are pushed deep into the system,
then undoing can be very difficult. For
example, suppose an inference rule
R is contributed to a KB on Day 1. We
then use R to infer many facts, apply
other rules to these facts and other
facts in the KB to infer more facts, let
users edit the facts extensively, and so
on. Then on Day 3, should R be found
incorrect, it would be very difficult to
remove R without reverting the KB to
its state on Day 1, thereby losing all
good contributions made between
Day 1 and Day 3.

At the other end of the user spec-
trum, many CS systems also iden-
tify and leverage influential users,
using both manual and automatic
techniques. For example, productive
users in Wikipedia can be recom-
mended by other users, promoted,
and given more responsibilities. As an-
other example, certain users of social
networks highly influence buy/sell de-
cisions of other users. Consequently,
some work has examined how to auto-
matically identify these users, and le-
verage them in viral marketing within
a user community.24

Conclusion
We have discussed CS systems on
the World-Wide Web. Our discussion
shows that crowdsourcing can be ap-
plied to a wide variety of problems,
and that it raises numerous interesting
technical and social challenges. Given
the success of current CS systems, we
expect that this emerging field will
grow rapidly. In the near future, we
foresee three major directions: more
generic platforms, more applications
and structure, and more users and
complex contributions.

First, the various systems built in the
past decade have clearly demonstrated
the value of crowdsourcing. The race is

now on to move beyond building indi-
vidual systems, toward building gen-
eral CS platforms that can be used to
develop such systems quickly.

Second, we expect that crowdsourc-
ing will be applied to ever more classes
of applications. Many of these applica-
tions will be formal and structured in
some sense, making it easier to employ
automatic techniques and to coordi-
nate them with human users.37–40 In
particular, a large chunk of the Web is
about data and services. Consequent-
ly, we expect crowdsourcing to build
structured databases and structured
services (Web services with formalized
input and output) will receive increas-
ing attention.

Finally, we expect many techniques
will be developed to engage an ever
broader range of users in crowdsourc-
ings, and to enable them, especially
naïve users, to make increasingly
complex contributions, such as creat-
ing software programs and building
mashups (without writing any code),
and specifying complex structured
data pieces (without knowing any
structured query languages).	

References

1.	AAA I-08 Workshop. Wikipedia and artificial
intelligence: An evolving synergy, 2008.

2.	A damic, L.A., Zhang, J., Bakshy, E. and Ackerman,
M.S. Knowledge sharing and Yahoo answers:
Everyone knows something. In Proceedings of WWW,
2008.

3.	C hai, X., Vuong, B., Doan, A. and Naughton, J.F.
Efficiently incorporating user feedback into
information extraction and integration programs. In
Proceedings of SIGMOD, 2009.

4.	T he Cimple/DBLife project; http://pages.cs.wisc.
edu/~anhai/projects/cimple.

5.	D eRose, P., Chai, X., Gao, B.J., Shen, W., Doan,
A., Bohannon, P. and Zhu, X. Building community
Wikipedias: A machine-human partnership approach.
In Proceedings of ICDE, 2008.

6.	 Fuxman, A., Tsaparas, P., Achan, K. and Agrawal,
R. Using the wisdom of the crowds for keyword
generation. In Proceedings of WWW, 2008.

7.	 Golbeck, J. Computing and applying trust in Web-
based social network, 2005. Ph.D. Dissertation,
University of Maryland.

8.	 Ives, Z.G., Khandelwal, N., Kapur, A., and Cakir, M.
Orchestra: Rapid, collaborative sharing of dynamic
data. In Proceedings of CIDR, 2005.

9.	K asneci, G., Ramanath, M., Suchanek, M. and Weiku,
G. The yago-naga approach to knowledge discovery.
SIGMOD Record 37, 4, (2008), 41–47.

10.	K outrika, G., Bercovitz, B., Kaliszan, F., Liou, H. and
Garcia-Molina, H. Courserank: A closed-community
social system through the magnifying glass. In The
3rd Int’l AAAI Conference on Weblogs and Social
Media (ICWSM), 2009.

11.	L ittle, G., Chilton, L.B., Miller, R.C. and Goldman, M.
Turkit: Tools for iterative tasks on mechanical turk,
2009. Technical Report. Available from glittle.org.

12.	 McCann, R., Doan, A., Varadarajan, V., and Kramnik,
A. Building data integration systems: A mass
collaboration approach. In WebDB, 2003.

13.	 McCann, R., Shen, W. and Doan, A. Matching schemas
in online communities: A Web 2.0 approach. In
Proceedings of ICDE, 2008.

14.	 McDowell, L., Etzioni, O., Gribble, S.D., Halevy, A.Y.,
Levy, H.M., Pentney, W., Verma, D. and Vlasseva, S.

