Hyperbolic motion (relativity): Difference between revisions

Content deleted Content added
Replace all "\begin{aligned}" with "\begin{align}" - see talk Talk:Acceleration (special relativity)#Parse error
Line 14:
 
:<math>\begin{array}{c|c}
\begin{ aligned align}u(t) & =\frac{\alpha t}{\sqrt{1+\left(\frac{\alpha t}{c}\right)^{2}}}\\
& =c\tanh\left(\operatorname{arsinh}\frac{\alpha t}{c}\right)\\
x(t) & =\frac{c^{2}}{\alpha}\left(\sqrt{1+\left(\frac{\alpha t}{c}\right)^{2}}-1\right)\\
Line 20:
c\tau(t) & =\frac{c^{2}}{\alpha}\ln\left(\sqrt{1+\left(\frac{\alpha t}{c}\right)^{2}}+\alpha t\right)\\
& =\frac{c^{2}}{\alpha}\operatorname{arsinh}\frac{\alpha t}{c}
\end{ aligned align}
& \begin{ aligned align}u(\tau) & =c\tanh\frac{\alpha\tau}{c}\\
\\
x(\tau) & =\frac{c^{2}}{\alpha}\left(\cosh\frac{\alpha\tau}{c}-1\right)\\
Line 27:
ct(\tau) & =\frac{c^{2}}{\alpha}\sinh\frac{\alpha\tau}{c}\\
\\
\end{ aligned align}
\end{array}</math>
 
The function <math>x(t)</math> gives <math>x^2-c^2t^2=c^4/\alpha^2,</math> which is a hyperbola in time and the spatial location variable <math>x</math>. If instead there are initial values different from zero, the formulas for hyperbolic motion assume the form:<ref>{{Cite book|author=Gallant, J.|title=Doing Physics with Scientific Notebook: A Problem Solving Approach|year=2012|pages=437–441|publisher=John Wiley & Sons|isbn=0470665971}}</ref><ref>{{Cite journal|author=Müller, T., King, A., & Adis, D.|year=2006|title=A trip to the end of the universe and the twin "paradox"|journal=American Journal of Physics|volume=76|issue=4|pages=360–373|arxiv=physics/0612126|doi=10.1119/1.2830528}}</ref><ref name=fraundorf>{{Cite journal|author=Fraundorf, P. |year=2012|title=A traveler-centered intro to kinematics|journal=|volume=|issue=|pages=IV-B|arxiv=1206.2877|doi=}}</ref>
 
:<math>\begin{ aligned align}u(t) & =\frac{u_{0}\gamma_{0}+\alpha t}{\sqrt{1+\left(\frac{u_{0}\gamma_{0}+\alpha t}{c}\right)^{2}}}\quad\\
& =c\tanh\left(\operatorname{arsinh}\left(\frac{u_{0}\gamma_{0}+\alpha t}{c}\right)\right)\\
x(t) & =x_{0}+\frac{c^{2}}{\alpha}\left(\sqrt{1+\left(\frac{u_{0}\gamma_{0}+\alpha t}{c}\right)^{2}}-\gamma_{0}\right)\\
Line 42:
x(\tau) & =x_{0}+\frac{c^{2}}{\alpha}\left(\cosh\left(\operatorname{artanh}\left(\frac{u_{0}}{c}\right)+\frac{\alpha\tau}{c}\right)-\gamma_{0}\right)\\
ct(\tau) & =ct_{0}+\frac{c^{2}}{\alpha}\left(\sinh\left(\operatorname{artanh}\left(\frac{u_{0}}{c}\right)+\frac{\alpha\tau}{c}\right)-\frac{u_{0}\gamma_{0}}{c}\right)
\end{ aligned align}</math>
 
==See also==