
WDQS BACKEND ALTERNATIVES

THE PROCESS, DETAILS AND RESULTS

WDQS Search Team

Version 1.1, 29 March 2022

OVERVIEW

The Wikidata Query Service (WDQS) is part of the overall data access strategy for
Wikidata. Currently, the service is hosted on two private and two internal load-balanced
clusters, where each server in the cluster is running an (open-source) Blazegraph
instance, and providing a SPARQL endpoint for query access. The Blazegraph
infrastructure presents a problem going forward since:

● There is no short- or long-term maintenance/support strategy, given the
acquisition of the Blazegraph personnel by Amazon (for their Neptune product) –
as a result Blazegraph is “end of life” software that is not actively maintained

● Blazegraph is a single-server implementation (with replication for availability) that
is suffering performance problems at the current database size of ~14B triples1

● Query performance is based on synchronous response and ‘older’ technology,
and is experiencing timeouts and general instability

Goals of this work are to define several, viable architectures for the WDQS RDF store
and SPARQL endpoint. Each of these architectures must (at a minimum) support :2

● Storage of the entire Wikidata data set (although the data may be split across
multiple backend instances)

● Update of the data store in real-time (<10 min delay)
● Execution of a mix of simple and complex queries

The above requirements translate into various implications for the system architectures
and their ability to support read and write in high density, to parse full SPARQL 1.1, and
to execute performant queries.

All of these topics are discussed in greater detail in this document, as well as the
process and evaluation details that led to the conclusions.

2 The complete set of requirements is presented later in this document.
1 https://grafana.wikimedia.org/d/000000489/wikidata-query-service?orgId=1&refresh=1m&viewPanel=7

1

https://grafana.wikimedia.org/d/000000489/wikidata-query-service?orgId=1&refresh=1m&viewPanel=7

TABLE OF CONTENTS

Summary and Results

Technical and Community Criteria Assessments

Evaluation Process

2014 Data Store Analysis

User Survey

Phabricator Tickets

Literature Review

User Meetings

Evaluation Criteria

Evaluation Results

Apache Jena

QLever

RDF4J V4

Virtuoso

Other Data Stores

Wikidata Query Architectures

Next Steps

2

SUMMARY AND RESULTS

After examining the capabilities of over 20 open-source databases, the list of candidate
alternatives has been narrowed down to the following, listed in alphabetical order:

● Apache Jena with the Fuseki SPARQL Server component
○ Apache V2 license

● QLever
○ Apache V2 license
○ Wikidata SPARQL endpoint hosted on QLever at

https://qlever.cs.uni-freiburg.de/wikidata
● RDF4J V4 (with the LMDB store, still in development)

○ Eclipse Distribution license
● Virtuoso Open-Source (stable branch for V7, the latest open-source release)

○ OpenLink Software’s Virtuoso Open-Source (VOS) license
○ Wikidata SPARQL endpoint hosted on Virtuoso at

https://wikidata.demo.openlinksw.com/sparql/

Each of these candidates are ranked by the criteria shown in Tables 1 and 2, below. The
criteria are overviewed in the section, Evaluation Criteria. The evaluations are explained
in detail in the section, Evaluation Results.

Technical and Community Criteria Assessments

The following tables are the results of the assessments of the candidate alternatives.
The first table holds the overall technical assessments. The scoring is 0-5 (where 0
indicates no support and 5 indicates exceptional support). Note that the table includes a
column evaluating the current Blazegraph solution. The second table describes the
implications to the users related to query times, complexity and data freshness for each
of the alternatives.

3

https://github.com/apache/jena
https://github.com/apache/jena/tree/main/jena-fuseki2
https://github.com/ad-freiburg/qlever
https://qlever.cs.uni-freiburg.de/wikidata
https://qlever.cs.uni-freiburg.de/wikidata
https://github.com/eclipse/rdf4j/tree/develop
https://github.com/eclipse/%20rdf4j/blob/main/LICENSE
https://github.com/openlink/virtuoso-opensource
https://github.com/openlink/virtuoso-opensource/blob/develop/7/LICENSE.md
https://wikidata.demo.openlinksw.com/sparql/
https://wikidata.demo.openlinksw.com/sparql/

Criteria Blazegraph Jena QLever RDF4J Virtuoso
Scalability to 10B+ triples 5 5 5 3* 5
Scalability to 25B+ triples 0 0 5 1 5
Full SPARQL 1.1 capabilities 5 5 3* 5 3
Federated query 5 5 0* 5 5
Ability to define custom SPARQL functions 3 5 2 5 4
Ability to tune/define indexes and perform
range lookups 2 5 5 5 4
Support for read and write at high frequency 5 5 0* 3* 3
Active open-source community 0 5 4 5 3
Well-designed and documented code base 5 5 5 5 2
Instrumentation for data store and query
management 2 5 2 4 4
Query plan explanation 5 3 5 3 2
Query plan tuning/hints within SPARQL
statement 5 4 2 3 3
Query without authentication 5 5 5 5 5
Ability to prevent write access 0 5 0 5 5
Data store reload in 2-3 days (worst case) 0 2 5 3 1
Query timeout and resource recovery 2 5 4 4 3
Support for geospatial data (e.g., POINT) 5 5 5 5 5
Support for GeoSPARQL 2 5 2* 4 3
Support for named graphs (quads) 5 5 0 5 5
Query builder interface (ease of use) 3 4 5 3 5
Dataset evaluation (SHACL, ShEX) 0 5 0 5 0

Table 1. Server Assessment by Technical Criteria

(* indicates that score could be improved after testing/evaluation of work-in-progress)

4

Criteria Jena QLever RDF4J Virtuoso

Permit long(er) and
configurable query
timeouts (which
translates to
additional query
load)

Longer timeouts
will likely be
required due to
federation;
Timeouts
configurable at
global and query
levels

Timeouts
configurable at
query level

Longer timeouts
will likely be
required due to
federation;
Timeouts
configurable at
query level

Timeout implications
need investigation /
evaluation based on
query load; Anytime
query is not possibility
(since it is not
deterministic);
Timeouts are global
and not configurable
at query level

Query full set of
triples

Slower
performance on
some queries due
to need for
federation Full capability

Slower
performance on
some queries
due to need for
federation Full capability

Reflect most current
data (Requires ability
to handle frequent
writes)

Needs
investigation /
evaluation; There
are capabilities for
streamed update

Proposed solution
for update needs
investigation /
evaluation; In theory,
supports real-time
updates

Needs
investigation /
evaluation; The
LMDB store
should be
performant

Updates may
necessitate index
rebuild and affect
performance and
correctness; Needs
investigation /
evaluation

Good query
response time
(Requires performant
indexing and join
operations)

Some slower
performance due
to federation;
Possible to tune
indexes and
configurations

Performant query
demonstrated on
sample endpoint;
Queries that timeout
on Blazegraph likely
to succeed; All index
permutations are
supported

Some slower
performance due
to federation;
Possible to tune
indexes and
configurations

Needs investigation /
evaluation since
column-wise data
store may not be
compatible with
frequent writes;
Complex queries may
timeout or take a long
time to complete

Ease of use/easier to
use (All solutions
support SPARQL
1.1; federation
introduces additional
complexity)

Queries will be
more complex
since they will
reference different
endpoints due to
federation; Can
evaluate
HyperGraphQL for
simple queries

Excellent UI (as
demonstrated on
sample endpoint)
with autocomplete
and graphical
display of query
plans; Need to test
full SPARQL 1.1
compliance

With FedX
support, queries
should not have
to change
(changes would
be due to
splitting Wikidata
into sub-graphs
to reduce
database size)

Queries will reference
new prefixes (bif: and
sql:) and use
non-standard
terminology; Query
plans explained in
SQL which could be
confusing; Need to
test full SPARQL 1.1
compliance

Table 2. Server Assessment by User Criteria

5

EVALUATION PROCESS

The task of finding a replacement for the Blazegraph RDF data store for Wikidata
involved examining many different engineering, technical and usage aspects. The
considerations must address initial load of the data, and deal with ongoing updates (for
data freshness), DevOps, server uptime, and performant query. This section overviews
these different aspects and how the final set of evaluation criteria were defined.

Pre-Implementation Data Store Analysis (~2014-2015)

About 7-8 years ago, an analysis of open-source RDF data stores and SPARQL
endpoints was performed. From this analysis, Blazegraph was selected as the WDQS
data store. The study, however, was not based on understanding actual requirements
but instead based on anticipated needs. In addition, the study was incomplete in that all
of the potential candidates were not fully evaluated, and its criteria were sometimes
ambiguous or overlapping.

Despite its drawbacks, criteria from this earlier study are interesting to examine. The
following tables list what criteria was retained versus discarded in the current analysis.

Criteria Addressed as …

Sandboxing and timing out queries Criterion: Query timeout and resource recovery

Modularity (plug-in indexes, data types, …) Criteria: Ability to define custom SPARQL functions + Ability
to tune/define indexes

Well commented source Criterion: Well-designed and documented code base

Query planner Criteria: Query plan explanation + Query plan tuning/hints

Index and range lookup + Indexes for multiple
traversals (hash joins) + Vertex-centric indexes

Criteria: Ability to tune/define indexes and perform
greater-than and less-than (range) checking

Geospatial indexes and query support Criteria: Support for geospatial data (e.g., POINT) + Support
for GeoSPARQL

Traversal order rewriting Criterion: Query plan tuning/hints

Experimentation console Criteria: Instrumentation for data store and query
management + Query builder interface

Upstream support for bug fixes, … + Project
health + Community health

Criterion: Active open-source community

6

SPARQL support Criterion: Full SPARQL 1.1 capabilities

Ability to handle lots of writes Criterion: Support for read and write at high frequency

Table 3. 2014-2015 Backend Evaluation Criteria Maintained in Current Analysis

Criteria Reason Discarded

Easy to type query language + Can
expose native query language +
Native language expressiveness

The requirement is for SPARQL support and not “native” languages

Ability to maintain uptime All products must be stable enough to remain functional, but
establishing ‘uptime’ requires testing with the R/W query load for
Wikidata

Fully free software + License type
(Apache, GPL, AGPL)

Mandatory requirement for open-source license (not necessary as a
separate line item)

Implements some standard spec Mandatory requirement for SPARQL 1.1, not for “some”/any standard

Horizontal scalability Not a requirement since WDQS has a load-balanced infrastructure in
place; If this criterion instead referred to sharding, then investigations
of partitioned databases yielded no prospects that met the mandatory
requirements of open-source, SPARQL 1.1, and an active community

Maturity of software + Stability of
storage layer

Mandatory requirement to have history of stable releases and to be
intended for production (not necessary as a separate line item)

Packaging (Debian) and puppetization Mandatory requirement to execute on Linux (not necessary as a
separate line item); Building a valid Debian and puppet configuration is
already part of the WDQS process

Cross-data center and multi-cluster
replication

Not a requirement since this is handled by the existing WDQS
infrastructure

Intersecting index lookups (e.g.,
population > 101, country = Germany)

Not a requirement since this is really about having effective query
evaluation/planning (which will be evaluated as part of testing); Also, it
is not possible to determine all the possible combinations of joins

Full text indexes (stemming, ranking,
…)

Not a requirement since MWAPI can be used to execute full text
search over any wiki (including Wikidata)

Handles ten thousand indexes
natively

Not a reasonable requirement since the issue is index size and not
number; The issue is having sufficient and tunable indexes, which is
addressed by the criteria to tune/define indexes

Top-n queries Not a requirement for the evaluation, but handled in testing

Online schema changes The Wikidata schema/ontology is defined; Changes would be
anticipated and not done without planning

7

Multi-operation ACID Updates align with edits on Wikidata which are done atomically (one
property at a time); Writes to the backend are done from the RDF
stream updater, using transactions to write batches of data (for
performance reasons and not following any kind of semantic
coherence)

Criteria Reason Discarded

Storage layer designed for graphs Investigated partitioned graph and NoSQL backends; None met the
mandatory requirements of open-source, SPARQL 1.1, and an active
community (therefore, this criterion was dropped); Actual criteria is
related to performance which will be established in testing

“Rough edges” + Work remaining +
Hacking to graph database layer

Not necessary since there is a mandatory requirement to have a
history of stable releases and that the software is intended for
production

Supports checking qualifiers and
references (checking qualifiers either
by indexing or efficient json
deserialization and rechecking)

Repetitive (since indexing qualifiers is just indexing prefixes,
predicates, etc.) or not a requirement (since checking/validation is
performed at data update or by executing queries, and JSON is not
used for input); Note that there is a line item for dataset evaluation
(e.g., via SHACL) in the criteria

Supports query continuation better
than offset paging

Not a requirement at this time

Supports dumping all results Not a requirement since the Wikidata dumps are produced separately
and publicly available

WMF experience Not a requirement since the team now has experience with
RDF/SPARQL and the candidate backends are written in mature
languages (Java, C and C++)

Gremlin support Not a requirement at this time

Data inference and materialization Not a requirement at this time

Table 4. 2014-2015 Backend Evaluation Criteria Not Relevant

8

User Survey

In August 2021, a user survey was conducted regarding WDQS. The top five priorities
(based on the combined number of #1 and #2 rankings selected by the 222
respondents) were:

1. Timeouts — “it is important to me to be able to run long queries without timeouts”
2. Graph completeness — “it is important to me that I can query the entire Wikidata

graph”
3. Data freshness — “I want to be able to query the most recent updates to

Wikidata”e
4. Response latency — “It is important for me that my queries return results quickly”
5. Ease of use — “I want WDQS and/or the WDQS API to be easier to use”

Survey details can be seen in Figure 1.

Figure 1. Bar chart of WDQS 2021 User Survey

9

Other feedback from the survey that influenced the current analysis came from3

analyzing the free-text comments. Several topics are listed below, in no particular order:

● Support additional SPARQL functions such as XPath, math, etc.
● Support shape queries (e.g., is the P625 value of this item within / not within / on

the boundary of that P3896 geoshape?)
● Allow query cancellation and user-defined timeouts

Phabricator Tickets

The Phabricator epic relating to investigating alternatives to Blazegraph is T206560.
That epic includes tasks to define the evaluation criteria and review many, specific
offerings. This document satisfies several tasks linked to the epic, specifically, T291207
(to define the criteria) and T275398 (to create a table/spreadsheet evaluating the
alternatives by the criteria). Note that the only offerings that are fully evaluated in this
paper are ones that are fully open-source, with an active development community,
supporting SPARQL 1.1 and able to handle a minimum of 10B triples.

Literature Review

There are some excellent survey articles describing the underlying technologies of
various RDF stores and SPARQL engines, and then comparing and contrasting many of
the available offerings. The following papers were reviewed as part of this work:

● A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs
● Storage, Indexing, Query Processing and Benchmarking in Centralized and

Distributed RDF Engines
● Persistence of RDF Data into NoSQL: A Survey and a Reference Architecture
● A GeoSPARQL Compliance Benchmark

3 There are many comments in the survey, but they deal with items outside of this work - such as
improvements to the user interface, documentation suggestions, etc. There are several comments
regarding caching or saving query results, but again, that is outside of the scope of this document.

10

https://phabricator.wikimedia.org/T206560
https://phabricator.wikimedia.org/T291207
https://phabricator.wikimedia.org/T275398
https://arxiv.org/pdf/2102.13027.pdf
https://www.preprints.org/manuscript/202005.0360/v3
https://www.preprints.org/manuscript/202005.0360/v3
https://ieeexplore.ieee.org/document/9093172
https://arxiv.org/pdf/2102.06139.pdf

User Meetings

Two community meetings were held in mid-February 2022 to discuss requirements and
use cases for SPARQL query and the underlying data store. Key takeaways from the
first meeting on the use of SPARQL query were the importance of:

● Full SPARQL 1.1 functionality
● Property path traversals and any efficiencies/improvements that could be

supported
● Ability to search labels and descriptions using wildcards, fuzzy search, etc.4
● Subqueries for performance
● Queries for information discovery AND for correctness and validation checking

(for example, to find anomalies and duplicates)
● Improved query processing with fewer timeouts
● Geographical query (mostly for Earth-based data)
● CONSTRUCT statements for data extraction

Takeaways from the second meeting on SPARQL backends were:

● Alternatives for reducing duplication in the data (and therefore, reducing the
overall size of the Wikidata dump) and for storing time series data

● Need for efficient federated query, better RDF benchmarks that reflect machine
loading and query, and better documentation of what is supported and how to
use it

For more details on both meetings, see the 17 February 2022 SPARQL query notes and
the 21 February 2022 Backend discussion.

4 The capabilities for full-text, wildcard and fuzzy search are important, and were discussed as being
served by federation with the MediaWiki API. Overlapping capabilities in the query engine itself are not
required. However, performant query support for language tags is important and will be addressed in
testing.

11

https://etherpad.wikimedia.org/p/R5n382Ld0Vvykc7Ak3iH
https://etherpad.wikimedia.org/p/yPUhyhbmXglC_Magx0Go

EVALUATION CRITERIA

The criteria for evaluation are listed below along with explanations and clarifications:

● Scalability to 25B+ triples
○ This number is an estimate of the number of triples in the Wikidata store

based on a linear growth rate and 5 years of growth (using the worst case
slope, from 23 November 21 to 07 December 21)

○ Ideally, the full data set is stored on a single server
● Scalability to 10B+ triples

○ Several of the possible alternatives cannot scale to the full Wikidata triples
size (25B+). In this case, the triples would need to be split by some
algorithm, stored on separate servers, and federated when queried.

○ This architecture is discussed in detail in the section, Wikidata Query
Architectures

● Full support for SPARQL 1.1 with minimal errors
○ Any software will have errors. An error-free implementation is an ideal.

But, some offerings are known to have incomplete and/or incorrect
SPARQL 1.1 implementations. This criterion identifies where such
problems exist.

● Federated query
○ The heart of linked open data is the ability to federate information from a

variety of sources, both locally and on the web. Support for federation is
mandatory for open knowledge.

○ Currently, the WDQS supports the following list of federated endpoints
○ Federated query also allows for the possibility of separating the Wikidata

triples across multiple servers and databases (required if the server
implementations cannot support 25B+ triples)

● Ability to define custom SPARQL functions
○ The ability to define custom SPARQL functions is necessary since

SPARQL 1.1 has mandated only a small set of operations
○ In order to support other, desired math, XPath, string, aggregation and

similar calculations and transformations, it must be possible to define
custom functions

● Ability to tune/define indexes and perform greater-than and less-than checking
○ As for relational databases, indexes can improve query performance, but

the performance comes at the cost of increased maintenance and storage
requirements

○ It is possible to index triples using one or more of: subjects/objects (items),
properties/paths and query/join patterns (either statically or dynamically
defined)

○ There are six possible index permutations for triples
(subject(s)-predicate(p)-object(o) pairs): spo, sop, pso, pos, ops, osp
(these should be handled by several indexes)

12

https://grafana.wikimedia.org/d/000000489/wikidata-query-service?viewPanel=7&orgId=1&from=now-6M&to=now
https://gerrit.wikimedia.org/r/plugins/gitiles/wikidata/query/deploy/+/refs/heads/master/whitelist.txt
https://www.w3.org/TR/sparql11-query/#SparqlOps

○ Named graphs (or quads) add another element, resulting in 24 possible
combinations

● Support for R/W at high frequency
○ As indicated in the user survey, many WDQS consumers require

near-real-time update of the data
○ Analysis of the new WDQS stream update service indicates that spikes of

~1000 added/deleted triples/second can occur
○ The average update frequency is in the range, 50-200 triples/second

● Active open-source community
○ WDQS is supported by the WMF Search Platform Team, which must split

resources between new functionality and bug fixes
○ Ideally, bug fixes should be focused on internal tools and services, and not

on errors in the RDF store or SPARQL endpoint
○ For these reasons, an active community is needed to address storage and

query problems
○ Given that “freedom and open source” are a guiding principle of the

Wikimedia Foundation, there is a mandatory requirement that the backing
infrastructure for WDQS be open-source

● Well-designed and documented code base
○ This criterion relates to the offering being maintainable by its community

● Instrumentation for data store and query management
○ When problems occur in the WDQS clusters, site reliability engineers must

be able to acquire operational statistics on the underlying applications and
services, and have the ability to affect change via CLI and browser-based
tooling

○ Configuration of thread pools and memory management and management
of executing queries are especially important

● Query plan explanation
○ Data stores execute queries by first determining their query plan (the

sequence of steps that will result in the most efficient execution of the
query), and then the actual execution of the plan

○ The most efficient execution strategy is to obtain results for the most
selective clauses first (these are the basic graph patterns that have the5

smallest number of results)
■ For example, ?s wdt:P569 ?date is less selective than wd:Q42

wdt:P569 ?date, since the first triple returns the dates when any
entity was born, but the second returns the date when Douglas
Adams was born

○ Long-running queries always occur, but sometimes, they can be rewritten
to execute more quickly

○ If a query’s triple patterns return many matches (called intermediate result
sets), those results increase memory usage and runtime, since they must
be sorted, added to other results via a join, etc.

5 https://www.w3.org/TR/rdf-sparql-query/#BasicGraphPatterns

13

https://phabricator.wikimedia.org/T244590
https://meta.wikimedia.org/wiki/Wikimedia_Foundation_Guiding_Principles#Freedom_and_open_source
https://www.w3.org/TR/rdf-sparql-query/#BasicGraphPatterns

○ In order to tune queries, the results of the query planning stage must be
available

● Query plan tuning/hints
○ Ideally, a SPARQL engine allows user-defined instructions to define or

change the query plan
● Query without authentication

○ Authentication in an open-access environment is problematic, since it
could impact privacy

○ For this reason, query capabilities must be provided without authentication
○ However, advanced capabilities (such as complex queries with lengthy

timeouts) may require authentication. This is still to be determined.
● Ability to prevent write access, except by the stream updater

○ Data is updated by editing Wikidata directly, and not through SPARQL
INSERT/DELETE statements

○ However, additions, deletions and changes must be able to be performed
by the WDQS stream update service, in a secure manner

● Data store reload in 2-3 days (worst case)
○ Current Blazegraph data loading (of an RDF dump) takes over 10 days
○ Reload might be needed to address data drifts (due to issues in the

streaming update process) and to improve indexes
● Query timeout and resource recovery

○ Executing long-running queries consumes server resources and reduces
the overall performance of the system

○ It is mandatory to be able to set hard timeouts (which cannot be violated
by any query) as well as user-defined timeouts which would be set by the
query writer (for example, when testing that a new query is valid before
attempting to execute it)

● Support for geospatial (POINT) data
○ Geographical query was a topic highlighted at the first user meeting on

Blazegraph alternatives, discussed above
○ The basis for this type of query is a geographical point (latitude and

longitude, defined relative to a coordinate system) and the functions (such
as “distance” or “within”) and constructs (such as polygons) that are built
using points

● Support for GeoSPARQL
○ GeoSPARQL was published by the Open Geospatial Consortium on 10

September 2012
○ It defines an ontology of concepts and relationships, new inference rules

and new SPARQL query functions
○ Note that there are no complete implementations of GeoSPARQL but

three of the four candidate alternatives do provide partial or
vendor-specific implementations

● Support for named graphs (quads)
○ Currently, the Blazegraph implementation does not use named graphs

14

https://phabricator.wikimedia.org/T244590
https://www.wikidata.org/wiki/Wikidata:Database_download#RDF_dumps
http://www.opengis.net/doc/IS/geosparql/1.0
https://en.wikipedia.org/wiki/Named_graph

○ These can be a useful concept to improve query performance since the
evaluation of triples in a query may be limited to one or more graphs (and
therefore improve selectivity and reduce the size of intermediate result
sets)

● Query builder interface
○ The interface provided at https://query.wikidata.org/ includes a string

based and templated builder
○ However, if a user interface is provided by the alternative offering, then

this may be useful to replace or improve current capabilities
● Dataset evaluation by SHACL (SHape Constraint Language), ShEX (Shape

EXpressions), or similar
○ Although integrity checking is done prior to loading in the WDQS store,

querying the store provides a secondary means to verify the data and find
more complex errors

○ If the backing store and query service can provide more advanced
capabilities, then that is valuable

○ Integrity can always be validated using SPARQL functions. However,
newer languages (such as SHACL) may make this task easier.

EVALUATION RESULTS

The sub-sections below discuss the detailed results evaluating each alternative against
the criteria. Note that the alternatives are discussed in alphabetical order. At the end of
this section, numerous data stores are listed that were investigated but dismissed.

Apache Jena

Jena’s code layout is shown in Figure 2 and consists of multiple APIs and components6

to load, update, store and query RDF and OWL triples. The Fuseki component adds
support for querying and updating the triples using SPARQL and HTTP. Beyond what is
shown below, there are additional features such as command-line tooling, specialized
indexes and more. These are discussed in more detail related to the evaluation criteria.

6 The Jena architecture is explained in detail, starting at the web page,
https://jena.apache.org/about_jena/architecture.html. Figure 2 is captured from that page.

15

https://en.wikipedia.org/wiki/SPARQL
https://query.wikidata.org/
https://www.w3.org/TR/shacl/
https://shex.io/
https://jena.apache.org/about_jena/architecture.html

Figure 2. Jena Code Layout

Below, each of the evaluation criteria are listed with Jena’s score (from Table 1) and a
short explanation. Note that the scoring is 0-5 (where 0 indicates no support and 5
indicates exceptional support).

● Scalability to 25B+ triples - 0
○ Although scale to 16.7B triples has been achieved , this appears to be7

reaching the capabilities of the overall system
○ Therefore, the ability to scale to 25B+ triples is not expected
○ Splitting the Wikidata triples by subject area (such as scholarly articles,

taxonomy entities, etc.) into separate stores and then using federated
queries will be required

● Scalability to 10B+ triples - 5 (noted in previous bullet)
● Full support for SPARQL 1.1 with minimal errors - 5

○ ARQ is Jena’s SPARQL processor with excellent support for V1.1
functionality as well as update capabilities8

8 https://www.w3.org/2009/sparql/implementations/, last modified 20 March 2013

7 https://muncca.com/2019/02/14/wikidata-import-in-apache-jena/ and
https://lists.apache.org/thread/rphn74r9vbovwjvylxjmrd6qnfvbt4t0 (see the update for 28 December 2021
and the log details at http://www.lotico.com/temp/LOG-45497)

16

https://www.w3.org/2009/sparql/implementations/
https://muncca.com/2019/02/14/wikidata-import-in-apache-jena/
https://lists.apache.org/thread/rphn74r9vbovwjvylxjmrd6qnfvbt4t0
http://www.lotico.com/temp/LOG-45497

● Federated query - 5
○ Jena provides support for the SERVICE keyword as well as

federation-specific configurations that can be set globally or per-query9

● Ability to define custom SPARQL functions - 5
○ ARQ can be extended by adding expression functions/operations in

FILTERS, BIND and SELECT statements, and property functions to
execute custom code associated with a predicate IRI10

○ In addition, the code provides a SERVICE-level extension capability11

similar to what is used with Blazegraph today
● Ability to tune/define indexes and perform greater-than/less-than checking - 5

○ Jena’s data store (TDB2) uses a 64bit ID for each RDF term including
literals, IRIs and blank nodes (e.g., there are node <-> id dictionaries)

○ For triples, the default indexes are SPO, POS and OSP
○ For quads, the default indexes are GSPO , GPOS , GOSP , POSG ,

OSPG and SPOG
○ Each triple or quad is stored in an index using its appropriate IDs
○ By default, indexes are memory mapped files stored outside of the

system heap12

○ Range lookups are implemented across a number of points in the code.
For example, see the code at
https://github.com/apache/jena/blob/main/jena-db/jena-dboe-index/src/mai
n/java/org/apache/jena/dboe/index/RangeIndex.java

● Support for R/W at high frequency - 5
○ Jena supports processing RDF in a streaming mode13

● Active open-source community - 5
○ Jena’s open-source code is stored at https://github.com/apache/jena,

licensed under Apache V2 and written in Java
○ There are 78 contributors with recent commits in March 2022

● Well-designed and documented code base - 5
● Instrumentation for data store and query management - 5

○ Fuseki has a low-cost HTTP GET “ping” operation to test whether a server
is responsive

○ Queries can be invoked and debugged via Jena command-line tools and
Fuseki’s HTTP GET/POST interface. Data store updates are handled
similarly. In addition, data set statistics can be output, and the dataset
compacted.14

14 https://jena.apache.org/documentation/tools/
13 https://jena.apache.org/documentation/io/streaming-io.html

12 https://stackoverflow.com/questions/55611943/what-indices-does-jena-tdb2-use and
https://jena.apache.org/documentation/tdb/store-parameters.html

11 https://github.com/apache/jena/tree/main/jena-arq/src/main/java/org/apache/jena/sparql/service

10 https://jena.apache.org/documentation/query/extension.html and
https://jena.apache.org/documentation/query/writing_functions.html

9 https://jena.apache.org/documentation/query/service.html

17

https://github.com/apache/jena/blob/main/jena-db/jena-dboe-index/src/main/java/org/apache/jena/dboe/index/RangeIndex.java
https://github.com/apache/jena/blob/main/jena-db/jena-dboe-index/src/main/java/org/apache/jena/dboe/index/RangeIndex.java
https://github.com/apache/jena
https://jena.apache.org/documentation/tools/
https://jena.apache.org/documentation/io/streaming-io.html
https://stackoverflow.com/questions/55611943/what-indices-does-jena-tdb2-use
https://jena.apache.org/documentation/tdb/store-parameters.html
https://github.com/apache/jena/tree/main/jena-arq/src/main/java/org/apache/jena/sparql/service
https://jena.apache.org/documentation/query/extension.html
https://jena.apache.org/documentation/query/writing_functions.html
https://jena.apache.org/documentation/query/service.html

○ The TDB data store can optionally log query execution details to
investigate “what is going on”15

○ There is a user interface for administration and query of Fuseki . It works16

with any SPARQL endpoint.
● Query plan explanation - 3

○ Using the command line instructions, qparse or tdbquery -explain, a
query’s algebra and/or interactions with the TDB data store can be
described

○ The amount of information that is output is dependent on the logging level
and output layouts

○ One concern is the complexity of the query algebra which would render
the output unintelligible to most users. This can be mitigated by
documentation, use of the SSE (SPARQL S-Expressions syntax) and17

simplification of the output.
● Query plan tuning/hints - 4

○ 3 different query planning schemes are defined - no statement reordering,
heuristics-based reordering and statistics-based reordering18

○ Although no default query hints are supported by text in the SPARQL
query, these could be managed by a WDQS front-end that invokes
different planning schemes based on observing a predefined string or
comment text in the query.

○ Specific optimization tasks can be turned on/off using SystemARQ
symbols (such as "optPathFlatten")19

● Query without authentication - 5
○ Apache Shiro is used as the authentication infrastructure for Jena
○ By default, SPARQL endpoints are open to the public but administrative

functions are limited to localhost
● Ability to prevent write access, except by the stream updater - 5

○ Update (create, update and delete) actions can be restricted by editing the
shiro.ini file

○ In addition, the query and update endpoints can use different URL paths.
The update functionality can then be controlled and authenticated by a
reverse proxy.

● Data store reload in 2-3 days (worst case) - 2
○ Loading, as documented in the links in footnote 7, took ~104h (4.3 days)
○ This was using the xloader (bulk load) command
○ This time will be reduced since the data will be split across multiple

servers. Meeting the timing requirements needs to be validated (hence,
the current score is 2).

19 https://github.com/apache/jena/blob/main/jena-arq/src/main/java/org/apache/jena/query/ARQ.java
18 https://jena.apache.org/documentation/tdb/optimizer.html#choosing-the-optimizer-strategy
17 https://jena.apache.org/documentation/notes/sse.html
16 https://jena.apache.org/documentation/fuseki2/
15 https://jena.apache.org/documentation/tdb/optimizer.html#investigating-what-is-going-on

18

https://github.com/apache/jena/blob/main/jena-arq/src/main/java/org/apache/jena/query/ARQ.java
https://jena.apache.org/documentation/tdb/optimizer.html#choosing-the-optimizer-strategy
https://jena.apache.org/documentation/notes/sse.html
https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org/documentation/tdb/optimizer.html#investigating-what-is-going-on

● Query timeout and resource recovery - 5
○ Timeouts can be defined globally and per query

● Support for geospatial (POINT) data - 5
○ See the bullet below for GeoSPARQL support

● Support for GeoSPARQL - 5
○ The Jena GeoSPARQL interface is described at

https://jena.apache.org/documentation/geosparql/ and is integrated with
Fuseki (the assembler for GeoSPARQL is part of the jena-geosparql20

artifact and must be on the Fuseki server classpath, along with its
dependencies)

○ WKT and GML serializations are supported, as well as all spatial relation
families (Simple Feature, Egenhofer and RCC8)

○ Additional geospatial indexes are defined and configurable
○ According to the paper, A GeoSPARQL Compliance Benchmark ,21

“GeoSPARQL Fuseki is the triplestore with the highest GeoSPARQL
compliance score in our experiments”

● Support for named graphs (quads) - 5
○ As noted in the bullet regarding indexes

● Query builder interface - 4
○ There are a set of query build APIs , although there is no currently22

defined user interface
● Dataset evaluation by SHACL (SHape Constraint Language), ShEX (Shape

EXpressions), or similar - 5
○ Jena supports both SHACL and ShEX23 24

QLever

The QLever architecture is shown in Figure 3. Its design is easily identifiable by
examining its codebase on GitHub. The architecture uses a knowledge-base index25

supporting all the basic operations and enabling efficient query processing. The system
is explained in more detail in the paper, QLever: A Query Engine for Efficient
SPARQL+Text Search .26

To-date, QLever does not support federation or system update, although a design for
these features is proposed . For this reason, several of the criteria scores are set to “0”27

until an implementation can be tested.

27 https://github.com/ad-freiburg/qlever/wiki/QLever-support-for-SPARQL-1.1-Update
26 http://ad-publications.informatik.uni-freiburg.de/CIKM_qlever_BB_2017.pdf
25 https://github.com/ad-freiburg/qlever
24 https://jena.apache.org/documentation/shex/
23 https://jena.apache.org/documentation/shacl/
22 https://jena.apache.org/documentation/extras/querybuilder/index.html
21 https://arxiv.org/pdf/2102.06139.pdf
20 https://jena.apache.org/documentation/geosparql/geosparql-assembler

19

https://jena.apache.org/documentation/geosparql/
https://www.w3.org/TR/shacl/
https://shex.io/
https://github.com/ad-freiburg/qlever/wiki/QLever-support-for-SPARQL-1.1-Update
http://ad-publications.informatik.uni-freiburg.de/CIKM_qlever_BB_2017.pdf
https://github.com/ad-freiburg/qlever
https://jena.apache.org/documentation/shex/
https://jena.apache.org/documentation/shacl/
https://jena.apache.org/documentation/extras/querybuilder/index.html
https://arxiv.org/pdf/2102.06139.pdf
https://jena.apache.org/documentation/geosparql/geosparql-assembler

A SPARQL endpoint for Wikidata is available for testing at
https://qlever.cs.uni-freiburg.de/wikidata.

Figure 3. QLever Architecture

Below, each of the evaluation criteria are listed with QLever’s score (from Table 1) and a
short explanation. Note that the scoring is 0-5 (where 0 indicates no support and 5
indicates exceptional support).

● Scalability to 25B+ triples - 5
○ As shown at the testing endpoint noted above, the infrastructure currently

supports loading 16.7B triples and is expected to scale well beyond this
● Scalability to 10B+ triples - 5
● Full support for SPARQL 1.1 with minimal errors - 3 (best case 5)

○ QLever is compliant with SPARQL V1.1 functionality but remains to be
fully tested. This work is ongoing using the
https://www.w3.org/2009/sparql/docs/tests/ suite .28

○ Until this work is complete, the assigned score is 3
● Federated query - 0 (best case 5)

○ Design is described in footnote 27 which discusses SPARQL Update
support. That solution also provides an ability to support results from a
federated query.

28 https://github.com/ad-freiburg/qlever/discussions/620

20

https://qlever.cs.uni-freiburg.de/wikidata
https://www.w3.org/2009/sparql/docs/tests/
https://github.com/ad-freiburg/qlever/discussions/620

● Ability to define custom SPARQL functions - 2
○ Custom functions can be added as described on the GitHub repository

Discussions page29

○ Since this approach involves modifying QLever directly (versus using an
extension point), the assigned score is 2

● Ability to tune/define indexes and perform greater-than/less-than checking - 5
○ RDF triples are indexed in all possible ways - SPO, SOP, PSO, POS,

OSP, OPS
○ For some query environments, two permutations (PSO and POS) may be

sufficient and will reduce indexing time and storage. The impact is poor
performance for variable (as opposed to bound) predicates.

○ Efficient range lookups are enabled since each literal has a unique ID, the
literals are split into groups based on their data type, and each group has
an interval of IDs which do not overlap and are in lexicographical, numeric
or chronological order30

● Support for R/W at high frequency - 0 (best case 5)
○ Query support is exceptional, but there is no current support for SPARQL

Update
○ A design for Update is referenced in footnote 27

● Active open-source community - 4
○ QLever’s open-source code is stored at

https://github.com/ad-freiburg/qlever, licensed under the Apache V2
License and written in C++

○ There are 15 contributors with recent commits in March 2022
○ At present, the contributors are all associated with the University of

Freiburg
● Well-designed and documented code base - 5
● Instrumentation for data store and query management - 2

○ Limited statistics are available as can be seen in the SPARQL endpoint at
https://qlever.cs.uni-freiburg.de/wikidata

○ In addition, arbitrary batches of queries can be evaluated as regards
aggregated statistics and details for individual queries31

○ No command line tooling exists
● Query plan explanation - 5

○ Query planning is explained in detail in the paper referenced in footnote
25

○ The QLever user interface provides an excellent query plan visualization
as can be seen in Figure 4 (the figure is provided since it is exceptional to
the interfaces provided by WDQS or the other alternatives)

31 See https://qlever.cs.uni-freiburg.de/evaluation/www/?res=wikidata.sensitive
30 https://github.com/ad-freiburg/qlever/wiki/QLever's-IDs-for-IRIs-and-literals,-internal-and-external-vocabulary

29 https://github.com/ad-freiburg/qlever/discussions/592

21

https://github.com/ad-freiburg/qlever
https://qlever.cs.uni-freiburg.de/wikidata
https://qlever.cs.uni-freiburg.de/evaluation/www/?res=wikidata.sensitive
https://github.com/ad-freiburg/qlever/wiki/QLever's-IDs-for-IRIs-and-literals,-internal-and-external-vocabulary
https://github.com/ad-freiburg/qlever/discussions/592

Figure 4. QLever Query Plan Explanation

● Query plan tuning/hints - 2
○ An evaluation strategy could be manually defined that executes a query

without optimization, or that performs customized optimizations or different
orderings of optimizations

○ No query hints are supported by text/keywords in the SPARQL query.
These could be managed by a WDQS front-end that invokes different
query plans based on observing a predefined string or comment text in the
query.

22

● Query without authentication - 5
○ Access with no authentication can be seen on the Wikidata test page at

https://qlever.cs.uni-freiburg.de/wikidata
● Ability to prevent write access, except by the stream updater - 0 (best case 5)

○ Restricted access would have to be added when SPARQL Update
processing is added

● Data store reload in 2-3 days (worst case) - 5
○ The load time (to create the data indexes) is approximately 14 hours for

the current Wikidata RDF dump file32

● Query timeout and resource recovery - 4
○ Per-query timeout with the URL parameter "timeout", see

https://github.com/ad-freiburg/qlever/blob/master/src/engine/Server.cpp#L
327-L335

○ There are explicitly coded "exit points" at regular time intervals in all
time-intensive operations, which can easily be validated against a global
timeout value

● Support for geospatial (POINT) data - 5
○ Geospatial geometries are supported as documented in the paper, An

Efficient RDF Converter and SPARQL Endpoint for the Complete
OpenStreetMap Data33

● Support for GeoSPARQL - 2
○ Support for GeoSPARQL operations like ogc:contains exists, but uses

unique predicates, as described in the paper in the bullet above
● Support for named graphs (quads) - 0 (best case 5)
● Query builder interface - 5

○ An excellent UI is provided that has auto-complete capabilities exceeding
the current WDQS implementation

● Dataset evaluation by SHACL (SHape Constraint Language), ShEX (Shape
EXpressions), or similar - 0

RDF4J V4

The Eclipse RDF4J architecture is shown in Figure 5 . It is a modular Java framework34

for working with and querying RDF data. The architecture supports several native
stores, and in V4 (release date still TBD) includes a new database store, LMDB .35

LMDB is built on the Symas Lightning Memory-Mapped Database and has the36

potential to scale to billions of triples. To-date, the exact performance of this new
database has not been fully defined and will require further testing. For this reason,

36 https://www.symas.com/lmdb
35 https://rdf4j.org/documentation/programming/lmdb-store/

34 The RDF4J framework is described on the page, https://rdf4j.org/about/. The figure is captured from
that page.

33 https://ad-publications.cs.uni-freiburg.de/SIGSPATIAL_osm2rdf_BBKL_2021.pdf
32 https://github.com/ad-freiburg/qlever/commit/4d21db7e43f69779a91daf436ceb0a3f6ee9cd29

23

https://qlever.cs.uni-freiburg.de/wikidata
https://github.com/ad-freiburg/qlever/blob/master/src/engine/Server.cpp#L327-L335
https://github.com/ad-freiburg/qlever/blob/master/src/engine/Server.cpp#L327-L335
https://github.com/ad-freiburg/qlever/blob/master/src/engine/Server.cpp#L327-L335
https://www.w3.org/TR/shacl/
https://shex.io/
https://www.symas.com/lmdb
https://rdf4j.org/documentation/programming/lmdb-store/
https://rdf4j.org/about/
https://ad-publications.cs.uni-freiburg.de/SIGSPATIAL_osm2rdf_BBKL_2021.pdf
https://github.com/ad-freiburg/qlever/commit/4d21db7e43f69779a91daf436ceb0a3f6ee9cd29

several of the criteria scores are set to “2” or “3” until more details can be provided
and/or the evaluation testing is complete.

Figure 5. RDF4J Architecture

Below, each of the evaluation criteria are listed with RDF4J’s score (from Table 1) and a
short explanation. Note that the scoring is 0-5 (where 0 indicates no support and 5
indicates exceptional support).

● Scalability to 25B+ triples - 1
○ There is an expected footprint of around 120-130 bytes per quad for the

LMDB store, and each server should have sufficient RAM to hold the
complete data set (for optimal performance)37

○ For these reasons, scalability to 25B triples may be possible but is not
likely

● Scalability to 10B+ triples - 3 (best case 5)
○ The scoring is currently set to 3 until the RDF4J LMDB scalability can be

validated
● Full support for SPARQL 1.1 with minimal errors - 5

○ RDF4J is compliant with SPARQL V1.1 functionality as well as supporting
update functionality and transactions38

38 https://rdf4j.org/documentation/reference/rest-api/
37 https://github.com/eclipse/rdf4j/discussions/3706#discussioncomment-2285864

24

https://rdf4j.org/documentation/reference/rest-api/
https://github.com/eclipse/rdf4j/discussions/3706#discussioncomment-2285864

● Federated query - 5
○ SPARQL federated query is fully supported by RDF4J39

○ In addition, the open-source FedX solution was added to RDF4J in 2019.40

It provides “transparent federation of multiple SPARQL endpoints under a
single virtual endpoint. As an example, a knowledge graph such as
Wikidata can be queried in a federation with endpoints that are linked to
Wikidata as an integration hub. In a federated SPARQL query in FedX,
one no longer needs to explicitly address specific endpoints using
SERVICE clauses. Instead, FedX automatically selects relevant sources,
sends statement patterns to these sources for evaluation, and joins the
individual results.” Join processing is optimized.41

○ FedX capabilities could improve the usability of Wikidata’s white-listed
federated endpoints, as well as making the splitting of the Wikidata into
sub-graphs transparent

● Ability to define custom SPARQL functions - 5
○ RDF4J can be extended by adding custom functions42

○ Custom functions typically return a single value. Multiple values can be
returned by implementing a TupleFunction (instead of Function), adding
the function name to
META-INF/services/org.eclipse.rdf4j.query.algebra.evaluation.function.TupleFunction
and configuring the backend SAIL to use an ExtendedEvaluationStrategy
(instead of the default)43

● Ability to tune/define indexes and perform greater-than/less-than checking - 5
○ RDF4J allows the specification of indexes referencing 's', 'p', 'o' and 'c'

(where ‘c’ references the context or named graph)44

○ The default indexes are spoc and posc
○ Range lookups are supported by in the getTriplesUsingIndex function,

from the file referenced in footnote 44
● Support for R/W at high frequency - 3 (best case 5)

○ Performance of LMDB is expected to be good, but testing is needed to
understand the impacts of a large number of reads/writes

○ In addition, the current implementation is tracking two GitHub issues that
affect performance45

○ For these reasons, the current score is 3
● Active open-source community - 5

○ RDF4J’s open-source code is stored at https://github.com/eclipse/rdf4j,
licensed under the Eclipse Foundation (as a BSD 3-Clause license) and
written in Java

45 https://github.com/eclipse/rdf4j/issues/3534 and https://github.com/eclipse/rdf4j/issues/3574
44 https://github.com/eclipse/rdf4j/blob/develop/core/sail/lmdb/src/main/java/org/eclipse/rdf4j/sail/lmdb/TripleStore.java

43 https://groups.google.com/g/rdf4j-users/c/6t2bV473DvA
42 https://rdf4j.org/documentation/tutorials/custom-sparql-functions/
41 https://rdf4j.org/news/2019/10/15/fedx-joins-rdf4j/
40 https://github.com/VeritasOS/fedx/wiki/FedX-Short-Documentation

39 https://rdf4j.org/javadoc/3.4.3/org/eclipse/rdf4j/repository/sparql/federation/SPARQLFederatedService.html and
https://github.com/eclipse/rdf4j-storage/tree/master/federation/src/main/java/org/eclipse/rdf4j/sail/federation

25

https://github.com/eclipse/rdf4j
https://github.com/eclipse/rdf4j/issues/3534
https://github.com/eclipse/rdf4j/issues/3574
https://github.com/eclipse/rdf4j/blob/develop/core/sail/lmdb/src/main/java/org/eclipse/rdf4j/sail/lmdb/TripleStore.java
https://groups.google.com/g/rdf4j-users/c/6t2bV473DvA
https://rdf4j.org/documentation/tutorials/custom-sparql-functions/
https://rdf4j.org/news/2019/10/15/fedx-joins-rdf4j/
https://github.com/VeritasOS/fedx/wiki/FedX-Short-Documentation
https://rdf4j.org/javadoc/3.4.3/org/eclipse/rdf4j/repository/sparql/federation/SPARQLFederatedService.html
https://github.com/eclipse/rdf4j-storage/tree/master/federation/src/main/java/org/eclipse/rdf4j/sail/federation

○ There are 76 contributors with recent commits in March 2022 on both the
“main” and “develop” branches (the LMDB store is only available in the
“develop” branch)

● Well-designed and documented code base - 5
● Instrumentation for data store and query management - 446

○ RDF4J Console is a command-line application (.bat or .sh script) with
support for creating and using data stores, verifying RDF files and
executing queries

○ In addition, there is a web-based client UI, the RDF4J Workbench
● Query plan explanation - 3 (best case 5)

○ At this time, query explanations are an experimental feature but have
excellent functionality47

○ There are four levels of explanation - from “Unoptimized” (which parses
the query for errors) through “Timed” (which is a complete evaluation with
result set sizes and performance timings)

○ In addition, there is a visualization method (for example,
query.explain(Explanation.Level.Timed).toDot())

○ Support is only provided for local repositories. Explanations are not
available if using REST/HTTP access (see
https://github.com/eclipse/rdf4j/issues/2979).

○ It is unclear the extent of the support for LMDB, except for providing
cardinalities/counts

● Query plan tuning/hints - 3
○ An EvaluationStrategy could be manually defined that executes a query48

without optimization, or that performs customized optimizations or different
orderings of optimizations

○ The default optimization strategy is defined at
https://github.com/eclipse/rdf4j/blob/main/core/queryalgebra/evaluation/src
/main/java/org/eclipse/rdf4j/query/algebra/evaluation/impl/StandardQuery
OptimizerPipeline.java

○ No query hints are supported by text/keywords in the SPARQL query.
These could be managed by a WDQS front-end that invokes different
QueryOptimizerPipelines based on observing a predefined string or
comment text in the query.

● Query without authentication - 5
○ RDF4J is deployed to a servlet container (usually Tomcat) which initially

has no server roles defined49

○ Using a combination of URL patterns and HTTP methods (GET, POST,
PUT and DELETE), user roles can be restricted

49 https://rdf4j.org/documentation/tools/server-workbench/#access-rights-and-security

48

https://github.com/eclipse/rdf4j/blob/main/core/queryalgebra/evaluation/src/main/java/org/eclipse/rdf4j/que
ry/algebra/evaluation/EvaluationStrategy.java

47 https://rdf4j.org/documentation/programming/repository/#explaining-queries
46 https://rdf4j.org/documentation/tools/

26

https://github.com/eclipse/rdf4j/issues/2979
https://github.com/eclipse/rdf4j/blob/main/core/queryalgebra/evaluation/src/main/java/org/eclipse/rdf4j/query/algebra/evaluation/impl/StandardQueryOptimizerPipeline.java
https://github.com/eclipse/rdf4j/blob/main/core/queryalgebra/evaluation/src/main/java/org/eclipse/rdf4j/query/algebra/evaluation/impl/StandardQueryOptimizerPipeline.java
https://github.com/eclipse/rdf4j/blob/main/core/queryalgebra/evaluation/src/main/java/org/eclipse/rdf4j/query/algebra/evaluation/impl/StandardQueryOptimizerPipeline.java
https://rdf4j.org/documentation/tools/server-workbench/#access-rights-and-security
https://github.com/eclipse/rdf4j/blob/main/core/queryalgebra/evaluation/src/main/java/org/eclipse/rdf4j/query/algebra/evaluation/EvaluationStrategy.java
https://github.com/eclipse/rdf4j/blob/main/core/queryalgebra/evaluation/src/main/java/org/eclipse/rdf4j/query/algebra/evaluation/EvaluationStrategy.java
https://rdf4j.org/documentation/programming/repository/#explaining-queries
https://rdf4j.org/documentation/tools/

○ For Tomcat, roles are defined in the file, web.xml, in the
.../webapps/rdf4j-server/WEB-INF directory

○ In addition, there will be a spring-boot read-only SPARQL HTTP protocol
server in V4

● Ability to prevent write access, except by the stream updater - 5
○ As noted above, with the definition of appropriate user roles

● Data store reload in 2-3 days (worst case) - 3 (best case 5)
○ The LMDB store is designed to be performant, but load times need to be

tested
○ Hence, the score is currently set to 3

● Query timeout and resource recovery - 4
○ Timeouts are defined per query and there is no general/overriding setting

(it would be possible to update the code in AbstractOperation to provide50

an overriding, global timeout)
● Support for geospatial (POINT) data - 5

○ See the bullet below for GeoSPARQL support
● Support for GeoSPARQL - 4

○ RDF4J supports GeoSPARQL functions on top of data represented as
Well-Known Text (WKT) strings

○ Most of the non-topological, common, simple, Egenhofer and RCC8
GeoSPARQL functions are supported51

○ Per the paper, A GeoSPARQL Compliance Benchmark (referenced in
footnote 21), RDF4J’s implementation was 58.33% compliant

● Support for named graphs (quads) - 5
○ As noted in the bullet regarding indexes

● Query builder interface - 3
○ There is an ability to define queries using the SPARQLBuilder , although52

there is no currently defined user interface
● Dataset evaluation by SHACL (SHape Constraint Language), ShEX (Shape

EXpressions), or similar - 5
○ SHACL is supported53

53 https://rdf4j.org/documentation/programming/shacl/
52 https://rdf4j.org/documentation/tutorials/sparqlbuilder/
51 https://rdf4j.org/documentation/programming/geosparql/

50

https://github.com/eclipse/rdf4j/blob/75b97f6106e6a73776d7f0f663f18a3edfb0a4ae/core/query/src/main/j
ava/org/eclipse/rdf4j/query/impl/AbstractOperation.java#L20

27

https://www.w3.org/TR/shacl/
https://shex.io/
https://rdf4j.org/documentation/programming/shacl/
https://rdf4j.org/documentation/tutorials/sparqlbuilder/
https://rdf4j.org/documentation/programming/geosparql/
https://github.com/eclipse/rdf4j/blob/75b97f6106e6a73776d7f0f663f18a3edfb0a4ae/core/query/src/main/java/org/eclipse/rdf4j/query/impl/AbstractOperation.java#L20
https://github.com/eclipse/rdf4j/blob/75b97f6106e6a73776d7f0f663f18a3edfb0a4ae/core/query/src/main/java/org/eclipse/rdf4j/query/impl/AbstractOperation.java#L20

Virtuoso

Virtuoso’s OpenLink architecture is shown in Figure 6 . It is a modular framework for54

working with any type of data from relational databases, XML sources, APIs and RDF
triple definitions. The architecture uses an underlying relational store, converting triples
and SPARQL queries to a SQL format. It currently stores (and allows querying) of data
sizes of over 94B triples (e.g., the UniProt data which is accessible from a single55

server).56

A SPARQL endpoint for Wikidata is available for testing at
https://wikidata.demo.openlinksw.com/sparql/. (Note that the data currently loaded there
is from a March 2020 RDF dump, of size 11B+ triples.)

56 https://sparql.uniprot.org/sparql/
55 https://www.uniprot.org/

54 The Virtuoso architecture is described on the pages,
http://wikidata.dbpedia.org/openlink-software-%E2%80%94-virtuoso-universal-server and
http://docs.openlinksw.com/virtuoso/conceptarchitecture/. Figure 4 is captured from the first link.

28

https://wikidata.demo.openlinksw.com/sparql/
https://sparql.uniprot.org/sparql/
https://www.uniprot.org/
http://wikidata.dbpedia.org/openlink-software-%E2%80%94-virtuoso-universal-server
http://docs.openlinksw.com/virtuoso/conceptarchitecture/

Figure 6. Virtuoso Architecture

Below, each of the evaluation criteria are listed with Virtuoso’s score (from Table 1) and
a short explanation. Note that the scoring is 0-5 (where 0 indicates no support and 5
indicates exceptional support).

● Scalability to 25B+ triples - 5
○ As noted, Virtuoso has been shown to scale to over 94B triples

● Scalability to 10B+ triples - 5
● Full support for SPARQL 1.1 with minimal errors - 3

○ Examining the current GitHub issues for Virtuoso , 356 of the 557 current57

issues deal with SPARQL. However, some are about queries running
against Docker images or deal with data access issues. Examining the
first page of results, 5 of the 25 issues (a fifth) could be excluded as not

57 https://github.com/openlink/virtuoso-opensource/issues?q=is%3Aissue+is%3Aopen+SPARQL+

29

https://github.com/openlink/virtuoso-opensource/issues?q=is%3Aissue+is%3Aopen+SPARQL+

relevant to the Wikidata scenarios. Assuming a worst case of two-fifths not
relevant, that still leaves 38% of the open issues. The oldest SPARQL
issue that is still open appears to be from March 2012.

○ DotNetRDF.org reports : “Note that SPARQL Query and Update is subject58

to the peculiarities of the Virtuoso implementation which is well known for
having various quirks and non-standard SPARQL extensions.”

○ The complexity of converting from SPARQL to SQL can be seen in the
Virtuoso’s documentation on troubleshooting SPARQL queries :59

■ “A short SPARQL query can be compiled into a long SQL
statement, especially if data comes from many quad map patterns.
A moderately sized application with 50 tables and 10 columns per
table may create thousands of quad map patterns for subjects
spanning hundreds of different types ... Thus it is to be expected
that some queries will be rejected even if the same queries would
work fine if the RDF data were held as physical quads in default
storage, rather than synthesized through a Linked Data View.”

■ “SPARQL uses IRIs that are long and sometimes unreadable, but
there is no "closed world" schema of the data so a typo in an IRI is
not an error; it is simply some other IRI. So a typo in an IRI or in a
namespace prefix causes missing bindings of some triple patterns
of the query and an incomplete result, but usually no errors are
reported. A typo in a graph or predicate IRI may cause the SPARQL
compiler to generate code that accesses default (quad) storage
instead of a relational source or generate empty code that
accesses nothing.”

■ “The SQL compiler does not signal casting errors when it runs the
statement generated from SPARQL, because the generated SQL
code contains option (QUIETCAST) . This means that mismatches
between expected and actual data types of values stay invisible
and may cause rounding errors … and even empty joins ...”

59 http://docs.openlinksw.com/virtuoso/sparqldebug/
58 https://dotnetrdf.org/docs/stable/user_guide/Storage-Virtuoso.html

30

http://docs.openlinksw.com/virtuoso/sparqldebug/
https://dotnetrdf.org/docs/stable/user_guide/Storage-Virtuoso.html

● Federated query - 5
○ Per the Medium article, What is a Virtuoso SPARQL Endpoint, and why is

it important? , Virtuoso supports federated query60

○ In order to enable queries using the SERVICE keyword, appropriate
permissions must be given61

● Ability to define custom SPARQL functions - 4
○ Custom functions are written as SQL stored procedures62

○ Because the functions are not written in code, but as SQL statements, the
assigned score is 4

● Ability to tune/define indexes and perform greater-than/less-than checking - 4
○ Default RDF indexes are PSOG and POGS (which are full indexes over

quad data) and SP, OP and GS (which are partial indexes). This approach
favors queries where the predicate is specified (which is true for the
majority of the Wikidata queries).

○ Indexes are column-wise by default in V7, but due to the high write
frequencies required by the Wikidata stream updater, a column-store is
likely not viable (“One should not use column-wise storage in cases where
columns are frequently updated, especially if a single row is updated per
statement. This will give performance substantially worse than row-wise
storage.”)63

○ Alternate indexing schemes are possible but are discussed in the context64

of the column store, and require testing. For this reason, the assigned
score is 4.

○ Since range lookups are common in SQL, this function is supported as
part of the SPARQL to SQL translation

● Support for R/W at high frequency - 3
○ As noted in the “indexes” bullet, Virtuoso is tuned for bulk-load with high

frequency read, and not for read/write
○ Note that the SP, OP and GS (partial) indexes do not store duplicates

(e.g., for the GS index, a subject will have one entry, even if it has many
predicates) and entries in these indexes are not deleted. “[O]ver time,
especially if there are frequent updates and values do not repeat between
consecutive states, the SP, OP and GS indices will get polluted, which
may affect performance. Dropping and recreating the indexes will remedy
this situation.”

○ The Wikidata environment of high frequency reads/writes needs to be
tested. For this reason, the assigned score is 3.

64 http://docs.openlinksw.com/virtuoso/colstore/
63 http://docs.openlinksw.com/virtuoso/colstore/
62 http://docs.openlinksw.com/virtuoso/rdfsqlfromsparql/
61 https://community.openlinksw.com/t/enabling-sparql-1-1-federated-query-processing-in-virtuoso/2477
60 https://medium.com/virtuoso-blog/what-is-a-virtuoso-sparql-endpoint-and-why-is-it-important-5244df738a3e

31

http://docs.openlinksw.com/virtuoso/colstore/
http://docs.openlinksw.com/virtuoso/colstore/
http://docs.openlinksw.com/virtuoso/rdfsqlfromsparql/
https://community.openlinksw.com/t/enabling-sparql-1-1-federated-query-processing-in-virtuoso/2477
https://medium.com/virtuoso-blog/what-is-a-virtuoso-sparql-endpoint-and-why-is-it-important-5244df738a3e

● Active open-source community - 3
○ Virtuoso’s open-source code is stored at

https://github.com/openlink/virtuoso-opensource, licensed under the GNU
General Public License and written in C

○ There appear to be few active committers, although that is likely due to
Virtuoso’s development approach (Per the comment in the Virtuoso
GitHub issues : “‘[D]ue to the patterns of our development work, PRs65

against the VOS repos can rarely be applied directly or completely -- but
reproduction steps for any observable issues are always helpful, as are
pointers to and suggested fixes for specific bugs in the code, which do
help us resolve them in our internal codebase, and then apply those fixes
to the VOS ...”)

● Well-designed and documented code base - 2
○ Code is written in C and has a complex directory structure with many

features beyond RDF and SPARQL. Although these are valuable in
certain scenarios, they complicate the code base.

● Instrumentation for data store and query management - 4
○ There is a SQL command line interface (ISQL) with the ability to invoke66

numerous commands, including “status”67

○ In addition, the system can be administered from the Virtuoso Conductor68

browser interface, and tested/maintained through HTTP REST commands
or using stored procedures

● Query plan explanation - 2
○ Query plan explanations can be generated from the SPARQL Query Editor

interface (as can be seen at the test endpoint noted above) by selecting
the checkbox, “Generate SPARQL compilation report” (at the bottom of the
screen) and then clicking the “Explain Query” button. Sample output is
shown in Figure 7.

○ Alternately, explanations are generated using the ISQL command line
interface69

○ Due to the complexity of the SQL translation (a user will need to
understand both SPARQL and SQL), the assigned score is 2

69 http://docs.openlinksw.com/virtuoso/rdfperfcost/ and http://docs.openlinksw.com/virtuoso/fn_explain/
68 http://docs.openlinksw.com/virtuoso/conductorbar/
67 http://docs.openlinksw.com/virtuoso/fn_status/
66 http://docs.openlinksw.com/virtuoso/invokingisql/
65 https://github.com/openlink/virtuoso-opensource/issues/965

32

https://github.com/openlink/virtuoso-opensource
http://docs.openlinksw.com/virtuoso/rdfperfcost/
http://docs.openlinksw.com/virtuoso/fn_explain/
http://docs.openlinksw.com/virtuoso/conductorbar/
http://docs.openlinksw.com/virtuoso/fn_status/
http://docs.openlinksw.com/virtuoso/invokingisql/
https://github.com/openlink/virtuoso-opensource/issues/965

Figure 7. Virtuoso Query Explanation

● Query plan tuning/hints - 3
○ To override the query optimization order, an explicit instruction is added to

the beginning of the SPARQL query (i.e., DEFINE sql:select-option
"order")

33

○ Note that the effect of sql:select-option is “pervasive, extending inside
unions, optionals, subqueries etc.”70

● Query without authentication - 5
○ Access with no authentication can be seen on the Wikidata test page at

https://wikidata.demo.openlinksw.com/sparql/
● Ability to prevent write access, except by the stream updater - 5

○ SPARQL endpoint protection (for SPARQL_UPDATE) can be assigned
using WebID, OAuth or SQL accounts71

● Data store reload in 2-3 days (worst case) - 1
○ As documented , the latest-all-nt dump file must be downloaded and split72

into hundreds (or thousands) of smaller files to be efficiently bulk loaded73

(or smaller graph-specific files must be used, as will be the case for
Apache Jena or RDF4J loading)

○ After this step, the geospatial data must be split out and removed (which
takes additional time and appears to be what was done for the OpenLink
implementation) or Virtuoso must be patched (which may cause other74 75

problems in the future)
○ As reported by OpenLink , after the above processing, an 11B triple76

Wikidata dump (from March 2020) was loaded in 10 hours using 8 parallel
loaders

● Query timeout and resource recovery - 3
○ Query timeout can be globally defined, but cannot be set at the individual

query level (this is the main reason for the assigned score of 3)
○ It should be noted that in many Virtuoso environments, queries will return

results (not time out) due to a feature known as “anytime query”77

○ “Anytime query” returns partial, non-deterministic results if a query’s
execution or connection timeout is exceeded

○ Due to the non-deterministic nature of “anytime query”, it is unlikely to be
enabled for the Wikidata environment

● Support for geospatial (POINT) data - 5
○ See the bullet below for GeoSPARQL support

● Support for GeoSPARQL - 3
○ Virtuoso supports GeoSPARQL geometry functions on top of data that

must be represented as Well-Known Text (WKT) strings78

78 http://vos.openlinksw.com/owiki/wiki/VOS/VirtGeoSPARQLEnhancementDocs
77 http://docs.openlinksw.com/virtuoso/anytimequeries/
76 https://community.openlinksw.com/t/loading-wikidata-into-virtuoso-open-source-or-enterprise-edition/2717

75 Virtuoso non-terrestrial geo-literals bugfix,
https://github.com/asanchez75/virtuoso-opensource/commit/5d7b1b9b29e53cb8a25bed69f512a150f9f05d50

74 https://community.openlinksw.com/t/loading-full-wikidata-latest-ttl-dump-into-vos/1880
73 http://vos.openlinksw.com/owiki/wiki/VOS/VirtBulkRDFLoader

72 https://community.openlinksw.com/t/loading-wikidata-into-virtuoso-open-source-or-enterprise-edition/2717 and
https://stackoverflow.com/questions/56768463/wikidata-import-into-virtuoso

71 http://docs.openlinksw.com/virtuoso/sparqlendpointprotection/ and the following pages
70 http://docs.openlinksw.com/virtuoso/rdfperfcost/

34

https://wikidata.demo.openlinksw.com/sparql/
http://vos.openlinksw.com/owiki/wiki/VOS/VirtGeoSPARQLEnhancementDocs
http://docs.openlinksw.com/virtuoso/anytimequeries/
https://community.openlinksw.com/t/loading-wikidata-into-virtuoso-open-source-or-enterprise-edition/2717
https://github.com/asanchez75/virtuoso-opensource/commit/5d7b1b9b29e53cb8a25bed69f512a150f9f05d50
https://community.openlinksw.com/t/loading-full-wikidata-latest-ttl-dump-into-vos/1880
http://vos.openlinksw.com/owiki/wiki/VOS/VirtBulkRDFLoader
https://community.openlinksw.com/t/loading-wikidata-into-virtuoso-open-source-or-enterprise-edition/2717
https://stackoverflow.com/questions/56768463/wikidata-import-into-virtuoso
http://docs.openlinksw.com/virtuoso/sparqlendpointprotection/
http://docs.openlinksw.com/virtuoso/rdfperfcost/

○ Per the paper, A GeoSPARQL Compliance Benchmark (referenced in
footnote 21), Virtuoso’s implementation is 63.46% compliant

○ But, as noted in the data load bullet above, there is a bug in the
implementation regarding non-terrestrial coordinates that affects Wikidata

● Support for named graphs (quads) - 5
○ As noted in the bullet regarding indexes

● Query builder interface - 5
○ A “SPARQL Query Editor” interface exists and is currently exposed for

Wikidata testing at https://wikidata.demo.openlinksw.com/sparql/
○ In addition, an open-source Interactive SPARQL Query Builder interface79

(iSPARQL) exists
○ Note that there are no capabilities for autocomplete in either interface

● Dataset evaluation by SHACL (SHape Constraint Language), ShEX (Shape
EXpressions), or similar - 0

○ There is no support (or planned support) for SHACL or ShEX in the
open-source version of Virtuoso

○ In addition, something similar to RDF4J cannot be used “in front of”
Virtuoso (RDF4J does support SHACL) since Virtuoso’s RDF4J Provider
does not implement the interfaces required by RDF4J’s ShaclSail80

Other Data Stores

In the course of this work, many other possible Blazegraph alternatives were found. The
following list indicates the reason(s) why a possible solution was eliminated. Note that
none of the proprietary RDF/SPARQL solutions were considered since they did not
meet the mandatory criterion of being open-sourced.

● Open-source but early in development or for research purposes (not production):
○ gStore - Very incomplete SPARQL 1.1 implementation (no property paths,

limited FILTER support, ORDER BY only for single variable, some
characters such as tags, '<' and '>' not allowed); Some supporting
documentation only available in Chinese

○ OxiGraph - Early in development (Version 0.3); Targeted as embedded
store; Identified as "hobby project"

○ Wukong - Early in development (Version 0.2) with last code update Dec
2019

○ MillenniumDB - Very early in development; Missing ability to modify the
database, OPTIONAL functionality, support for dates and lists, FILTER
functionality, and more

80 https://github.com/openlink/virtuoso-opensource/issues/660

79 http://wikis.openlinksw.com/OATWikiWeb/InteractiveSparqlQueryBuilderOverview and
https://github.com/openlink/iSPARQL

35

https://wikidata.demo.openlinksw.com/sparql/
https://www.w3.org/TR/shacl/
https://shex.io/
https://github.com/pkumod/gStore
https://github.com/oxigraph/oxigraph
https://github.com/SJTU-IPADS/wukong
https://github.com/MillenniumDB/MillenniumDB
https://github.com/openlink/virtuoso-opensource/issues/660
http://wikis.openlinksw.com/OATWikiWeb/InteractiveSparqlQueryBuilderOverview
https://github.com/openlink/iSPARQL

● Open-source but no recent updates:
○ Apache Rya - No recent activity for this project and JIRA issues appear to

be languishing
● Open-source but no SPARQL support or problematic SPARQL infrastructure:

○ TerminusDB - No SPARQL support
○ LevelGraph - No SPARQL support
○ CM-Well - Non-native support for SPARQL requiring a separate load of

data to a Jena instance; No support for ASK, DESCRIBE
○ quadstore - Designed as a client-side store with local query support; No

SPARQL endpoint or support for federated query
○ SANSA-Stack - Incomplete SPARQL 1.1 support (no federated query, no

property paths, EXISTS/NOT EXISTS, IN/NOT IN, … functions not
supported); SPARQL support based on ontop to translate to SQL

○ Atomic Data Rust - No SPARQL support
○ DataCommons Mixer - Designed for GCP (Google Cloud Platform) and

GKE (Kubernetes); SPARQL support is limited to a simple query structure:
Prologue (prefixes), Select (variable name with DISTINCT), Where (an
array of triples of the form, subject-predicate-array of objects), Orderby
and Limit

● Open-source but unlikely to scale to billions of triples:
○ Corese - Expected to scale to 50M~100M triples per server
○ Parliament - Research implementation
○ LUPOSDATE - Research implementation

● Open-source but no backing store:
○ ontop - Also incomplete SPARQL support

● No development within last 2 years or more:
○ 4Store, AdaptRDF, Akutan, CliqueSquare, CumulusRDF, H2RDF, Halyard,

HBase-RDF, Jena-HBase, Mulgara, RDFDB, Redland/RedStore, Wukong,
…

WIKIDATA QUERY ARCHITECTURES

Due to the lack of distributed, open-source solutions, the Wikidata Query architecture
will remain based on a single engine/SPARQL server design, operating on commodity
hardware, within a load-balanced cluster. This also permits individuals and enterprises
to more easily host their own instances, in a cost-effective manner.

Note that it is possible to load the complete Wikidata graph into two of the alternative
engines (QLever and Virtuoso). For the other options (Apache Jena and RDF4J),
Wikidata will have to be split into at least 2 graphs, each of which are loaded into a
different server instance. The latter will then require that SPARQL queries (that need
access to the complete Wikidata graph) will have to be addressed to one of the servers,
with a SERVICE clause federating the data from the other.

36

https://github.com/apache/rya
https://github.com/terminusdb/terminusdb
https://github.com/levelgraph/levelgraph
https://github.com/CM-Well/CM-Well
https://github.com/beautifulinteractions/node-quadstore
https://github.com/SANSA-Stack/SANSA-Stack
https://github.com/ontop/ontop
https://github.com/joepio/atomic-data-rust
https://github.com/datacommonsorg/mixer
https://github.com/Wimmics/corese
https://github.com/SemWebCentral/parliament
https://github.com/luposdate/luposdate
https://github.com/ontop/ontop

These implications and how the alternative infrastructures will be tested and exercised
are briefly discussed in the next section.

NEXT STEPS

There are several important tasks that must be completed before finally selecting a
Blazegraph alternative. These are to:

● Determine how to support the current local SERVICE functions (labeling,
geospatial calculations, etc.) in a more SPARQL-compliant manner

○ And then assessing the complexity of implementing these on the different
engines

● Define a set of update and query workloads that exercise the engines and
SPARQL endpoints

● Determine a set of optimal tuning parameters and indexes utilizing the details
and results of the workload tests

● Define and test different algorithms for splitting the Wikidata graph, understand
how the update and query workloads would change, and the implications for the
RDF stream updater

● Investigate creation of a middleware layer (between the RDF store/SPARQL
endpoint and users/applications) to remove dependencies on a specific
implementation and reduce churn in potential, future migrations

This work has already begun and the community will be updated as new work products
become available.

37

