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THE THEORY OF SIMPLY PERIODIC NUMERICAL FUNCTIONS*
Edouard Lucas, Lycée Charlemagne, Paris

Translated from the French by Sidney Kravitz, Dover, N. J.
Translation Edited by
Douglas Lind, University of Virginia, Charlottesville, Va.

INTRODUCTION

This is a translation of the first part of Lucas' memoire, "Theéorie des
Fonctions Numéeriques Simplement Périodiques, " which appeared in the Amer-
ican Journal of Mathematics, Volume 1 (1878), pp. 184—240. The second half
of the paper, published in pages 289-321 of the same volume, investigatesper-

iodicity of second-order recurring sequences modulo a prime, and applies this
to the study of large primes.

The decision to publish a translation of Lucas! memoire was made for two
reasons. First, although it is the first lengthy paper containing fundamental
results about recurring sequences, the original is difficult to lay one's hands
on. Secondly, the relationships and identities in the paper are constantly being
rediscovered. Thus in order to help avoid needless duplication, it was decided
to publish the first part of the paper in full. It is our hope that this will become
a standard reference for such relationships and identities.

This translation diverges from the original only in a few places. Where
an error has been detected in an equation, the corrected version of that equa-
tion has been used, together with a (*) to the left of the equation. We have also
used more modern terminology where appropriate. For example, we have re-
placed n(n - 1) +++ +2+1 by n!, V-1 by i, Log. nép. by log, and CII; by
i 111, . GIL a[al 1I0E E = 1[0}

The purpose of this paper is to study the symmetric functions of the roots

of a quadratic equation, and their application to the theory of prime numbers.
We indicate, at the start, the complete analogy of these symmetric functions
with the circular and hyperbolic functions. We then show the relationship that
exists between these symmetric functions and the theories of determinants,
combinatorial analysis, continued fractions, divisibility, quadratic divisors,
continued radicals, division of the circumference of a circle, quadratic dio-
phantine analysis, quadratic residues, the decomposition of large numbers into
prime factors, etc. This presentation is the starting point for a more complete

* First published in the American J ournal of Mathematics, Vol. 1 (1878), .
pp. 184-240, 289-321, '




study of the properties of the symmetric functions of the roots of an algebraic
equation with rational coefficients of any degree, and their relationship to the
theories of Elliptic and Abelian functions, power residues, and the diophantine

analysis of higher degrees.

1. DEFINITION OF THE SIMPLY PERIODIC NUMERICAL FUNCTIONS

Let a and b denote the two roots of the equation
(1) x = Px - Q

whose coefficients P and Q are positive or negative relatively prime inte-

gers. We have

Denoting by 6 the difference a - b of the roots, and by A& the square of

this difference, we also have

P+6 P-§ 5

= NA = NP2 - 4Q.

We will consider the two numerical functions U and V defined by the

equations

(2) U =

For all positive integer values of n these functions Un and Vn give
rise to three different kinds of series, depending on the nature of the roots a
and b of equation (1). This equation may have

1) Real integer roots

2) Real irrational roots

3) Imaginary roots.

The numerical functions of the firstkind correspond to all the integer

values of a and b and can be directly calculated, for all positive integer
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values of n, Dby the use of the formulas (2). If we suppose more particularly
=2 and b = 1, we find, on forming the values of Un and Vn’ the recur-

rent series

n: 0, 1, 2, 3 4, 5, 6, 7, 8, 9, 10, 11,
Un: o, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, --°
Vn: 2, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, --

studied for the first time by the illustrious Fermat, We will note, from now
on, that the series Vn is contained, for the cases we will consider, in the

series Un’ since the formulas (2) give us the general relation

The numerical functions of the second kind correspond to all the irra-
tional values of a and b whose sum and product are rational. We may cal-
culate them as a function of the sum P and of the discriminant A of the given
equation by means of the following formulas. The expansion of the binomial

gives us

nn _ ph, Dpn-ly 00 -1) on2ep, nl- Db -2) -,

[\V)
O
|

1 2! 3!
+ o1 ,
olpl = ph _%P s . n(r;'- 1) ph-252 _n@ - Elg?(n - 2) pn-3g3, .
+(0)",

and by subtraction and addition,

20y - npn-t, nn- ;Z(n—z) ph-iy  n-1)@ 5'2)(n 3)(n-4) pn-5,2

(4)

T

| Zn—ivn - p. n(n 1) P2 4 n(n - 1)(n4'- 2) (n - 3) pRia2 4

Thus for the first few terms we obtain
Uy =0, Uy =1, U, = P, Ul
Vo =2 V; =P, V, =P_2Q, Vs

-Q, U, = P3-2PQ,
P3 - 3PQ, V,=P!-4P2Q +2Q%

Il
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The simplest numerical functions of the second kind correspond to the

assumptions

or to the equation

In this case we have

_ .1 _ 1-AB
~—2s1n-1—0—-————,

3 1+ A5 b
’ 2

a=2s1n—1-6-= 5

and consequently, denoting by u and v, the resulting functions,

u

_ @+ AR - - B R R ¢ )
n ol W5 ’ Vn oft

For the first few values of positive integers n the series are

n: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
n o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
Vn: 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, -

The series w was considered for the first time by Leonard Fibonacci,
of Pisa.! It has been studied by Albert Girard, ? who noted that the three num-
bers W, W, W form an isosceles triangle whose apex angle is very
nearly equal to the central angle of the regular pentagon. Robert Simson?

111 liber Abbaci di Leonardo Pisano, pubblicato secondo la lezione del Codice
Magliabechiano, da B. Boncompagni. Roma, 1867, pages 283—-284,

21 'arithmetique de Simon Stevin, of Bruges, review, correction, and addition
of several tracts and annotations by Albert Girard, Leide, 1633, pages 169-170.

3Philosophical Transactions of the Royal Society of London, Vol. xlviii, Part I,
(1753). An explanation of an obscure passage in Albert Girard's commentary
on Simon Stevin's works, pages 368 and those which follow.
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remarked in 1753 that this series is obtained by the calculation of the quotients
of the convergent fractions of the irrational expressions

AB+1 and '\/_'1.

2 2

In 1843 J. Binet! gave, by means of this series, the expression for the number
of discrete combinations. In 1844, Lamé? indicated the application that can be
made of this series in determining the upper limit of the number of operations
to be performed in finding the greatest common divisor of two integers.

From time to time we will also consider, for example, the series Un of
the second kind given by the assumptions

P=2 Q=-1 A =22.2,
or by the equation

2x + 1.

e
o
Il

We then have the series

n: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ==
Un: 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, ---

Vn: 2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, °°°
which we call the Pell series in honor of the mathematician who was the first
to solve® a celebrated problem of diophantine analysis proposed by Fermat con-

cerning the solution in integers of the Diophantine equation

1comptes Rendus de 1'Academie des Sciences de Paris, Vol. xvii, page 562;
Vol. xix, page 939.

2Comptes Rendus de 1'Academie des Sciences de Paris, Vol. xix, bage 867,

3According to David Eugene Smith's A Source Book in Mathematics, Dover
Publications, New York, 1959, p. 214, "The name Pell equation originated in
a mistaken notion of Leonard Euler that John Pell was the author of the solu-
tion which was really the work of Lord Brouncker. ''—Translator's note.
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The numerical functions of the third kind correspond to all the imaginary
values of a and b whose sum and product are real and rational. The sim-

plest result from the assumptions

We have, in this case,

so that a and b are the imaginary cubic roots of negative unity. In addition
Usp = 0, Uspas = (-7, Usnie = D,
Thus the values of Un recur periodically in the order
0, 1, 1, o0, -1, -1, ~°--
leading to a large number of simple formulas, derived from the general prop-
erties of the functions Un and Vn’ concerning the trisection of the circum-
ference of a circle. .
From time to time we will also consider the analogous series derived

from the equation

x2 = 2x - 2,

for which
a=1+i, b=1-i, A = =22,

and the series derived from the equation

xt = 2x - 3,

for which
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a=1+A-2 b=1-+-2 A=-2-2",
We will call this last series the conjugate Pell series.

II. RELATIONSHIP OF THE FUNCTIONS U, AND
WITH THE CIRCULAR AND HYPERBOLIC FUNCTIONé1

If we substitute

zZ = —i log E
into the formulas
. e + e %
COoS 1z = —-—E—— N
e? _e7Z
(%) sin iz = - 7
we obtain

cos ni lo a 1 n/2 n/2
3 e § )= 3|57 S

. . [ ni a) _ -1 an/2 bn/2
(%) s1n<-2- log B) = Z[WE - a—nﬁ'
We then have two relations between the functions Un and Vn and the circular
functions
Vv = 2 n/2 " ni a
n - Q cos| & log L
(5) n/2 .
U = 2Q sin(glogg'-).
: 2 b ,

no



This immediately results in a correspondence between each formula in plane
trigonometry and analogous formulas for Un and Vn » and vice versa.
Thus the formula (3)

corresponds to the formula

sin 2z = 2sinzcos z.

The equations

_ oD _ ol
(6) Vn+8Un = 2a, Vn - SUn 2b™,

which can easily be derived from the formulas (2) correspond exactly to the

relations

.. iz .. -iz
cosz tisinz = e , cosz -18inz = e ’

and the formulas (4) are completely analogous to those which have been given
in Actes de Leipzick, in 1701, by Jean Bernoulli, for the expansion of

sin nz
sin z

and of cos nx in terms of powers of sines and cosines of the angle z. Also

the formulas

[Vm " SUm-] Vo ¥ 8Un] B 2[Vm+n * 8Um+n] ?

r _ r-1
[Vn + 8Un] = 2 [Vnr + SUnr],

derived from the relations (6) coincide with the formulas

(cos x + i sin x)(cos y + i siny) cos x +y) +isinx +y) ,

cosrx +isinrx ,

(cos x + i sin x)r



which have been given by de Moivre.

We will also note that if, in equation (1), we let

then ¢ and B are the roots of the equation
(8) X? = VX - QF .

Consequently each of the formulas which appears in this theory may be gener-

. . r
alized by replacing U and V_ by U /Ur and V., P by V, Q by Q,
and the difference § of the roots a and b by the difference sUr of the roots
a and B of equation (8).

The formulas (4) thus become

U
n-1 nr _nn-i nn-1)n - 2) 9 +,N-3
3 Ur 1 Vr * 3! AUr Vr
400 - 1)@ - 2)@0 - 3)@ - 4) A2pt VRS 4 ...
5! rr
n-1 _vh_ o nm - 1) Aeon-2 nm-1)m-2)0 - 3) s 04, .,
2 Vnr Vr+ 2! AUI'Vr * 4! AUrVr *

However we will bypass, for the moment, the other consequences of the trans-
formation of equation (1) by the substitutions of the variable, as well as the

study of the more general functions
AU + BV + C
n n
in which A, B, and C are arbitrary positive or negative integers.

IOI. RECURRENCE RELATIONS FOR THE CALCULATION
OF THE VALUES OF THE FUNCTIONS Un AND Vn
The calculation of the values of Un and Vn corresponding to consecutive
integer values of n may be rapidly accomplished by means of the formulas
completely analogous to those of Thomas Simpson:
9
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sin (n + 2)z 2cos z sin (n + 1)z - sin nz

cos (n + 2)z 2coszcos n+ 1)z - cosnz.

In effect we multiply two members of equation (1) by X" and successively
replace x by a and b. We obtain

an+2 - Pan+1 _ Qan , bn+2 - an+1 _ an ,
and, by subtraction and addition,
(10) Upta = PUpyy - QU
Vn+2 = PVn_i_1 - QVn .

These formulas show us that the functions U and V form, for consecutive
integer values of n, two recurrent series of integers. These series have the
same rule of formation, but the initial conditions differ. We will generalize
these formulas by the use of symbolic calculus. Let F denote an arbitrary

function. It is evident from equation (1) that
Fx?) = F(Px - Q).
If we replace x by a and b, we have

a"F(a2?) = a"F(Pa - Q) ,

b'F®?) = b"F(Pb - Q) ,
and, by subtraction and addition we obtain the symbolic equalities

U"F(U2) = UPF(PU - Q),
(11%)
VrW2) = VIF(PV - Q) .

After the expansion we replace the exponents of U and V by indices, taking
into account the zero exponent. Thus the symbols U2 and PU - Q, V2 and
PV - Q are respectively equivalent and may replace each other in the alge-

braic transformations.
10
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In the Fibonacci series for example we have the following results

P = PP+ )P

(12) e

Il

' - 1P,

which are completely analogous to those which we can obtain from combinator-
ial analysis or the arithmetic triangle and in particular from the formula for
the binomial factorials due to Vandermonde.

Taking, as a starting point, the equation

2 =x-1,

X
we will also find new relations between the coefficients of the same power of
the binomial. 7

Consideration of equation (8) leads to the following relations

_ T

(13) Un+2r - VrUn+r - Q Un ’
_ _oF

Vn+2r 'Vrvn+r Q Vn !

which permit the calculation of the iralues of the functions Un and Vn which
correspond to values of the argument n in arithmetic progression with
difference r.

Inversely we will find, in the theory of circular and hyperbolic functions,

formulas analogous to formulas (11) and (13).
IV. RELATIONSHIP OF THE FUNCTIONS Un AND Vn WITH DETERMINANTS

We may express U and Unr’ Vn and Vnr by means of determinants.
We have the formulas

U, - PUy
Us - PUy; +' QU4
U4 - PU3 + QUg
Us; - PUy + QUg

- °

o OPOO

Un+1 - PUn * QUn-i

11



From these we derive

— n s e e
(14) Uib = (-1) 0 Q -P 1 .

'We also obtain

(15) v o= D*l 0o Q@ -Pp 1 *¢ .

We may verify these results by expanding the determinants using the elements
of the last line of the last column. The values of Unr fUr‘ -and of Vnr may
also be found by determinants by replacing, as we have done elsewhere, P
by V, and Q by Q.

Finally we note that these formulas are susceptible to an extensive gen-
eralization. In fact, in the formulas (11) which contain an arbitrary function
Wé let n equal successively 1, 2, 3, *++, m. We then obtain m equations
from which we can determine the value of one or the other of the functions U
or V. ’

REMARK — We may also develop Un using the following formula,

PANQ 0 0 -
NQ P NQ 0 -
(16) U =1 o NG P NG e .
0 0 NQ P +-
L ] L] L] L] [ ] L] L] L] L] n

However the use of formula (14) is preferable.

12



V. RELATIONSHIP OF THE FUNCTIONS U, AND V,
WITH CONTINUED FRACTIONS

The functions Un and Vn may be expanded by continued fractions. Let

us consider the expression

17

Let Rn and Sn be the numerator and the denominator of the nth convergent.
We know that

R +
n+2 bn+2 Rn+1 Ap+a Rn ’

S . = S .+ .
nts ~ Prag Sneg To2ne, Sy

(18)

In addition
+

(19%) R Sy ~ BoyyS,y = 1) ayapay 0 apsy .

Consequently if we let

a0=b1=b2=-.-=b =P’

[
|
&

ay = a3 = ag = *** = a

we obtain the expression

(20)

13



in which n denotes the number of quantities equal to P.

Thus for the Fibonacci series we have

2 n n 1+1
1+
For the Fermat series
n+i
(22) 2__:_1 = 3 _73_%
2t _ 1 = S—
3-2
3 -
and in the Pell series
a+ N oo N, 1
@+ N - (- NE)" |
2-1
2 -
Moreover, in general we have
b n+i
(24) Uney 17 \3

Un L (E)')n
a

Let a denote the larger of the roots (in absolute value) of equation (1). We have

Un+1

(29) nBe T T -

However we note that this last result is not applicable to the series of the third
kind, i.e., when the roots of the given equation (1) are imaginary.

By means of this last formula it is easy to rapidly calculate a term of
this series Un when we know only the preceding term. For example, in the

Fibonacci series

14



Uy = 7014 08733,

and

(%) a = -1-;—"[-5- = 1.61803 39887 40894 8482 ***

By the abbreviated method, if we calculate the product a * uy to the nearest

whole number we find exactly (since u, is an integer)
us = 11349 03170 .

We can moreover directly determine the last digit of w. Thus in this par-
ticular case it is easy to see that two terms whose ranks differ by any multi-
ple of 60 end in the same digit. If we suppose then that p is less than 60 we
can show that the last digits of up and of uq are complementary when the
sum of p and q is equal to 60. We may then now suppose that p is less
than (x: this was originally ""equal to"" — Ed. note) 60, and even p less than
15 if we note that the terms uys+p and uys_p have the same units digit when
p is odd and that their final digits are complementary when p is even.

We have, more generally, the formula

U(n+1)1c° -V - Q"
Unr r Vr _ Qr
(26) v, - Q"
Vr -

in which n is the number of Vr's. When n increases indefinitely,

-
(27) lim —(I‘}—"’i)—r— = a¥ .
r

15
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In the theory of circular functions formula (26) corresponds to the formulal

sin (n + 1)z _ 1
sin nz = 2 cosz " 2cosz -1
2cosz -1
(28) 2 cos z -

in which the expression 2 cos z is repeated n times. We likewise have for

the Vn the relation

r
v = Vr - . r
n-1)r Vr -Q
T
(29) Vr -Q
vV _ -
T
. Qr

in which the quantity Vr is repeated n times.
The numerous properties of determinants and of continued fractions give
rise to analogous properties for the functions Un and Vn' Thus the well-

known property of two consecutive convergents in formula (19) gives

2 _ = o1
2 _ = _oh-1 A
Vn‘ Vn—i Vn+1 Q
and, more generally,
v o-vu U = QR
nr n-1)r " (o+1)r r

(31)

2 _ (n—1)r
Vnr - V(n-1)rV(n+1)r = -Q AUi‘ :

In the theory of circular functions we have the analogous formulas

13ournal de Crelle, volume xvi, page 95, 1837.

16
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sin?x - sin (x = y) sin (x # y) = sin’y

cos®x - cos (x - y) cos (x +y) = sin’y .

It is moreover easy to directly verify the formula (31) by replacing U,
V and Q as functions of a and b. Thus we also have

AU121 iy = ganter 4 pantel _ gontr
AUZ = 2%+ M- 2Q"

Hence by subtraction

Au?

hep - @ UR) = (@ - BTl - pT)

and consequently

2 r..2 _
(32) U, -QU, =U Uy,

We will have in the same manner the relation

2 _ofv?: =
(33) vi, -Q'V: = AuU, .

For r = 1 formula (32) gives more particularly the relation

2 - 2 =
(34) U2, -QU =T, . .

This last formulas has been applied by M. Gunther to show the Diophan-

tine equation
v - Qx? = Kz

in whole numbers!. It is easy to see that a large number of formulas from this
and the following sections lead to analogous consequences, but with much more
generality.

*Journal de Mathematiques pures et appliquees, de M. Resal, pages 331-341,
October, 1876.
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VI EXPANSION OF THE FUNCTIONS U, AND V;,
AS A SERIES OF FRACTIONS

The formulas (30) lead to the expansions of U, /U, and V _ /V in
series whose terms have for denominators the product of two consecutive
terms of the series U and V. We have, in fact,

U U U U U U U U
(*) Lﬂ = —2 + —3 - .—2 + .—4 - _3. + eee 4 n+i - __1_1_ .
U Uy U, Uy Us Uy U U

n n n-1

By combining the fractions contained within each parenthesis

(35%)

We thus have for the Fibonacci series, by letting n increase indefinitely,

1+45 _,, 1 1,1 1 1 1.,

(36) 3 1 T.2773 5.5 58513

Following the same procedure we obtain the more general formulas

(37) U(n+1)r - Uzr _ Qr + er + eee + Q(n-i)r UZ
U U U_U U._. U U U r
nr r T o2r 2r 3r (n-1)r nr
and
V, Vv -1
(3% @ =_1.'+[ 1, o ..., QO ]Auz .
Vnr Vo Vovr Ve Var V(n*i)rvnr r
We also derive the two relations
U .V -U V. =29
(39) n+r n n n+r r
_ n
Vn+r Vn - AUn Un+r = 2Q Vr

18



from which we will later derive the expansions

Uptkr _ Uy + 2Q°U 1 Q" 4 oo 4 Q(k-i)r ]
Vv TV r|V V V.. V Vv V
ntkr n | n ntr n+r n+2r n+(k-1)r n+kr
(40%) :
Votkr _ zn_ - 2Q"u [ 1 + Q" beee 4 Q(k-i)r :’
U U r|U U U U U U
n+kr n L n ntr n+r nt2r n+(k-1)r “n+kr

When k increases indefinitely the first members of the preceding
equalities have limits of 1/A/A and nNA, respectively. We will take account
of the conditions for convergence in the second member later.

We may thus develop the square root of an integer in a series of frac-
tions having unity as the numerator. This was a familiar usage to the scholars
of Greece and of Egypt. Thus, for example, this approximate value

N3 1, 1
T 3710 *°€

is reported by Columelle in Chapter V of his work, ""de Re Rustica.! Further,

this approximate value of

B 1. 01 - 1
N2 = 1+5+gig-qoar ™ €

is given by the Indial atithors Baudhayana and Apastambal. This approximate
value is equal to the ratio of the terms Vg /2 = 577 (*: this was originally
"Vg = 577" — Ed. note) and Ug = 408 of the Pell series.

VII. RELATIONSHIP OF THE FUNCTIONS U, AND V,
WITH THE THEORY OF DIVISIBILITY

If we let @ = a* and B = b’ so that of = Qr, we obtain the follow-

ing results from the formulaswhich gives the quotient of o - Bn by a -B.

IThe Gulvasfitras by G. Thibaut, Pages 13-15, Journal of the Asiatic Society
of Bengal, 1875,

19
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1) When n denotes an even number

U . n_q)p
nr _ Ty ar (_2 ) .
(an _U—r- = Vo-0r T Vagr TQ Vaogr T G RN A
2) When n denotes an odd number:
n-i
U TI‘
——nr — r 2r LN )
4 U,  ‘w=or T Y Var TV Ve T 7@

When n denotes an even number the quotient of o™ - Bn by a +B also.gives

U £
nr _ r ar . o

Finally, when n denotes an odd number the quotient of o+ pg° by o + B

gives
v n-1
-L-r = - r ZI‘ - 00 + —! r °
(44) V. (n-1)r Q V(n-3)r *Q V(n—s)r Q™)
For n = 2 we rederive the formula
@) Uzr - Urvr i
and for n = 3 we have
_ r
@5) Usr B Ur(vzr Q) .,
_ r

The preceding relations show us that Um is always divisible by Un
when m is divisible by n. Likewise Vm is always divisible by VI1 when

20
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“m. is odd and divisible by n. As a conseqﬁence, Um and Vm can be prime

numbers only if m is prime (*: there are some trivial exceptions, such as
uy = 3 in the Fibonacci sequence — Ed. note), but the converse of this theo-
rem is not correct.

In the Fibonacci series ug is divisible by 2, uy is divisible by 3, u;
is divisible by 5, consequently ugn, u4y, and usn are respectively divis-
ible by 2, 3, and 5. However, even though 53 is prime, we have us = 953
x 559 45741. |

Consider again the equalities

n

(6) Vn + SUn 2a, Vn SUn 2b~ .

By multiplying member by member, we obtain the relation

2 2 - n
(46) Vn—AU][1 Q" ,

which corresponds in trigonometry to the formula
cos?z + sinz = 1,
This relation shows us that if Un and Vn admit a common divisor 6

this divisor will be a factor of 2Q (*: this was originally just "Q'" — Ed.
note). On the other hand

(P +8\" P-s\"
Vn_(2)+(2) .

By cancelling the multiples of Q which eventually recur when § is replaced

by Q we have the congruence

(47) v = P" (mod Q) .

Therefore every divisor 6 of Un and Vn would divide 2P and 2Q (*: this
was originally "P and Q" — Ed. note). We have supposed that P and Q
are relatively prime. This proposition then results.

21
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Theorem: The numbers Un and Vn are relatively prime. (*: the
nuanbers Un and Vn are actually either relatively prime or have greatest
common divisor 2 — Ed. note).

If we let” P belong to the exponent ¢ modulo Q we know that the

congruence

P" = 1 (mod Q)

is true for all values of n equal to any multiple of p, p itself being a divisor
of Euler's function ¢(Q), the number of integers less than and relatively
prime to Q. Consequently, because of equation (47), we may solve the

congruence
(48) Vn = 1 (mod Q)
for all values of n equal to any multiple of pu.

VIII. LINEAR AND QUADRATIC FORMS OF THE DIVISORS OF Un AND V
WHICH CORRESPOND TO EVEN AND ODD VALUES
OF THE ARGUMENT n

The formula (46) also leads to other important consequences on the form
of the divisors of Un and Vn because we directly derive from it the follow-
ing propositions depending on whether n is an even or odd number.

Theorem: The terms of odd rank of the series Un have divisors of the
quadratic form x% - Qy2.

Taking account of well-known results of the theory of divisors of quad-
ratic forms we have, in particular, for the linear forms corresponding to the

odd prime divisors of Ujp+q
For the Fibonacci series: 4q + 1;
For the Fermat series: 8q + 1 7;
For the Pell series: 4q + 1 .

Thus, for odd n, the Fibonacci series or the Pell series cannot con-

tain prime factors of the form 4q + 3.
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Theorem: The terms of even rank of the series Vn have divisors of the
quadratic form x% + Ay2,
In particular, the linear forms corresponding to the odd prime divisors

of Vo are
For the Fibonacci series: 20q + 1, 3, 7, 9 ;
For the Fermat series: 4q + 1;
For the Pell series: 8qg + 1, 3.

Theorem: The terms of odd rank of the series Vn have divisors of the
quadratic form x% + QAy2.
In particular, the linear forms corresponding to the odd prime divisors

of Vor+y are
For the Fibonacci series: 20q + 1, 9, 11, 19;
For the Fermat series: 8g + 1, 3;

For the Pell series: 8q + 1, 7.

IX. FORMULAS CONCERNING THE ADDITION
OF THE NUMERICAL FUNCTIONS

Multiplying member by member the relations

= 9,M S
Vm+8Um—2a,Vn+8Un 2a

we obtain
m-n

V, YV, * AU U+ S[Umvn +U V] = 4a .

If we change a to b, and & to -& we further derive by addition and sub-

traction the formulas

2Um+n = U'mVn + Uan ’
(49) 1 _
| 2V, =V V +AU U,

which correspond in trigonometry to the formulas for the addition of angles:
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sin (x + y) sin x cos y + sin y cos x

]

cos.(x +y) = cosxcosy - sinxsiny.

If we change n to -n in the formulas (49), taking account of the

relations
U Vv
(50) U = .2, V. =2
n Q" n o on
~ we obtain
2Q U =U V -UV
v m-n m n nm '’
(61) n
2Q'V =V V -aU U .

Letting m = n + r we obtain the formulas (39) given earlier.
A comparison of the equalities (49) and (51) immediately gives us

n —3
Um+n +Q Um—n Umvn ’
n -
Unmin ~ Q Un-n = Unvm '
Now let
m + n = I', m - n = S L)
We get r-8
2
+ : =
Ur Q Us UEiEVl'."ﬁ
(53) 2 2
-8
2
2 2

These relations resemble those which permit the transformation of the sum or
the difference of two trigonometric terms into a product. Likewise we have

24



L

r s~ 'rts 'r-s
2 2
(53) s
2 _
VemQT Vg = UL U
2 2

We also have, as with the sum of the sines or the cosines of angles in

arithmetic progression,

-r/2 -2r/2y; .. -nr/
(U ¥ Q" Uy Q7 Uy ¥ 700 +Q Upper
m/4
- Q Ug(n+1)rQ
}@m-+nr) U Qn]c-/z
(54) < r/2
-r/ -2r/ .. -nr/
Vi * Q@ ZV *Q ZVm+2r * +Q ZVm+nr
m/4
Ug(n+1)x-Q

- V%(2m+nr) nr/2 °
UI‘/ 2

and consequently

-r/2y -21/2; . 4 -Dr/2
(55) Um *Q T Q Untar ¥ +Q Upninr _ Um+§r_13
r/ 2 -2r/ ver 1 Q0T 2y B )
*Q r*Q 2Vm+2r tQ Vin+nr Vm+}nr
We find many simple formulas starting with the relations
Un+2r - Vr n+r - QF U ?
(13%) ' r
Virer = VeVper Q@ Vo

If we successively replace n by 0, r, 2r, **+, (n - 1)r, and if we add, we
obtain
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r
Ur +Q Unr B U(n+1)r

Up ¥ Usr #0200 U, =

T
1+Q —Vr
(56*) r
+eee 4V = Ve "2 Yur ~ Ve
V. +V nr T :
T 2r 1+Q -Vr

These formulas are in an indeterminant form when the denominator vanishes,

i.e., for

or
a-aha-»") =o,

i.e., for values of a or b equal to unity; in this case we use the method of

summation of the geometric progression. We have, moreover, in the Fibonacci

series, for r =1 and r = 2,

u tuy +ug +ccc +u =u
Uy +uy +ugt+ et Uy = wptg - 1,
Vit vy tvgteer +v =y

We also find, more generally,

U +U +U oot U

m-+r m+2r m-+3r m-nr
(57) Lo .
_ Um+r Q Um+nr - Um+(n+1)r - Q Um
T
1+Q -V r

and an analogous result on changing U to V.
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The formula for addition enables us to also write

m-+n m
25— "7 %" Vm -
n n
We consequently have
(58) 2Um+nUm+n—1'°- Um+1 _ Um+n_1Um+n_2"' Umv . Um+n-1Um+n_2"' Um+1
U U "'Ui U U "'Ul n U U "'U1
no non-1 n-i n-2
3 V .
m

We immediately derive from it this proposition:

Theorem: The product of n consecutive terms of the series Un is
divisible by the product of the first n terms.

We will complete this section with the proof of formulas of extreme im-
portance, becausé these will serve later as a basis for the theory of the numer-
ical functions of double period, derived from the consideration of the symmetric
functions of the roots of the third and fourth degree equations with rational co-

efficients. The formulas (30) give us

- 112 m-1
Um—l m+i Um - Q
(*) 2 n-1
Un—1 n+ Un - Q :
We derive from these
2 ’ = U2 = Q¥ 1yr _ QM- z]
UaVm-1Ym+r = UmVn-iOpiy = @ [Um Q nUn '
From the formulas (32)
2 _ 772 - oh-1
(A) UnUm—1Um+1 UmUn—lUn+1 Q Um-n m+n ’

we likewise have
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My oy

2 - v2 = -
(A") Vv v -V v AQMY_ v,

n m-i m m n-i nt+i

In particular, for m = n+1 and for m = n+ 2 we have

3 3 _ n-1 :
UnUnt2 ~ UntyUny = Q@ UtlUmn
(B)
2 2 _ b
U Unt1 Ung Ut2Un-1Vpsy = Q _ 102 Uan+

and analogous formulas for the Vn’
The formulas (A) and (B) belong to the theory of elliptic functions and
more especially to the functions which Jacobi denoted by the symbols 6 and

H.

X. ON THE SUM OF THE SQUARES
OF THE NUMERICAL FUNCTIONS Un AND Vn

If in the following relation

— s+2ko
(59) AU1L'+2kp Usiakg = Vr+s+2k(p+0) - Q Vr-s+2k(p-0) ’

we let k successively equal 0, 1, 2, ***, n, and if we add member by mem-

ber the equalities obtained, after having divided respectively by -

1, @°'9, Q¥ ... qnlro)
we obtain the formula

Q% Pu

n
(60) E U U = Ur+2nP US+(2n+1)0 - r+(2n+1)p Us+zno
rrky - siako 2Py g
k=0 o pUrp
_ Q9P
+ UI'US-Z(I Q Ur—zp s
AUo’—pUO'+p
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We have, in particular, for 2p = r and 20 = s,

UprUss  UygrUss + Uant)r Ym+s

UpUs * Qi (r+s) * Qr+s hoeee Q5n(r+s)
(61) § (61)
S-r
_ UarYsmrns ~ @ U m+y)s Ya(n+i)r
- AQ%n(r+s) ’

Ui(s-1) Vi(s+r)

and more particularly,

2 2 2 2 '
Ur Uzr U3r U(n+1)r _ 1 U(2n+3)r
SN TR “’Q(nﬁrr ZUQ(n+1)r‘2n‘3 ,
Q Q Q r

(62)
p . 2
_r,.3r, sy ...+U(2n+1)r =1 U4(n+1)r -2n - 2]
T 3T 5 (an+1) an+ '
Q" QT Q% QW Ay, QBT

By an analogous procedure we may find the values of

n
§ :Vr+2§pvs+2ko
k(p+
bt g (oto)
and
n
Z Ur+2kp Vs+zk0
Qk(pﬂﬁ °
k=0
In particular,
vz V2 2 V2 U
639 Q Q Q Q UrQ
63
' 2 2 2 2 :
& + Var + ‘.7_52 Foeee + Vanrr _ 2n + 2 + s
QF Qar er Q an+H)r UﬁQ_2n+1 r °
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We also have, in the general case,

n ' 2| «
2 :Uz - Vamtaat)r ,Vzm - Q [V2m+2nr ” VZm-Zr]

A, - Q% -1

k=0

_ (n+)r
_ sz Q -1

AQ" - 1)
(64*)

[V2m+2nr B Vzm—zr]

2r
- Vam+2@+)r ~ Vom ~ @
m+kr
Vzr -Q" -1

=

st — -1 .
Q" - 1

(n+)r 1

We have, for example, in the Fibonacci series

DY02 + w2+ (1T0E et (D)2 = 2L (-1)nru(2n—+1)1-' - @n+1)
r oar 3r nr 5 u, ?
u
2 42 2 4 oeee 4+ 2 =1 4k  yr
Up F Uy T UG ¥ * Yont+)r 5 Uy . (1" @n +2) ?
(65%) u
T2 T n _ nr (2n+l)r
CDVE AV 4 (D)7 VR e+ (C1)VE = 20— 14 (1) —u,
2 2 2 2 Y4 (n+1)r r
+ + +oee + = ——= + (-
Ve Var T Ver Vien+)r u, TEDTen 2
The simplest formula,
(66) uf +udtudt e +ud = upupty
gives for the side of the regular star decagon the expression
1+V5 _ 1+ L1 1 N 1 + 1 e

(67)

2 12 12412 12412422 12412422432 124124224324 52
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We also have
ujup + ugug + ugzuy toese + UpqUypy = U_gn )

2
(68) ujuy + ugug * uguy + oecc + UppUpn+y = Upn+y - 1.

XI1. RELATION OF THE FUNCTIONS Un AND Vn
WITH THE THEORY OF THE GREATEST COMMON DIVISOR

We have found the formula

2U =U0U_V +U_V_ ;
m+n m n n m

consequently if any odd number whatever @ divides UIn +n and Um’ it
divides Uan; but we have shown (817) that Um and Vm are relatively
prime, hence 0 divides Un' Inversely, every odd number that divides Un

and Um divides Um Therefore, not counting the factor 2, we have this

i
fundamental propositiorri.

Theorem: The largest common divisor of Um and Un is equal to UD’
where D denotes the largest common divisor of m and of n.

In particular, Um and Un are relatively prime when m and n are
relatively prime because U; is equal to unity. Moreover, we derive from
the fundamental theorem a large number of propositions closely resembling
those which we obtain in the theory of the largest common divisor and of the
smallest common multiple of several given numbers.

A further result from the preceding is that, in the search for the larg-
est common divisor of two terms Um and Un’ the successive remainders
also form terms of the series. In particular the successive remainders of two
consecutive terms give, in the case of negative Q, all the terms of the reduced
series starting with the smallest of them. Lamé! noted that, in the search for
the largest common divisor of any two numbers, the number of remainders is
at most equal to the number of terms of the Fibonacci series less than the
smallest of the given numbers. He derived from it this theorem:

The number of divisions to be performed in the search for the largest

common divisor of two given numbers is at most equal, in the ordinary number

1Comptes rendus de 1'Acadamie des Sciences de Paris, Vol. xix, p. 863. Paris, 1844,
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system, to five times the number of digits in the smallest of the given
numbers.

We would find a closer limit by calculating by logarithms the rank of the
term of the Fibonacci series immediately less than the smallest of the given
numbers. Denoting this smallest number by A we easily see that it would

suffice to take the smallest integer contained in the fraction

log A + log N5 _ log A + 0,349

. 0.209
log —-—-1 +2 N5

But it is preferable to be content with Lamé's elegant theorem.

XII. ON THE MULTIPLICATION OF THE NUMERICAL FUNCTIONS

We may express the values of Un and Vn which correspond to all posi-
tive integer values of n as functions of the initial values; in fact, for U for

example we have successively

U, = PU;y - QUp,
Us = (P* - QU; - QPUy,
(69) - Uy = (P3 -2PQ)U; - Q(P? - QUy,

Us = (P! - 3P%Q + Q%)Uy - Q(P? - 2PQ)U,,

e ® e o o s o s+ v o . o s s o . . e .

We will note first of all that if (bn denotes the coefficient of Uy in Un + e

have in general

Upst = $pU; - Q9 Uo -

The coefficient (bn is a homogeneous function of degree n of P and Q, con-
sidering P of the first degree and Q of the second. If we form a table of the
coefficients of qbn, we easily find qgain the arithmetic triangle, but in a

special arrangement. We have moreover thus been able to verify 4 posteriori
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(70) d’n - pt _<n 1 1>Pn—2Q +<n -2- 2>Pn—4Q2 _<n ; 3)

and at the same time

Upty = ¢nU1 - Q4’n—1U° ’

Vo = ¢nV1 - Qd,_ Vo,

(71)

with the initial conditions

n-6_-3

P Q .'.ooo’

Up=0 U =1, Vpg=2, Vy = P .

Consequently we also have

We have, in particular, for the Fibonacci series, for P

(72) 1+<n11)+<n52>+<n53>+...

andfor P=1, Q =1

(73) 1_<nil>+<n52)_<n;’3>+... =GSin—.—OT

1 and Q = -1

The preceding formulas easily generalize by the consideration of

equation (8). In fact if we let

_on n-1\.n-2_r n - 2\.n-4 2r n
(74) ¢n_vr_<1>vrQ+<2)rQ'<3

y

we obtain from the above

r

(75) Um'l,-'znr = lpn-iUm+r - Q rwn-zUm
Vm+2nr = ¢n—1vm+r - Q ""n-z Vm

33
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For m = 0 we also have the relation

(76)

which permits the inverse calculation of the function ¥ with the aid of the
values of U. Moreover this relation, in which n denotes an integer, holds

for any value of r. For r = 0 we thus have the formula

@) n o= 2%t (n . Z)Zn-3 . (n ; S)Zn-5 _ (n : 4>2n—7 toeen |

We will note that the preceding results correspond to the well known expansions

of sin nz/sin z and of cos nz in terms of powers of cos z first obtained by

Viéte.!

XIII. ON THE RULE FOR THE RECURRENCE OF PRIME NUMBERS
IN THE SIMPLY PERIODIC RECURRENT SERIES

We will express the functions Unp and Vnp as functions of Un and Vn
exclusively by formulas analogous to those which have been given by Moivre
and by Lagrange?. v

In fact, if’ we denote by ( Ir?) the number of combinations of m objects

taken n at a time we have the following relation:

P+ =@ pP -Lopa+pPT el <p 1 3)"‘232«1 + B e
(78)

+ 073 (p e o3 l)arﬁﬂa L P e

which we may verify a posteriori and in which all the coefficients are integers,

since we have

‘ pfp-r -1\ _ -r -1 -r -1
I N ey

10pera, Leyde, 1646, p. 295-299,

2Commentarii Acad. Petrop., Vol. xiii, 1741-43, p. 29. Lectures on the Calculus

of Functions, p. 119,
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Assuming that p is odd, let

We obtain

_ sb-1.D . PARsP-3P-2 . P (P - 3|, 2nsp-5..p-4
Unp 8 Un_l_lQa Un +2< 1 Q™8 Un *

(79)
+ E(p -T - l)Qnrsp'—zr—iUp—zr +oeee |
T r-1 n

The preceding formula leads to the rule for the repetition of prime num-
bers in the recurrent series which we are considering here. In the natural
series of integers a prime number p appears for the first time at its rank
and to the first power; it appears to the second power at the rank p2, the
third time at the rank p3, and so forth. In addition, all the terms divisible
by pd o{ccupy a rank equal to any multiple of pd. But in the simply periodic
recurrent series it is not quite like this, We will later show that the terms of
these contain, at known ranks, all the prime numbers. However if these
prime numbers p do not appear for the first time in the series at rank p
they will nevertheless recur at intervals equal to p, as in the ordinary
series, and the appearance of their successive powers will occur as in the
natural series. Thus, in general, in the arithmetic study of the series, two
rules must be considered; the rule of the appearance of the prime numbers,
and the rule of their repetition.

We will show, in a2 moment, that the rule of repetition is the same as in
the natural series and in the Un series. In fact, if p denotes a prime num-
ber and Un is the first term of the series divisible by pA, we will note that

A1 and not by a higher

the last term of the preceding formula is divisible by p
power of p. Hence we have the following fundamental proposition.

Theorem: If A denotes the largest exponent of the prime number p
contained in Un’ the exponent of the largest power of p that divides Upn is
equal to A+ 1,

Thus, for example, in the Fibonacci series, ug is divisible by 7; hence

Use is divisible by 72 but not by 7% in the Pell series, U; and Us, (*these
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were originally '"u;" and '"uzy' — Ed. note) are respectively divisible by 132
and 31% hence uy and ugy are divisible by 133 and 31° and not by higher

- powers.

Inversely if aP = bP is divisible by p", a+b is divisible by p %
This result gives important consequences in the theory of the diophantine

equation
%P+ yp +2° =0,

This equation, which constitutes Fermat's Last Theorem, has not been solved

to the present day.

XIV. NEW LINEAR AND QUADRATIC FORMS
OF THE DIVISORS OF Un AND Vn

Formula (79) gives the following formulas for p successively equal to
3, 5, 7y, 9, ***

Usy = AUS + 3QnUn )
Usn = A%Up + 5Q7AU + 5% Uy ,
80
(80) U = &3UL + 7QUA2US + 14QTAUS + 7™M U,
U = AU} + 9QRASTL + 27Q™A?UR + 30Q AUR + 9Q* Up ,
Uyn = AU + 11QPAYTUR + 44QMASU] + 77QM AU + 55QUAUR +11Q%™U, ,
We thus have
Usn
— = 2 n
(81) T, AUZ + 3Q0

and consequently the following proposition

Theorem: The divisors of Us, /Up are divisors of the quadratic form
Ax? + 3Qny2 . In particular the linear forms of the odd prime divisors of
Ugn /Upn are
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For the Fibonacci series: 30 q + 1, 17, 19, 23;
For the Fermat series: 6qg + 1;
For the Pell series: 24 g+ 1, 5, 7, 11

and the linear forms of the odd prime divisors of Us(sn+1) /Usn+y are
For the Fibonacci series: 60q + 1, 7, 11, 17, 43, 49, 53, 59;
For the Fermat series: 24q + 1, 5, 7, 11;
For the Pell series: 24q + 1, 15, 19, 23;

We likewise have

Uy,

(82) 4 U—n = (2AU} + 5qn)’ - 5
n

and consequently

Theorem: The divisors of Us,/Up are divisors of the quadratic form
x2 - 5y2,

The linear forms of the odd prime divisors are, for the three series

taken as examples

20q + 1, 9, 11, 19.
We likewise have

Um

. 2
(83) 4 T Al2avf + QU T + 7Q¥v?

and consequently

Theorem: The divisors of U, /Up are divisors of the quadratic form
Ax? + Ty2,

Let us now suppose that p denotes an even number and further, in
formula (78) let

we obtain
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np
(84)
p/p - r -1\ .nrap-2r_p-2r
+r< r-1 )Q & Un * '
We have, in particular, for p = 2, the formula
(85) Von = AU} + 2Q0 ,

and consequently the following proposition

Theorem: The divisors of Vp, are divisors of the quadratic form
Ax? + 2Qny? ,

The linear forms corresponding to the odd prime divisors are, for n

even
In the Fibonacci series: 40q+1, 7, 9, 11, 13, 19, 23, 3T,
In the Fermat series: 8q+1,3;
In the Pell series: 4q+1;

and for odd n
In the Fibonacci series: 40q +1, 3, 9, 13, 27, 31, 37, 39;
In the Fermat series: 4q+1;
In the Pell series: 4q+1;
In the applications we shall combine these results with those which have

been given in Section VIII.
Finally, in formula (78) (*: this was originally (79) — Ed. note), let

o =a", B =01,

Regardless of whether p is an even or odd number we obtain

_vP _p p-2 p - 3\.2n p-4 rp(p-r-1\,nr_p-2r,
(86) VnIJ_Vn—lQnVn +122< 1 )ann e D) %( r-1 )Q Vn T

Letting p successively equal 2, 3, 4, 5, 6, *** we thus have the following
results which also lead to formulas resembling the preceding ones.
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Von = VA - 2Q0 ,

Van = Vi - 3Q2Vh,

(87) § Vi = Vi - 4QnVE + 27,

Ven = V§ - 5QVE + 5Q%Vy,

Ven = Vi§ - 6QUVE + 9QHVE - 20 .

XV. RELATION OF THE FUNCTIONS Un AND Vn
WITH CONTINUED RADICALS

From the equation

x =Px -Q,
we get the formula
x = NQFPx
and successively
x = V-Q + PNQ F Bx
X = N/-Q+P'\/—Q+P'\/——Q—:I-Tx

Since we may suppose that P is positive we consequently have, for negative Q

(88) a ='\/—Q+P»\/_Q+P,\[_‘m

a denoting the positive root of the given equation. Thus, in the Fibonacci

series

1—i2—-“/§=«/1+~/1+«/1+m

in the Pell series,

1+\/2‘=a/1+2a/1+z,\/i—+—-77
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and in the Fermat series,

2=«/2+~/2+ ~/z+m

We know that this last radical occurs in the calculation of # by the method of
perimeters devised by Archimedes.

But the results obtained in the preceding section lead to more important
formulas which will find their use in the search for large prime numbers. For
example, from the first of the formulas (87) we get

Vo= NEQTT Vg

n
and likewise, changing n to 2n, 4n, 8n,*°°
Van = N2Q% + Vi,

N2QE + Vg ,

3
1l

Vgn = ‘VZQBH + Vim ’

and consequently

VH = NZQn + VZB. ’
' Vy = N2qQn + N2Q% + Vg
(89) J
V= N 2Qn + N2Q® 4 NBQE T vy,
Vy = 'AQH + J2Q2n + J2Q4n + N2Q + Vig

and so forth indefinitely., These formulas are analogous to those for cos 7/4,
cos 7/8, cos m/16, cos 7/32, ¢++, cos w/2T .

In the same manner the second of the relations (87) gives
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v = V3R + Ve /V,

(90) Vp = \/an +V3QM + Ve /Vin

Vo = \/ZQn + \/ 2Q™ + V3Q®™ + Vion /Vin

These formulas resemble those for cos m/6, cos m/12, cos m/24,***, cos
7/ 3:2T,

The third of the relations (87) further leads to formulas which e¢orrespond
to those given for cos m/10, cos m/20, cos 7r/40,***, cos 7/5'2T; and like-

wise for any others.

XVI. EXPANSIONS OF POWERS OF Up AND V, AS LINEAR FUNCTIONS
OF TERMS WHOSE ARGUMENTS ARE MULTIPLES OF n
We may express the powers of U, and V, as linear functions of terms
whose ranks are multiples of n, using formulas analogous to those which give
the powers of sin z and of cos z, expansions based on the sines and cosines
of multiples of the angle z. Letting, first of all, p be an odd number, the

expansion of @ - B)P gives

@-B)P = @n - gP) - (%)aﬁ P2 - gP~2) + (g)aZBZ(aP-4 - BPTY) - e

Consequently, letting

a = a", B =1,
we obtain the formula
R—j
At vy - Vnp - (I;)QnU(p—z)n " (S)QZHU(p-Qn
o | 3 <§)Q3HU(p—e)n oo
N (_1)(p—1)/2( 6 _pl)/z)Q(p—i)n/zUn .

For p successively equal to 3, 5, 7, 9, *** we have
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avd = U, - 3Q"U, ‘,
(92) .,AZUI51 = Ugp - 5QnU?.n + 10QmUn ?
ful = U - QU +21Q U, - 35QMU_
Wb = U - anUm + 36QMU_ - 84Q U, + 126QTU .

L] . . . ° . . . . . ] . . o . . . e . L] ®

Supposing now that p denotes an even number the expansion of (@ - ﬁ)p also

gives
n/2.p _ P\on p\ o2 p\ . %n
a U, = Vpn - (1)Q V(p—z)n * (2)Q V(p—4)n - (S)Q V(p-s)n+"'
(93)
p/2f p \,pn/2
+ ("1) <p/2 )Q .

For p successively equal to 2, 4, 6, 8, ¢--

AU?l = Von - 2Q",
(04) |MUL = Vin - 4Q%Vy + 6Q%
MUE = Vi - 6QR Vi + 15QMVyy - 20Q%0
MUP = Vg - Q0 Ve + 28QMVy, - 56Q%0Vyy + T0QM,

Assuming that p is an odd number the expansion of (@ + )P gives

P _ P)at P\, P\ o
Yo = Voo * (1),Q Vip-2n * <2) @ Vo-on (3)Q Vip-on *

(95) o
p (p-1)n/2
* ((p - 1)/2) Q . A

n °

More particularly

Vg = Van + 3Qvn ’
Vg = Vg + 5Q0Vy, + 10Q2V
(96) o n
VI = Vm +7Q Vi + 21Q%Vyy + 35Q™MV_
Vg = Von + 9QRVpy + 36QMVy + 84Q%M Vi, + 126Q100V,
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(97)

Likewise, when p denotes an even number

p _ p
Va V1on * (1)an(p—z)n * ( )Q V(p Hn ( )Q3 (p-6)n *

[ p \,p0/2
()

More particularly we have

(98)

Vg = Vzn + ZQn ’
) Vl": = Vm + 4QnV2n + 6Q2n,
vg = Vgn + 6QRVy, + 15Q%Vy, + 20Q%M ,
V3 = Vg + 8QR Vg + 28QTVjn + 56Q%Vyy + 70Q .

The relations (91), (93), (95), and (97) are themselves particular cases of the
following formulas:

(99)

Vl17.{U(m—n)r = Umr * (?,)QrU(m—z)r + (IZI) QzI'U(m-4)r * (IIZ;)QH.U(m-e)r.h
V?V(m—n)r = Ymr * (Ill) QI'V(m—z)r * (n) QZI‘V(m 4)r * (g >erv(m-6)r+

a UznU(m m)r = Omr " (,211.1) QrU(m—z)r ) Q U(m gr T

AUmU(m m)r ~ Vmr ~ \ ) rv(m r (2)Q Vim-gr ="
i-nﬂU(m-zn—i)r B (2n+1) Utm-zr) 2n+1)Q Utm-gr™""

AnUi'n+ (m-m-1)r ( n1+1 Vin-zr) +( n+1)Q Van-gr™ "

These relations find their principal use in the summation of like powers

of the functions U, and Vn’ The expansion of the powers of a binomial also

gives rise to a certain number of others. Thus we have, for example

= @+B)-B, B=B+a)-a.

Hence, for p equal to an odd number

43



1L o 1]

P +gP = @+pP - (B)p@+pP + (5 )2+ pP T o

(3)
+( NaCET P
P P = @+p)P - () +pP" + (5 )a2<a+/3)p 2y

+(plq)eep

We thus have, by adding and subtracting and letting o = a", B =b", the
following formulas

_ p _(p p-1 (p p-2 ... ( p )
2V, = VoW (1)ann + 2>V2nVn tee (0% Voo Ya

_[p p-1 _ p) p-2 , ... _ p) ,
0 <1)UnVn (2 UnVn ° + (p—l U(p_l)nVn .

Analogous expansions can be found for p equal to an even number and still

(100%)

others with the aid of the identities
=@-Bf+p, B=B-a+a.

The following formula which may be derived from combinatorial considerations

@ +p)PTI — ap[<a+mq'1+( Ja 57 +[ P1Y) @+ B2

p+q-2)50-1
((Pai)e
*)

+Bq[(a +p)P~1 4 (‘% )(a + )P %y +( q+1)(a +B)P 32 4eus

(p;qlz) q—i],

gives, on changing @ to B and by addition and subtraction
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ptg-1 _ q-1 (P \oR q-2 p+1 a-3, ...
2V = Von 'a 7' (I)in( ~n 'n ( )Q (o-2n'n _

p+q—2 (a-1) p-1.(4q p-2
+( q-1 )Q lflV(p-q+1)n *Vau'a +( I)an Y

(g-1)n'n
L33

pP-3 ... p+tg-2\ (p-n_
VZ)Q V(q-z)nV * +( p-1 )Q V(q-p+1)n’

U (20", 7 (7 @

(P"'q 2) @-1n;

D=1 p-2
q-1 (p—q+1)n - anvnv - (1) Q" U(q-i)nVn
q+l vee _ [PFTA=-2),(-1n
( )QmU(q-z)n n '( )Q v

(101%) )

<
]

q o0 0
@-2n'n T

p-1 (g-p+t)n *

We would obtain two other formulas resembling the preceding ones by letting

@ =a" and f =" we simplify these formulas by letting p = q.

XVIL. OTHER FORMULAS CONCERNING THE EXPANSION
OF THE NUMERICAL FUNCTIONS Un AND V

Let us consider the functions o and B of z,

, n ___.h
a:(,z+\/z2—4h) B_(Z-Vz2-4h)
2 ? B 2 *
Upon differentiation we get
d _ __ n
adz ?
V z% - 4h
and making the radical vanish
2
(zz—4h)-d—-a-—n2a2=0
dz?
A second differentiation gives us
(z2 4h)-(-i-26l+z%—nza=0.
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Moreover, it is easy to see that the functien B8, @ +B, and a -8 satisfy the
same differential equation. Denoting any ene of them by f(z) we therefore
have by an application of Leibniz's Theorem

(z2 - 4h)

p+2 p+1 0

dzpiz dz dzP

and for z = 0,

an FHO) _ 2y PEO) .
dzP ™ azP

If we assume z = Vr and h = Qr then Maclaurin's Formula gives us, for

even n, the two expansions

2 4
Vor -1 n? Vr N n?(n? - 22) Ve _n’@? - 2)(m? - 4}
_(_-1')—1175 12 Zer 4! 24Q2T 6!
2(-Q
(102) AAl
° r + e ee
26Q3I‘
- 3 , 5
Unr _n Vi _n@?-2% | Ve +n(n2—22)(nz—42)' Vi _
2cqn¥y_ 1 gt 3 23QsT bt 25Q5T
r
and for n odd,
r 2 4
Ynr _ U 1-n-1 Vi, mi-1)@i-3) Vv _]
W r| 21 T 41 24Q?T
(103) - _ 2 4
Var = v |n- n(n? - 12) Vi + n(n? - 12)(@m2 - 3?) Vr e
(_Qr)Zn—iwz T g 3! 22QT B! 24Q2r

We can moreover verify these formulas and the following ones, 4 posteriori,

by noting that if we let

46



C |

(m? - 2)(m? - 4% «¢¢ (m? - 4KkK?),

Gm,k

Hp oo = @ - 1)(m? - 8% v (? - (2k - 1)?)

we have the relations

mek = (m - 2k)H = (m + Zk)Hm

9 m+1,k "1,k ¢

Instead of expanding the functions Unr and Vn r in powers of Vr we
may also expand them in powers of Ur‘ For even n we thus find

2 2174
Var _ n? AUiI‘ n?(@? - 22) 2 U n2n?- 22)(n? - 4?)
nr/2 T * 41 + 6!
2Q *22Qr : 24Q2%T :
. A Ug" 4+ eoe
26Q31‘
(104%)
2
Ynr = Vo [n 4 nn? - 29 AU, L nm? - 2)@? - 47
Qnr/ 2-r 2 3! 2%2QT 51
AUt
. T + eee |
24Q21‘ J

and for odd n

A A 2 _ 12 AU? 2 _ 12)(n2 AUt
nr _ n?-1 r, m?-12)@1n2- 3?2 r
=V |1+ +
an—‘l,r; 2 I'[ 2! zer 4! 22Q2r
. A8
R L VI e S ]
6! szsr ’
(105)
' U AU2 AUt
nr nn? - 12 r . nh® - 1%)@? - 3?) r
ooz U |n+ + =
Q n-1)r/2 I’[ 3! 22Qr 5! 24Q2r
A’US
00t 1?3 -5) Tr ] .

i 26‘3Q‘31'

Taking account of one or the other of the relations
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v2 = nr 2 _ o
Vnr V2nr 2, AUnr' V?.nr 2Q ’

we will obtain new formulas. Thus for example

2 2 2y14
(106% Ynr o oni?-19) AU pfeo13miopy AVr
' -2)r, 2 34 r 34546 2r °
QP Ty? Q Q

We can moreover put this last formula and some others into a rather
remarkable form by noting that we have, for any positive integers m and n
the identity

m?(m? - 1)(m? - 3%  m? - 0 -1)) _(m-n)m-n+1)(m-n+2) . (min-1)

(@n)1 /2 (2n)!

+ m-n+1)m-n+2)++ (m+n)
(2n)! *

Consequently the coefficients of the formula (106) are integers and we have!

n’@m? - 1)@ - 2%) v ¥ - (r - 1)?) _ (n+ r-1)+<n+r)
@2r) /2 2r 2r ,

We will note that formulas (104) and (105) refer to any value of n. We
then have expansions in convergent series when AUi, /2%QT is not greater than

unity. In fact, if we assume

2
AUr

22Qr

<1

the ratio of a term to its precedent finally becomes negative (for positive A)
and less than unity in absolute value. This condition is satisfied for r = 1
in the Pell series, Whatever the value of n we thus have

Denoting by a the residue of n? modulo p, relatively prime to n, we
derive from this identity an immediate demonstration of a proposition con-
tained in No. 128 of the Disquisitiones Arithmeticae.
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2 2
[‘V’i + 0%+ V2 - 1)“] = 14D B0 -2, 0t - B4

Do) =

(107)

[\S]

XVII. EXPANSIONS IN SERIES OF IRRATIONALS
AND THEIR NATURAL LOGARITHMS

The expansions of the functions in series, by MacLaurin's formula,
lead to a large number of new formulas for the expansion of the numerical
functions which we are considering here, and consequently, for those of the
circular and hyperbolic functions. When the corresponding series does not
converge except for values of the variable whose modulus is less than a
given limit, we may always assume that this variable x is chosen in such a
manner that the series represents the function for all values of x whose
modulus is less than unity., Consider the series

F(x) = Ay + Ax + Agx? + Agx® + Axt + «¢o

Assuming that z is positive we will have

i
I

2 3
Z _ Z Z Z
F —A0+A11+Z+A2 2+A3—'———3+
1+ z) 1+ z)

1 1 1 1
Fl——) = Ag + Ay e + Ay —2 A, —L 4 ...
<1+J 14z (1 + z)? (1 + )}

2 3

55|
NN
=t
+|i—'
N
N~—
+

+
1+ (1+2)2  (1+2)
F<-1_)_F<—_1——>= Ail_zJ’Az 1-2" + Ag 1-2 ...
1+z 1+z 1+z 1 + z)? (1+z)3

If we denote by a the largest of the roots, assumed positive, of the fundamental

equation (1), with r an even or arbitrary integer, depending on whether the

49



'l

root b is negative or positive, and if we let a = b* / ar, we obtain

r r,r V V. V,
F(._a__)+ F(_%) = 2A0+A1V +A2_2.£.+A3.ir_ + oo

T ipt T+b v2 Ve,
(108)
ar 'arbr \/_ [ U U U3r
F -F A lAget + Ay =2+ A =L 4 oo
(ar + br> a’l +b° Vi V2 V3

If we assume z = -b'/ a’ we obtain two expansions analogous to the preceding
ones. These expansions are sometimes very slowly convergent but their study
leads to important properties in the theory of prime numbers.

The expansion of the binomial (1 - x)™ thus gives, for any m, the

series
er_v mVr+mV2r mV:%r_F..
m o 0T \1) V7 \2 E' 3] 35 '
VI' r r VI'

(109)
Tmr _ <m)P1_ (m)U_z (m)fs_
V:.n 1 VI’ 2 Vg 3 V3

which we could have derived from the Bernoulli series, For m = -1 we have

V2 Vv vV V,

—% Vo + -"f—r -+ _23 + —3-IL + oo ’

Q r Vi v

(110)

U U U U U

—_ZITr = V—r -+ 2r -+ sr -+ ir 4+ oo N
2 3 4

Q T Vr VI‘ VI‘

For example, in the Fibonacci series

9=2+%+%+-2-$+-§—I+~u,
(111)

1,3, 8,21, 55

B3=gtgtogtgEg ot



The numerators of these two series of fractions are given by the recurrence

 relation

Nn+2 = 3Nn+1 - Nn .

We will obtain similar formulas for m = +§. The expansion of
a+x™+a-x"

gives formulas analogous to the relations (109).
The expansion of log (1 - x) gives the formulas

2
Vr 1 Vzr 1 Vsr 1 V4r
log < =1+g—tg—+tg -+
Q VIZ' Y
112)
2r T, U U
2 3 4
Q r Vr Vr Vr
That of log (1 - x)/(1 +x) gives
Avu,, A?-U AZU
QF Vr v3 v; v7
and in the Pell series
114) VZlg (1+v3) = 1+—2— 4+ L1 41 1 ...

The formula

1 z+h 1 2 h? 244 h? 2+446 h®
= log = hz - = + == - 2

in which we assume
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z+h=4a" z-h=>b% 28 b =@QF, B = L,

also gives
2l '\/ZU AU? ., Ayl .. D3

a15) logir = F| L o242t I Tl L.,
QF le 22Q2r 23Q3T 24Qtr

For this series to converge we must have AU; = 4Qr. At the limit of con-
vergence we thus find

(116) log (1 + Af2) = «/5[1 - % + ;2),:

e NAULr 4 AUL e AT
B L T TEB hgr T2 T e
(117) 2174 3
2 6
e 2% 1220 12480
QI‘ zer 2 3 24Q2r 3 3¢5 26Q3r ’

and at the limit of convergence

log (1 + N2) = 3?2 (13- 5)2

1
1-2:3  1.2-3:4°5 1.2:3.4:5-6.7 """
(118) _ :
12,124 1 2:4.6
2 = — — — — E— — — S————— e o0
loghl+ \B) = 1 -5eg 43305 - 5357
The remarkable formula of M. Scholtz leads to the expansion
33 2174
ar A U AU . AU
loga'_= [1_2 2(14_ 1) +i §<1+_+i>___r_--o
Q Q%r 22Qr * 32 52 24Q2r
(119) n-i.9m-2
-_].3. 507-00(2n— 1)3(1+i + i+‘..'+ 1 ) A 1Ur 'T‘ ]
° o Qeee 3 1 eoe ’
468 2n(2n+1) 32 52 (21‘1—1)2 22n—2Q(n—T)r
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and at the limit of convergence

/= 3¢3 1 3¢5¢3 1 1
120 1 1+ 2 = 1"_ 1+'— t —— 1+—+-— -— 00 e
(120) og? (1 +V'2) ‘ 4.5( 32> 4.6-7( 52 52)

If we expand, by Lagrange's formula, one of the roots a’ or b’ of the

equation
22 -zv. +QF =0,
r
we find
r 2r 3r ir
br=§—Q/.—+Q +%Q +g’gQ +oeee
3 5 * 7
T Vr Vv Vr
r r or T
(121) logh® = log & + Q& +3Q° 549" , ..,
Ve vz Zyr 203 e
r r T
1w _ Q2r+Q3r+ Q4r+ 7.6 Q5r+”.
2 2v: Vi ve 23 ys
r r r

Further if we expand y'n in powers of z using Lagrange's formula, and
denote by y one of the roots of the equation

we obtain

2 _\"_, pz,00+3)(s\' aw+4m+s) (&3
(1+\/'1'Tz') 11 1.2 \4 1.2-3 4
+R0* 5@+ 6)m+ 7) (_z_)4 s

1.2.3:4 7
Letting
z _ _Q
1 vz’
r
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we have

nr
Vnra _ n Qr nn + 3) er nh + 4)(@ + 5) er
(122) T = 1+-f——2-+ 1.3 4+ 123 6+ coe
Q Vr V. r Vr

This series is convergent for

T

QL < 1.
v2

r

It is the generalization of formula (84).
We also have
-Vve_
pT = Vr Vr 4'Qr
2
Expanding the radical by the binomial formula
r 302T . 5031
(123) 1or=-;-2‘c,Q +2.142Q T LA L
r V3 A
r r
then, -at the limit of convergence,
_1 1 1.3 1345

(124) VZ-1=35-32%50.6 74068 """

By applying Burmann's formula to the expansion of z in powers of

2z

1+ z2

we would obtain, for all moduli of z less than unity, and a = bt /a¥, the

formula (121) given above.
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XIX. ON THE RAPID CALCULATION
OF CONTINUED PERIODIC FRACTIONS

» We can improve the calaulation of the convergents of the continued
periodic functions in a significant way by means of the following formulas.
M. Catalan gave these relations:

Z z2 z + 72 + 73
+ - = ’

1-22 1-14z4 1 - z¢

z__ . _z7 zd oz + 22+ 78 + 2+ 25+ g8 4 T

- H]

1-22 1-z% 1 -28 1 - 28

z _,_z __zt =z _z+z zi4 4+ g ’
1-22 1-32% 1-28 1- 71 1 - gzl

More generally we have

z 72
n
1-22 1-2z4 1 - z2 1-2z 1-22

Consequently if we let z = b* / a’ we obtain the formula

n-1i T.
&I:— + -Qﬁ + eoe -+ QZ T = Q U(Zn-L):_r
Upr Ugr U Ar uvu .

(125)

When n increases indefinitely we have, for the series of the first and

second kind

br QI" QZI‘ Qir
126 —_— = + + +oeee
(126) U, Uxr Ugx U

For example, in the Fibonacci series, for r = 1,
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+ = + — +

1 1 J" — -} 0 0o
37 3747 3 Te47.2207 )

127) lLﬁ:-%+

(NI

Each new factor in the denominator is equal to the square of the preceding

factor diminished by two. Likewise in the Pell series

(128) 1-VZ = - 2 +——+ 1. L +oeee

2 92,3 23.3.17 28.3.17.577

Each new factor in the denominator is equal, by the duplication formulas, to
twise the square of the preceding factor diminished by one.

These expansions converge very rapidly. It is, in a manner of speaking,
a combination of a logarithmic calculation and a calculation by continued
fractions. Thus the denominator of the thirty-second fraction of formula (127)

is very nearly equal to

1 <1+\/3>232
Vs \ 2

and contains approximately two hundred million digits. Two hundred million
centuries would be needed to write the sixty-fourth fraction of formula (128).

We have moreover shown (Section XI) that the different factors of the
denominators are relatively prime in pairs and consequently they all contain
different prime factors. It follows from this that in the sum of the first n
terms of this series there will be no occasion to reduce this sum to a simpler
expression. We will later show that all these factors, prime and different,
appear in known linear and quadratic forms.

More generally we have the identity

z - 74 4 _  Pd 7 - P4

(129) + = R
1-20-2%9 a-z2Da-2" a-za-PY

If we replace q by pn we then have
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n n n+i n+i
p N ZP _ zp _ 7 - Zp
n+i = n+i °

n
Q1-za0-22" @a-22)a-22 ) a-=a-2722 )

Z - Z

(130)

If we let n successively equal 1, 2, 3, *++, n and if we add the equalities

obtained we have

2
P ZP _ P P

+ + 4+ oo
1-2@a-2z°P) @-2P)a - 2zp?) (1 - zP?)(@ - zP3)

zZ - Z

131 +1 n+i
( ) Z 3 - an zZ - Zp
+ = .
n+i n+i

n
a-2y)ya-2> ) a-=na-2 )

Now let z = b*/a’. We obtain the formula

2 n
QI‘U(p—i)r + QprU(p—i)pr + Q” rU(}g—i)pzr 4 oeee 4 q” rU(p—i)pnr
UrUpr UprUpzr Uperp3r U pan phrHiy
(132%)
_ VUgnr g,
B UrUpn+1r *

We will moreover calculate the numerators and the denominators of these
fractions by means of the formulas for the multiplication of the numerical
functions which we have given. If p denotes an odd number we obtain an
analogous formula by changing U to V. We may also apply those formulas
to the circular functions.

Later we will give analogous formulas which we derive from the theory
of elliptic functions and in particular the sums of the inverses of the terms
Un and of their like powers.
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XX. RELATION OF THE FUNCTIONS Un AND Vn
WITH THE THEORY OF THE BINOMIAL EQUATION

We.know, from the theory of the binomial equation, stated in the last
section of the Disquisitiones Arithmeticae, that if p denotes an odd prime

number the quotient

P _ - _
4Zz—11=4(Z'p_-1+zp2+zp’3+'" + 22 +z + 1)

may be written in the form

p
Z -1 _ 2
4z-1 Y¢ + pZé ,

in which Y and Z are polynomials in z with integer coefficients. We take
the + sign when p denotes a prime number of the form 4q + 3 and the -

sign when p denotes a prime number of the form 4q + 1. If we let z =
VaX /bt in this formula we derive from it the following results for p succes-
sively equal to 3, 5, 7, 11, 13, ' 17, 19, 23, 29, «++ (*: The correct formula,

given here, is not an example of the process stated above — Ed. note)

oe

2 r
AUr +3Q" ,

IS
i

n

2
[2V,, + Q7] - 5@,

e

c
R

r,, 2 A 2
A2u,, + QU] + 7Q"V?,

‘“;
9

H

a
=
L]

T or. . 2 2r 2
A[2U,, + @70, - 27,1 - 1™

IS
i
1l

c

T 2r 3r. 2 2r 212
[2V6r+QV4r+4Q Vzr_Q ] - 13 l-.V4r+Q ]

IS
e
21

A
H
Il

IS

c
b}
L1

2
[ 2y, + QrVer + 5erv4r . 7Q3rV2r + Q%]
ar r or
- 17Q [Ver TRV, TV, T2Q
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U 5
l9r _ r _anlr 3r 4r.
(133)44 —=— = A[2U9r +QU, . -4Q7U  +3Q7U, +5Q Ur]

ar 2 3r.. .
+19Q [V'lr - Q I"V3r +Q rvr] ?

U 2
BT _ r ar, ST or 51
4 -TI_; = A[2Uy, + QUy, - 5Q70, - RTU,, - QU - 4Q U,
_v 2r r 3r ar..
*23Q [V9r+QV7r-Q Vor — 2Q Vr]’
4 Dur _ [2v, +Q%V,__ +8Q™V__ -3V _+Q'v_ - 29"v_+3Qy
Ur i4r 12r ior sr ér ir

2 2 3 2
+ Q™ - 20" [V, +Q™V,_ =@V + Qv +Q"],

\
We consequently have the following proposition

Theorem: If p denotes a prime number of the form 4q + 1 the quotient
4Upr /Ur may be put in the form U? - lez, and if p denotes a prime num-
ber of the form 4q + 3 the quotient 4=Up r /U p may be put in the form
AY? + pZ2,

Moreover, by changing z to -z we will obtain a similar result for the
quotient 4Vp r /Vr + Thus we generalize a theorem given by Legendre whose
proof by this means is simplified. Another important consequence results
from the formulas (133). In fact, up to now, we have let A be arbitrary, but
if we consider the functions of the third kind we may assume -A equal to the
product of a square and a prime number of the form 4q + 3*. We then see
that the quotients 4Upr /pUr and 4Vpr /er -are equal to the difference of
squares and consequently decomposable into the product of two factors. We!
then have this proposition:

Theorem: If -A is equal to the product of a prime number p of the
form  4q + 3 and a square, the quotients 4Upr /Ur and 4Vpr /Vr are,
whatever the integer value of r, decomposable into the product of two integer
factors.

If we consider the fundamental equation

X =x -2

* In fact, it suffices to determine Q from the relation 4Q - P? = pK2
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in which A = -7, we obtain for example
Uy = 423, Up = -26 4721893121 ;

and as a result

U -7 X 23 X 11087 X 148303 ,

We will later show that the prime divisors of 4Uy; /7Uy; have the linear forms
77q + 1. Consequently the number 11087 is prime without the need to test
these divisors since the first of the numbers of the indicated linear form is
greater than the square root of 11087. For the factor 148303 only the divisor
307 need be tested. We also have, in the same series

U3 = -1, Uy = -384 17168 38057,
and as a result
Ugy = -7 X 712711 X 770041 .

The last two factors are prime. There were but two divisors to test. We thus
understand how it is possible to apply the preceding theorem in the direct
search for large prime numbers from the consideration of the series of the
third kind,

XXI. ON THE CONGRUENCES OF PASCAL'S ARITHMETIC TRIANGLE AND
ON A GENERALIZATION OF FERMAT'S THEOREM
Denoting by ™M) the number of combinations of m things taken n at

a time we have the two findamental formulas

T2 e @) ’
m -1 'm - 1)
( m ) +(n—l)'
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Consequently when p is prime we have for integer n between 0 and p the

congruence

(134) <p) = 0 (modp) .

n

For n between 0 and p - 1
(135) (p ; 1) = (-1)" (mod p)

For n between 1 and p

n

(136) <p N 1) = 0 (modp) .

In other words in Pascal's arithmetic triangle all the numbers on the

pth line are, for p prime, divisible by p with the exception of the coefficients

at the extremities which are equal to unity., The coefficients of the (p - 1)th
line alternately give residues of +1 and -1; those of the (p + 1)th line are
divisible by p except for the four extreme coefficients which are equal to
unity.

If we continue the formation of the arithmetic triangle saving only the
residues modulo p, we rewrite the arithmetic triangle of the first (p - 1)
lines twice; then after the (2p)th line we rewrite it three times but the resi-
dues of the intermediate triangle are multiplied by 2. After the third line the
triangle of residues is reproduced four times but the numbers in these tri-

angles are respectively multiplied by 1, 3, 3, 1 of the third power of the
binomial, etc.
We then have in general

() = () ) v

my; and n; denoting the integral parts of m/p and n/p and m and v the

residues of m and of n., Likewise we have
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and consequently

m) _ (miY [ Ks) ...
(137) (n) = (V:X’;?( V:) (med p)

By, Mj, g, *+* denoting the integral parts of m/p, m/p% m/p3, +++, and
likewise for vy, vy, vg, *°° .

Consequently if we wish to find the remainder of the division of (n | by
a prime number it suffices to apply the preceding formula until we have reached
the two indices of C for numbers less than p.

We see that the coefficients of order p of the binomial are integers and
divisible by p when p denotes a prime number except for the coefficients of

the pth powers. Denoting by «, B, ¥, *** A, any n integers, we then have
[a +ﬁ + 'y+ eee A]p _[ap +Bp +yp+ oo +xp] (modp)’

and for @ = =79 = eee = A\ =1, we obtain

n® -n =0 (modp).

It is from this congruence, which contains Fermat's Theorem, that we may
generalize in the following manner, which is different than Euler's approach.
If a, B, Y, **+* A denote the qth powers of the roots of an equation with
integer coefficients and Sq their sum, the first member of the preceding
congruence represents the product of p and a symmetric integer function
(with integer coefficients) of the roots and consequently of the coefficients of

the proposed equation. We then have
S = sP
- 1 (mod p)

with the application of Fermat's Theorem
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(138) Spq = Sq (mod p) .

The study of the prime divisors of the numerical function S11 and of
several other analogous ones is very important. We have, in particular, for

n =1 and S; = 0 as in the equation

X =x+1

The congruence
S = 0 (mOd .
b p)
We derive from it inversely that if, in the case S; = 0, we have Sn divisible

by p for n = p and not before, the number p is prime. In factlet p equal,
for example, the product of the two prime numbers g and h. We have

Sgh = - h (modg),

Sgh = Sg- (mod h) .
Consequently if we have found

Sgh = 0 (mod gh) ,

we will also have

Sg = 0 (mod h),

m
o

(mod g) ,
and by the theorem shown
= 0 (mod gh).

Thus S oh would not be the first of the numbers Sn divisible by gh.
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We may obtain, in this way, a large number of theorems, like those of
Wilson, serving to verify prime numbers. We will bypass, for the moment, the
new and curious facts that we have thus found to consider only those which can

be derived from the numerical functions with a simple period.

XXII., ON THE THEORY OF PRIME NUMBERS AND
THEIR RELATIONSHIP TO ARITHMETIC PROGRESSIONS

The theory of prime numbers was outlined by Euclid and Eratosthenes.
We owe to Euclid the theory of the divisors and of the common multiples of
two or several given numbers, the representation of composite numbers by
means of their factors, and the proof of the infinity of prime numbers, which
we can easily extend to the proof of the infinity of prime numbers of the linear
forms 4x +3 and 6x + 5, In Section XXIV we will given an elementary proof
concerning the infinity of prime numbers of the form mx + 1 whatever the
value of m. We know, moreover, that by the use of infinite series Lejuene-
Dirichlet was able to show the infinity of prime numbers of the linear form
a +bx where a and b are any two relatively prime integers. !

We owe to Eratosthenes an ingeneous method known under the name of
the Sieve of Eratosthenes which leads to the formation of a table of prime num-
bers and of composite numbers. Due to the work of Chernac, of Burckhardt
and of Dase we have a table of the first nine millions. Lebesgue has indicated
a method which diminishes the volume of these tables.? On the other hand
M. Glaisher counted the many prime numbers contained in these tables in
order to compare the theoretical formulas given by Gauss, Legendre, Tchebychoff,
and Heargrave for the expression of the number of prime numbers less than
a given integer. M., Glaisher, counting 1 and 2 as primes found the following

values.3

1Abhandlungen der Berliner Akademie, Berlin, 1837,
2Chernac. —Cribrum Arithmeticum from 1 to 1020000, Deventer, 1811,
Burkhardt., —Tables of divisors up to 3036000, Paris, 1814-1817,
Dase. —Factoren Tafeln from 6000000 to 9000000. Vienna, 1862-1864.
Lebesgue. —Various tables for the decomposition of numbers into their
prime factors, Paris, 1864,
3Preliminary accounts of the results of an enumeration of the primes in Dase's
and Burckhardt's tables. Cambridge 1876-1877,
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For the first million, 78499 prime numbersl,

n n gecond " , 70433 " " ,
mom  third " , 6788 " " s
n m gseventh " , 63799 " " ,
m o nm  eighth " , 63158 " " s
" n  ninth " , 62760 " " .

The principles of Euclid and of Eratosthenes thus lead to a first method
for the verification of prime numbers which are not contained in the tables, and
of the decomposition of large numbers into their prime factors, by the succes-
sive division of a fixed given number by all prime numbers less than its square
root. But it is an indirect method which becomes impractical as soon as the
given number has ten digits.

Following along these lines M. Dormoy, using ingeneous considerations,
arrived at deductions from the theory of certain numbers which he called objec-
tives (in which we again find the different terms of the Fibonacci series under
the name of objectives of unity) leading to the establishment of a general
formula for prime numbers. Unfortunately for slightly larger limits this
formula contains large coefficients which render its application illusory.?2

The prime numbers are distributed very irregularly among the integers.
Iti part this is due to the fact that if u denotes the smallest common multiple
of the numbers 2, 3, ***,m, then the numbers

Mt 2, p+3, *°°y, u+tm,
are respectively divisible by
2, 3’ e , m L]

As a consequence we can always find m consecutive composite numbers what-

ever the value of m. On the other hand, an examination of the tables permits

IThis table contains several errors. — Ed. note.

2E., Dormoy. —General formula for prime numbers and the theory of objectives.
Paris, 1867,
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us to verify the existence of very large consecutive odd prime numbers.
M. Glaisher gave a list of the groups contained in the tables which comprise
at least fifty consecutive composite numbers. Thus, for example, the
following:

111 consecutive composite numbers between 370261 and 370373,

113 " " " " 492113 and 492227,

131 " " " " 1357201 and 1357333,
131 " " " " 1561919 and 1562051,
147 " " " " 2010733 and 2010881,

(London Mathematical Society, 10 May, 1877).
We also know how to show that a rational function of n

p = ¢m)

cannot continually give only prime numbers since we have for any integer k

¢ + kp) = ¢n) (mod p) ,

i.e., that ¢n) is a numerical periodic function of period p. It is thus very
difficult to arrive at a rule for the distribution of the prime numbers among
the ordinary series of integers.

However it appears natural to study the prime numbers acoording to
their rule of formation. An exhaustive study of Eratothenes' method led
Prince A. de Polignac to the interesting properties of the Diatomic series. !
At the time M. Tchebychoff had arrived from slightly different considerations
to the proof of this remarkable theorem. For a > 3 there is at least one
prime number between a and 2a - 2. We immediately deduce from this

that the product

1.2.30.11‘1

INew research in prime numbers by M. A. Polignac; Paris, 1851. Itis curious
to note that, under the name of median series, we again find in the diatomic
series the different terms of the Fermat series.

2Journal of Liouville, vol. XVIL
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cannot be a power nor a preduct of powers as shown by M. Liouville. (Journal
de Liouville, 2nd series, vol. II) In summary, this research was based on

the consideration of arithmetic progressions.

XXII. ON THE THEORY OF PRIME NUMBERS AND
THEIR RELATIONSHIP WITH THE GEOMETRIC PROGRESSIONS

We owe to Fermat the profound investigations on the theory of prime
numbers based on the consideration of the geometric progressions. It is this
idea, as distinct from the preceding, that gave rise to the theory of residues,
and more particularly to those of quadratic residues. In this way we simplify
the verification of large prime numbers, and divisors of the form a" -1, or
more generally of the form a” — 1" for a and b integers, as well as the
decomposition of numbers of this form into prime factors. Fermat noted the
linear form nx + 1 of the divisors and himself gave the decompdsition of
several terms of the series 2" - 1 and thus of the number 237 - 1 which he
found divisible by 223 (Letter from Fermat dated 12 October 1640).
‘ Lately M. Genocchi shed some light on a curious passage from the works
of P. Mersenne. But to better understand its importance we recall some
definitions from the theory of perfect numbers. We say that a number is per-
fect when it is equal to the sum of its aliquot parts, that is to say of all its
divisors except itself. If we restrict ourselves to the case of even perfect
numbers and denote different prime numbers by b, ¢, ***, and express the
supposed perfect number n by aabB C'de we have

NP vt = @2 e + 2L D A B et )

D (1+C+02+"‘ +CY)"’

or clearly

Y
bﬁcy"' +b_ﬁc_---_= L+b+Db%+ eee +bB)
c@l+ct+et+cl) e

The second term of the first member is thus an integer and becomes, upon

1 1
division, of the form bﬁ cy *++; on the other hand, the second member which
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contains the number of terms
p= @+ Dy+ e

réduces to the two terms of the first member. Asaresult u=2, g =1,7%
=& =+ =0, Hence n = 2°b, and b is prime. Thus the even perfect
numbers are of the form n = 2%b in which b is prime. We readily have,
with this condition

In short, even perfect numbers are only of the form

201 (201+1 - 1)
in which the second factor is a prime number. This rule was known to Euclid,
but this geometrician did not know how to show that this form contains all the
even perfect numbers without exception.

Here now is the passage from the Oeuvres de Mersenne:

XIX.

To what has been said concerning numbers at the end of Proposition 20
on Ballistics and at! Point 14 of the Prefact to Hydraulics, add the art which
has been discovered? whereby however many numbers you wish may be found
which not only are twice the sum of their aliquot parts® (such are 120 (the
smallest of all), 672, 523776, 1476304896, and 459818240, which, when mul-
tiplied by*? 3 produces the number 1379454720, the sum of whose aliquot parts

IThis ""at'" is one interpretation. The Latin is here carelessly written and
might equally well mean "on Ballistics and Point 14 of the Prefact to Hydrau-
lics, " That is, Mersenne might have written about Ballistics and about Point
14 of the Preface to Hydraulics when he was writing proposition 20.

2What "inventam'" ("'found") means here is enigmatic. Discovered by whom ?

3The literal translation is "which not only have a double ratio with their aliquot
parts reduced to one sum. "

Literally, "led into."

68



is triple the number itsel’f,1 as is also the case in the following: 30240, 32760,
23569920, and limitless others, concerning which refer to our Harmony?, in
which are found3 14182439040 and other quadruples? of their own aliquot parts)
but also are in a given ration with their aliquot parts.

There are also other numbers which they call amicable® because each is
the sum of the other's aliquot parts.® Such are the smallest of all, 220 and
284; for the aliquot parts of the latter produce the former, and vice-versa
the aliquot parts of the former render the latter perfectly. Such also are
18416 and 17296; you will further find 9437036, 4363584, and numberless
others.

At this point? it will be worth while to note that the 288 numbers exhibited
by Petrus Bungus as perfect in Chapter 28 of his book on numbers? are not all
perfect. Indeed, 20 are imperfect, so that he has only 8 perfect ones, namely
6, 28, 496, 8128, 3355033610, 8589869056, 137438691328, and 23058430081399-
52128. These are from Bungus' tablel! lines 1, 2, 3, 4, 8, 10, 12, and 19;12
and these alone are perfect, so that those who have Bungus may remedy the

error.

IThis is an expansion of the literal ""'whose aliquot parts are triple."

2Literally, 'let our Harmony be seen." By this, Mersenne seems to be re-
ferring-to his book Harmonie universelle, published in 1636-7, seven years
before the present Cogitata physico-mathematica. See the Encyclopaedia
Britannica article on Mersenne.

®Not in the Latin, but this seems to be what he means.

4The Latin has "subquadruples'" which means no more than "quadruples. "
Perhaps it is a misreading of the manuscript by the printer.

5A technical expression used by Dickson, Uspensky and others.

SThis is a paraphrase of the Latin, which says, literally, "because they have
aliquot parts from which they are mutually remade. "

"Literally, "where. "

8Actually, only 24. See Dickson, History of the Theory of Numbers, Vol. 1,
p. 12, note.

Dickson, p. 9, note 42.

WThis seems to be Mersenne's correction for Bungus' error 23-++. See
Dickson, p. 13.

11 jterally, "from the region of Bungus' table.' These ''regions" are lines
marked 1, 2, etc., where each line number indicates the number of digits.
Dickson, ibid.

2\iersenne's or the printer's error since there are only 19 digits in the last
named perfect number.
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Further, perfect numbers are so rare that up to now only eleven have
been able to be found, that is, three others differing from those of Bungus;?
for there is no other perfect number outside of those eight, unless you go
beyond the exponent 628, in1 + 2 + 22 + ... 3, The ninth perfect number is
the power of the exponent 68 minus 1;* the tenth, the power of the exponent
128 minus 1° ; the eleventh, finally, the power 258 minus 1, that is, the
power 257, decreased by unity, multiplied by the power 256. 6

The person who finds eleven others will know that he has surpassed
every analysis previously made and will remember meanwhile that there is
no perfect number from the power 17000 to 32000, and that no interval of
powers can be assigned so great but that it may be given without perfect num-
bers. E.G., if there is an exponent 1050000, all the way to 2090000 there

will be no number of double progression such as to serve perfect numbers,

1"Bougianis” in the text is an obvious mis-print for "Bungianus. "

2Evidently this is an error, since according to Uspensky and Heaslet, Elemen-
tary Number Theory, p. 82, 281 _ 1 isa prime number, and thus 260 (261 -
1) is perfect. W. W. R. Ball speculated that the printer had made an error
and had printed a 7 for a 1. R. C. Archibald dismissed this as "ridiculous."
(Scripta Mathematica, Vol. 3, p. 112). However, if Dickson is correct in
saying that Mersenne was reporting information that he got from correspon-
dence with Frenicle and Fermat, it is possible that Mersenne mis-read his
correspondent and reported that 67 instead of 61 produces a prime, 287 - 1,
This would explain both errors, and would also account for the peculiar
oversight on his part since he was certainly acute enough to realize that
Bungus included several numbers in his list which are not perfect.

3This is Dickson's rendering of what Mersenne calls "of double progression
beginning from 1."

This is evidently in error. See Dickson, p. 13; Uspensky, p. 82.

SActually, 2126 (2127 _ 1) is the 12th perfect number since Mersenne has
omitted 2% (289 - 1) and 219 (217 _ 1) which are perfect. See Uspensky,
p. 82.

SAnother error. See "Mersenne and Fermat Numbers, " by R. M. Robinson
Proceedings of the A. M.S. Vol. 5, p. 842-846 for a list of perfect rhumbers
obtained throu §h the use of a modern high-speed computer. The 13t perfect
number is 2520 (2521 _
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that is, such as to be a prime minus a unity.

From this it is clear how rare perfect numbers are, and how deservedly
they are compared to perfect men; and (it is clear) that one of the greatest
difficulties in all mathematics is to show a prescribed multitude? of perfect
numbers, as also to recognize whether given numbers consisting of 15 or 20
digits® are prime or not, since not even an entire century is sufficient for
this investigation, in any way known up to now.

According to this passage the list of even perfect numbers would be the

following:

First perfect number 2(22 - 1), Second perfect number  2%(2% - 1),
Third perfect number 24(25 - 1), Fourth perfect number  28(27 - 1),
Fifth perfect number 212(218 _ 1),  Sixth perfect number 216217 - 1),
Seventh perfect number  218(219 - 1), Eighth perfect number 23(23! - 1),
Ninth perfect number 206(267 _ 1), Tenth perfect number 21262127 _ 1),

Eleventh perfect number 2256(2257 _ 1)+«

This passage is moreover reported in a paper by C. N. Winsheim inserted in
the Novi Commentarii Academiae Petropolitanae, ad annum MDCCXLIX (vol.
II, page 78), preceded by the following thoughts.

"For there appears to be distrust as to whether the ninth number? can
keep the place of a perfect number, since it is excluded by the very intelligent
Mersenne, who substituted in its place the power of the binary (267 - 1)6¢ or
the ninteenth® perfect number of Hansch 147573952589676412927; certainly
the words of a very perspicacious man seem to me to be worthy to be set forth

here verbatim."

i1t is puzzling that Mersenne puts in all those zeroes since he was certainly

aware that the exponent must be a prime. Is it possible that he wrote 17:«« ?

It also seems that it should be 33 not 32 since (2 x17) - 1 = 33. Unfortunately

33 is not prime. Similar objections apply to 105 and 209. Eventually some-

body conjectured that if 20 - 1 is prime, then this number used as an exponent
will produce another prime of the same form. Robinson reports in his article
that D. J. Wheeler disproved this conjecture in 1953 using a high-speed computer.

2The text here is ocorrupt. Multitudinem, not multitudinum must be read.
30mitting the comma after 15 — an obvious error.

4The reference is to a table by Euler which listed (241-1)240 as the ninth perfect
number. See Dickson, History of the Theory of Numbers, Vol. 1, p. 18.

SHansch had stated (erroneously) that 2" -1 isa prime if n is any of the
twenty-two primes <79, See Dickson, p. 17.
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In this way Mersenne showed that, for n between 31 and 257, there do
not exist any prime numbers of the form 2 1 except for n equal to 31, 67,
127, or 257. The proof of the non-decomposition of the first of these numbers,
231 _ 1, was not given until much later, by Euler. Going much further,
M. F. Landry, by means of an unpublished method, probably very simple,
arrived at the decomposition of certain very large numbers and their prime

factors. In fact he gave the decomposition of the numbers
240 _ 1, 28 _ 1, 24T _ 1, 28 _ 1, 2% _ 1,

into their prime factors. In addition we find that 27 -1, 27 -1, and 2113
- 1 are respectively divisible by 439, 2687, and 3391. Finally we have the

following theorem.
Theorem: If 4q +3 and 8q + 7 are prime numbers then the number

24q+3

is divisible by 8q + 7.
In fact, according to Fermat's Theorem we have

28476 _ 1 = 0 (mod 8q + 7),

49+3 4q9+3

+1 or 2 - 1 of the first

member of the congruence is divisible by the modulus. On the other hand we

and as a result one of the two factors 2

know that 2 is a quadratic residue of all prime numbers of the form 8n + 1 and

8n + 7. Consequently we have

2%%3 _ 1 = 0 (mod 8q + 7) .

Consulting a table of prime numbers we conclude that for n successively equal

to
11, 23, 83, 131, 179, 191, 239, 251, 359, 419,,431, 443, 491,

the numbers 2" - 1 are respectively divisible by the factors
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23, 47, 167, 263, 359, 383, 479, 503, 719, 839, 863, 887, 983.

The result of these various considerations is that Mersenne was in
possession of an arithmetic method which we have not been able to attain.
However it appears natural to believe that this method is not too far from
Fermat's principles and consequently does not differ essentially from those
which we will later derive from the inverse of Fermat's theorem. We show,
in fact, how it is possible to rapidly arrive at the nature of the factorization
of the large numbers which we mentioned above.

In the following table we give the decomposition of the numbers Un and
Vn of the Fermat series for all values of n up to 64. Among the large prime
numbers in this table we will note

1) Five numbers of ten digits

42782 55361
88314 18697
29315 42417
18247 26041
45622 84561

a factor of
a factor of
a factor of
a factor of

a factor of

240 + 1,
24+ 1,
24 + 1,
259 + 1,
280 + 1;

2) Two numbers of eleven digits
5 44109 72897 a factor of 2% +1,
7 71586 73929 a factor of 26 + 1;
3) A number of twelve digits
16 57685 37521 a factor of 24+ 1;
4) Four numbers of thirteen digits
293 20310 07403 a factor of 2% +1
443 26767 98593 a factor of 2% - 1,
436 39531 27297 a factor of 2% + 1
320 34317 80337 a factor of 2% - 1;
5) A number of fourteen digits
2805 98107 62433 a factor of 2% +1.

It remains to determine the nature of the numbers 26 -1, (28! + 1)/3,
and 2% + 1, Landry feels that these numbers are prime but on the other hand,
according to Mersenne, the first of these numbers would be composite. In
addition, from the consideration of the calculations which I have made, and
whose theory is given later, the last of these numbers would also be composite.
There is nothing further that can be said at thé moment,
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Outside of the decompositions contained in the table, M. Landry has
also obtained the proper divisors of a certain number of other terms of this
series, to wit

For 2% +1 409891 and 76 23851,
269 +1 16 87499 65921, (prime)
25 -1 100801 and 105 67201,
2% +1 113 38367 30401, (prime)
2105 41 664441 and 15 64921.
In his way, M. le Lasseiur arrived at the same results but he did this

by means of the identity

24n+2 +1 = (22n+1+2n+1+1)(22n+1_2n+1+ 1),

which permits the calculations to be abbreviated. This very important identity

will be later generalized.

TABLE OF THE PRIME FACTORS OF FERMAT'S RECURRENT
SERIES ACCORDING TO M. F. LANDRY

Un Divisors of Un Values of 2nl Vn Divisors of Vn
21 — 11 21 2f21+1]3
22 4f22+1
28 — 17 23 8 23+ 1| 32
24 16 |24 + 1| 17
25 - 1|31 25 32 125+1|3-11
26 64 |26 + 1| 5-13
2T - 1]127 27 128 |27+ 1| 3-43
28 256 [| 28 + 1| 257
29 - 1|7-73 29 512 f|29 + 1] 32-19
210 1024 | 210+1] 52. 41
21 _1/23.89 211 2048 '21141‘ 3-683
212 4096 | 212+1| 17.241
28 _ 1|8191 213 8192 [|213+1] 3.2731
21 16384 [|214+1] 5.29.113
2% _1|7.31.151 215 32768 [ 215+1|32.11- 331
216 65536 || 216+ 1| 65537
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TABLE OF THE PRIME FACTORS OF FERMAT'S RECURRENT
SERIES ACCORDING TO M. F. LANDRY

(Cont.)
U, Divisors of U, " Values of 2" Vi Divisors of V
217 _ 11131071 217 131072 || 217+1| 3. 43691
218 262144 || 218+1 | 5.13. 37109
219 _ 1]524287 219 524288 || 219+1| 3.174763
220 1048576 || 220+ 1| 17. 61681
241 _ 1]7%2.127. 337 221 2097152 || 221+1 | 32+ 43.5419
222 4194304 (| 222+1| 5+ 3972113
2% _1(47-178481 223 8388608 || 228+1 | 3.2796203
2241 16777216 || 224+1|97- 257673
225 _1|31-601-1801 2% 33554432 || 225+1 | 3.11-251.4051
226 67108864 || 226+1 [ 5-53.157-1613
22T _ 1773262657 22T| 134217728 || 227+1 | 34. 19 87211
22| 268435456 || 228+1 [ 1715790321
229 ~ 11233.1103-2089 || 229| 536870912 || 229+1 | 8. 59- 3033169
2%0( 1073741824 || 230+1 | 52.13.41-61-1321
231 _ 112147483647 2311 2147483648 || 231+ 1 | 3. 715827883
232] 4294967296 || 232+ 1 | 641 - 6700417
2% _117.23.89:599479 233| 8589934592 || 233+1 | 32. 67-683.20857
234117179869184 [| 234+1|5.137.953. 26317
2% _ 1]31-71.127.122921f 235[34359738368 [| 235+ 1 | 3.11-43.281- 86171
2%6168719476736 || 236+1 | 17+ 241 - 43338737
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