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Editorial
In the thirty-third edition of Eureka the editors, all

Churchill men, wrote that Eureka had "lost almost all its

bias towards Cambridge". This was only the start of a trend

which was ultimately to result in the introduction of such

new-fangled devices as computers for the production of the

magazine. The present editors, however, both Johnians,

have sought to revive the old values and once again instil

the spirit of Cambridge into Eureka: all the articles this

year have been written by people who have studied at

Cambridge.

We would like to thank the following for their help with

Eureka: the Cambridge Pure and Applied Mathematics Departments

for their cooperation; Mrs. Lori Relizani and Mrs. Robin Bringans

for typing the manuscript; B. Heydecker and R. Taylor for

photographs; O. L. C. Toller and J. Gilby for illustrations;

J. Mestel and J. Rickard for problems; and A. N. S. Freeling,

N. D. Hooker, M. R. Kipling and the Dragon for their helpful

suggestions.
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We regret that, due to continually rising printing costs,

future subscriptions will only entitle subscribers to receive

copies post free; they will not be entitled to receive copies

at below the normal sale price, as has been the case in the

past. This will not affect present subscribers until their

subscriptions run out.

Cheques, etc., should be made payable to The Archimedeans ,

"Eureka", and sent to:

The Business Manager, "Eureka",

The Arts School,
Bene't Street,
Cambridge,
CB2 3PY
England.



Infinite-Dimensional

Vector Spaces !

by Professor J.R.Ringrose

l. Finite systems of linear equations
A simple but important problem, which motivates much of
the elementary theory of finite-dimensional vector spaces,
is that of analysing a system of finitely many linear
equations in finitely many unknowns. Even though this
material is probably familiar to most readers, I shall
say a little about it, becasue it leads naturally
towards some of the questions considered later in this
article. It will be sufficient to consider "square®
systems

a44%] + a) +- secat Ainkn = by ’

a51%] + Ax oX> * csset AonXn = bo ’ (1)

5171 * “ago * s*28* Sonn ~ Dy
in which there are n equations involving n unknowns,
Xjrecer Xe I shall suppose that the given coeffi-
Clients, a;+4,b., are complex numbers, and that Xp reve eX,
are to taka complex values.

Let € denote the complex field, and let c" denote
the vector space consisting of all n-tuples c = (Cy re 0C,)
of complex numbers; although, for typographical

convenience, such n-tuples are written as rows, I shall
in fact treat them as columns, that is n x 1 matrices.
Associated with the n x n matrix A = [aj], there is
a linear operator T, from € into dC , detined by
T, (c) = Ac. The system (1) can be rewritten in the
form T, (x) = b . (1')

where b is given element of € and x is to be found
in © . We can now make use of the following theorem
from elementary linear algebra.

THE "ALTERNATIVE" THEOREM. If T is a linear
operator from a finite-dimensional vector space V into
itself, then either -1

(a) T has an inverse operator T
or (b) the range {T(v): veV} of T is not the whole

of V, and the null-space {ve V: T(v) = 0}
contains non-zero vectors.

If T, has an inverse then, for every choice_of b, the

equation (1') has a unique solution, x = T,1(b).
When T, has no inverse, then either b lies outside the

range of T, (in which case there is no solution x of

 

  

 

 



(1" )) or b lies in the range of TA (in which case
(1') has a solution x and in fact has infinitely
many solutions, each Qntained by adding to Xp 4
vector in the null-space of T,).

From the preceding paragraph it follows that,

for the system (1), there are two main possibilities.
In the "good" case, for every choice of b peee rd
there is a unique solution x,,...,x.. In’ the "Dada"
case, there is either no solution at all, or an
infinity of different solutions, depending on the

values of b,,...,b.. I imagine that most readers
will be awate that"the first possibility occurs when
the determinant detA is non-zero, the second when

det A = 0.
Of course, it is possible to analyse. a systemof

the type (1) without using either vector space theory
or determinants. Observe that, by applying certain
“elementary row operations" to such a system, we
obtainanother system which has exactly the same
solutions as the first one. The operations to which
I refer are

(i) the interchange of two equations,
(ii) multiplication of an equation by a non-zero

constant,

(iii) addition, to one equation, of a multiple of
another one.

It is not difficult to verify that, after applying a
finite number of such operations, and then renumbering
(that is, changing the order of) the unknowns x,,...,x
the original system (1) can be replaced by an equivalent
system, having the “reduced" form

1 (ky) + Kyox, + ky 3xX3 + eee tkyXe t Kin?) = ¥1
E, (x, + k53%3 + eee tk1X1 + Kon*n ) = Y>

e e e eo e e e e e e e e e e - «* e e e e e (2)

Ena1 *p-1 + Kn-1n*n? ~ Yyn-1

en*n ~ Yn
in which (for some integer r such that O<r<n)

€. =1l(lsis<r), ¢€, = O(r<i<n).
If r=n, then c«. is l, and it is easy to calculate

Xp pee e eX (in that order), by using the equations
of the dystem t2) in reverse order; in this way we
obtain a unique solution to the system.
If r<n, then C4. Evga = ore = ED = O, and the system
as no solution if any One of the Given complex numbers

Yre1’ Yr$Qrrcee%p is non-zero;if,_

—~ ees ™ = 0

then x tthe ni?be chosen™~arbltrartly, and we can
then obtdin unique values for Kp eXpiprese eX by using
the first r equations of the syste (2), in reverse
order. The "good" case occurs when r = n, the "bad" poe



case when r <n.
In the "good" case in which each ec, is l, there

is a different method of solving the system (2); and

although it is clumsy in the present context, it
suggests a useful approach to one of the infinite-
dimensional problems discussed below. The matrix of
the system (2) (in the "good" case) is I+ kK, where
I_ denotes the n x n identity matrix and K is the
n’x n matrix which has the given coefficients k
above the main diagonal, and has zero in each elitry
on or below that diagonal. The system (2) can be
replaced by the equation '

x + T,(x) = y (2)
where y is“a given element of c”, and x is to be .
found in ¢", Elementary calculation shows that K*has
zero in each entry on, below, or just one stepabove
the main diagonal, K* has zero in each entry on,
below, or at most two steps above the main diagonal,
and so on. In particular, by proceeding in this way
we can show that K™ = O, and from this it follows that
the operator T,, satisfies T? = 0.

K K

If y is a given element of c" , we can rewrite (2°)

an Lhe fory =y- Ty. (xX), and iteration yields

xX =y- Tyly - Ty (4)) = y - Ty) + Te (x)

Y~ Ty(y) + Thly - Ty(xX)) = y - Tyly) + Thy) - TREX)
= sey - Tyly)t Thy) teee. t(-1) Pian d ey) +(-1) "Te (x).

 

Since Te. = 0, this shows that the only possible solution
x of (2) is given by n-ln-1

X= y - Tyly)+ TRly)- oe (-1) OTE Cy)? (3)

and (again using the fact that T? = 0), it is imme-
diately verified that this vector x does indéed satisfy
(2'). Accordingly, for each y in€", (2') has a unique
solution x, which is given by (3).

2. Infinitesystems of linear equations

Having set the scene in finite dimensions, I shall
now turn to some infinite-dimensional analogues of the
problems considered above. Perhaps the most obvious
thingto try first is a system

521 as 4%, = b, (i = 1,2,3,...) (4)

of infinitely many linear equations in infinitely many
unknowns. To deal with such a system by vector space
methods, it will be necessary to fiance c@ by another

Space, in which each vector c = y+) has }
infinitely many coordinates. It " not quite clear
how this should be done, but since we want the series
in (4) to converge, we are likely to need some

restriction on the coordinates c,. In Section 4 below, |
we give some examples of vector spaces which might be

4
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used for this purpose.

One example will suffice to show that the simple

alternative noted above for finite systems, with a

"good" case and a "bad" case, does not apply to

infinite systems. Consider the system

xy + Xo + X3 + X4 + eoot Xn + Xn+] + «2 = Yy

Xo + X3 + X4 + ceet Xn + X41 + .. = Y5

e e e e e e e e e e e ° e e e e e (5)

*h ? xn+l Fee = Yn

This is an infinite-dimensional analogue of the most

straightforward of the finite systems considered

above, the reduced system (2) in the "good case" where

each «. is l. For even greater simplicity, we have

taken Sach coefficient kj, to be l.

Neither of the methoas , used above to solve (2),

can be applied to the system (5); for example, we

cannot start with the last equation (and work back

from there) because there isn't one. However, an

easy procedure is available. Upon subtracting from

each equation the one that follows it, we deduce that

x, = ¥, ~ Yoe Xo ~ ¥2 7 Yzrcee%YnYnsile*! (6)

and (apparently) obtain a unique solution. If you

believe this, you will obtain interesting conclusions

by looking at particular cases; for example, try

Y, =Y5 = eee = 1, OF Y] = 1iY5 = 2,Y. = 3eeee

This should convince you that, for this system, we

have one feature of the "good" case (when there is a

solution, it is unique), but also one feature of the

"bad" case (for certain choices of YyrYoreees there

is no solution).

In fact, it is easy to show that (5) has a

solution (then necessarily given by (6)) if and only

if lim y, = 0. This emphasizes something which is

already implicit in the occurrence of infinite series

in (5); the problem is no longer purely algebraic, since

some of the concepts of analysis are now required.

Although it is no longer an area of major research

activity, there is an extensive theory of infinite

systems of linear equations. I cannot conclude this

section without mentioning the book [2] by F.Riesz;

it is worth a trip to the library, even if you don't

get beyond the historical remarks made in the preface.

3. Linear integral equations

We turn now to a second subject, which can

reasonably be viewed as an infinite-dimensional

analogue of the topic discussed in Section 1. In the

system
a..x. =b., (i = ly «say 1) (1)



we replace the finite sequences x peeeyX and b peeeb
by functions x(s) and b(s) of a céntinuols variable, ”
O< s < 1, and the coefficients a,. by a function a(s,t).
If we recall also that an integral~can be viewed as
the limit of certain (finite) approximating sums, it
is natural to replace the sums in (1) by integrals.
In this way we arrive at the equation

1
a(s,t)x(t)dt = b(s) (O < s s 1) (7)

It does not change the nature of the system (1) if
the diagonal coefficient a.. is replaced by 1 + a, _ 9
for each i = 1l,...-,n. Wit this modification to™?*
(1), the above process of analogy leads to an equation

x(s) + [7 a(s,t)x(t)dt = b(s) (O< s <1) (8)
O

When the same process is applied to the reduced system
(2), in the "good" case where each es is l, we arrive
at the equatkson

x(s) + | k(s,t)x(t)dt = y(s) (O < s s l) (9)

The three equations (7),(8) and (9) are examples of
linear integral equations; the functions a(s,t),b(s),
k(s,t), y(s) are given, and the function x(s) is to
be found. Of course, one requires some restriction,
such as continuity, on all these functions, to ensure
the existence of the integrals on the left hand sides.
“equations such as (7) and (8) are described as
Fredholm integral equations (of the first type and
second type, respectively); those such as (9), in
which the range of integration has the variable limit
S, are described as Volterra integral equations.

In order to treat such equations by vector space
methods, we shall need to u®a space in which a
"vector" is a function c(s) (O< s < 1). Our infinite-
dimensional problems have moved much further towards
analysis, rather than algebra. By now, however, it is
time to look at the kind of vector spaces we need.

 

4. Banach spaces
Suppose that X is a vector space, with complex

scalars. By a norm on X we mean a function which
assigns, to each vector x in X, a real number denoted
by |x|], in such a way that

(i) |x] =0, Fe = O if and only if x = 0;
(44) fjox|] = Jo} bx |

(iii) |Jxty] < ix+Wil (The triangle inequality);
whenever x,y eX and ce. These three properties are
analogous to those of the modulus function for complex
numbers. By means of a norm on X, we can introduce

various concepts of mathematical analyses for elements

of X. Suppose, for example, that x, X0 Xoreeee Se¥ye
Yor see€ X, and Ss, = Yq + as * Yn° We say that the

 

   

   



-sequence (x_) converges to x if |x,_-x|| + O as n + @;
the series ZYy converges to s if the sequence of
partial sums, (Ss y, converges to s. A mapping f,
from X into X, is continuous Lt (£(x,)) converges
to £(x) whenever (x) converges to x. A subset Y of
X is closed if it contains all its limit points.
Many familiar results from elementary analysis extend
at once to this context; for example, "limit of sum =
sum of limits", "if a series converges, the terms tend
to O". In order to develop a really worthwhile theory,

we need one more assumption:
(iv) If x), X5,---€ X and |x|| < »,the series
ux, converges to an element 2 of X.

By a Banach space we mean a complex vector space with
a norm which satisfies (iv) (as well as (i), (ii),
(iii)). Experts will notice that (iv), although
differing from the usual form of the completeness

axiom, is nevertheless equivalent to it.
The vector space €" becomes a Banach space if the

norm of a vector c = (Cypeee rc, ) is defined in any one
of the following ways:

(a) ¢ = max{|c,|, ale seeer [el [}i

tb) leyl ¢ Legh tees # Legh
(jc) [|c, |? + |c, 2 + Leto,233

In each case, the above properties (i) and (ii) of
morms are apparent; and (iv) follows from the fact

that absolute convergence implies convergence, for a
series of complex numbers. The triangle inequality is
apparent in cases (a) and (b), and reduces to a
classical inequality in case (c).

The following examples are nore interesting,
although the verification of the axioms, especially (iv),

requires more effort in some cases; I omit the details,
and suggest that you do too, unless you are feeling
especially enthusiastic.

EXAMPLE A het Xi be the set of all bounded
sequences c = rt of complex numbers. Given two
such sequences 1ani ane a complex number a, defaye

ct+td= (cy+d pees), AC = (ac, yasa)
Then X, is a comp 14x Shs space,and is 1s Bafach

space when the norm is defined by |c]| = sup|c. |.

EXAMPLE ae Let X. be the set of all complex
sequences c = 1Cyyee) Such that I|c | < . Just as
in Examplel, ents 2Set becomes a complex vector space.
lel a panes space when the norm is defined by

Cc = tic |.
n

EXAMPLE 3. Let X, be the set of all complex

sequences c = (c),Cj,...) such that E|c_|?#< ©, Just as
in the previous examples, this set becomes a vector space.

1
a il



It is a Banach space when the norm is defined by

Icll = Cz]c,|71%.
These three examples can be viewed as infinite-

dimensional analogues of €™ (with the three norms
considered in (a), (b), (c) above). Each of them might

be useful in considering suitable problems about
infinite systems of linear equations. For linear
integral equations, the next two examples are

appropriate.
EXAMPLE 4. Let X, be the set of all complex-

valued functions x(s), defined and continuous on the
interval O < s < 1. With the obvious definitions for
sums and complex multiples of such functions, X, is
a complex vector space. It is a Banach space when the
norm is defined by

|x|] = sup [x(s)| .
Oss<l

[In fact, convergence in this space is “uniform
convergence on the interval O<s <1", and axiom (iv)
is the "Weierstrass M-test" for uniform convergence
of infinite series of functions. ]

A complete understanding of the next (and last)
example requires a knowledge of Lebesgue integration;
but if you don't have this, you will come to little
harm by ignoring the word you don't understand.

EXAMPLE 5. Let X, be the set of all complex-
valued functions x(s)} defined and measurable on the
interval O<s<1l. and such that

|x(s)|?ds <o,

Then X. is a complex vector space, and becomes a Banach
Space when the norm is defined by

|x] = C[E Lets) |? ds]* .
O

Among the examples mentioned above, X,. and X, are

probably the most important. Although they look Very
different at first sight, it can be shown that they are
“essentially the same"; by this I mean that there is a
one to one linear mapping U, from X,. onto X,, such that
U(x) |] = |x| for each x in x,. Both X, and X, are

examples of the simplest type of infinite-dimensional
Banach spaces, namely Hilbert spaces.

In Section 1, we used an iterative process to
obtain the solution of (2') in the form (3). The
following theorem shows that, under certain conditions,
a similar process can be-.used in Banach spaces.

THEOREM Suppose that T is a continuous linear
operator from a Banach space X into itself, and, for
each x in X, the series £* ||T"(x) || converges. Then,
given any y in X, the equStion

x + T(x) = y (10)
has a unique solution x in X, given by
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x =y- T(y) + T2(y) -— Telly) + oe. (11)

Proof Since 26 J(-2) Pr" (y) |] = role" (y) | < 2, at

follows that the series in (11) converges(and hence,

™(y) +O as n+) for each y in X. If we define

Xo in X by

then
Xy =y - Tly) + Ty) ~ Tey) + eee s

TX =Tly) - T2(y) + T3(y) - oe.

= Y" X%?

so x, satisfies (10).

Conversely, if x is any solution of (10), an

iterative procedure (similar to the one used to

obtain the solution of (2') in the form (3) shows that

x = y-T(y)+T?(y) - weet (a2) tet yy 4 (-1) PE? (x),

for n=1, 2, eee? when n > ©, tT? (x) > O, and thus

x =y - Tly) + T?(y) - «6. = Xp
Accordingly, (10) has a unique solution x in X, given

by (11).
We now use the above theorem to sketch a proof that,

when the functions k(s,t) and y(s) are continuous, there

is a unique continuous function x(s) which satisfies

the Volterra integral equation (9). Of course, this

is what one might have hoped for, since (9) was obtained

by analogy from the reduced system (2) (in the "good"

case), which always has a unique solution.
For X we use the Banach space X, described above;

so our vectors are’continuous complex-valued functions

x(s) defined on the interval O<s<l. Given such a
function x, we can define another, Tx, by the equation

1
(Tx) (s) = | k(s,t)x(t)dt (O<s<1l). (12)

O '

It is easy to check that T is a linear operator from
X into X. We shall write T"x, rather than T”(x) as
hitherto, to avoid excessive proliferation of brackets.
The integral equation (9) can now be written in the .

form x + TX = y;3 we shall establish the existence of

of a unique solution by showing that T satisfies the

conditions set out in the above theorem.
Let M be a constant such that |k(s,t)] < M for all

s,t. Upon replacing x by T?®x in (12), we obtain

(pOthy) (s) k(s,t) (Tx) (t)dt, and therefore
s
1

| |k(s,t)| |[T°x) (t) Jat
Ss

(petty) (s) IA

“ n<M | | (Tx) (t) |dt.

From this, it is easyto check (by induction on n) that



- jl -

 
n

\(t™x) (s)| < Mi (1-8) dixll (9 < s <1; n 0,1,2,..-) (13)
when n = 0, the required inequality |x(s) | || x|| 4s
apparent, since ||x|| is defined as sup]|x(s){ .

By taking the suprema of both sides of (13) for
0 < s < 1, we obtain

rel] < bbell= ’

1
A

in particular, ||Tx|| < M||x|| . From this, it is apparent
that = ||T™x|| < ©, whenever x6 X. Moreover T is
continuous; for if (x,) converges to x, we have

tx, - Txl] = [T(x - x) [| <MIlx, - xi +0,
and therefore (Tx,) converges to Tx. Accordingly, we
have verified that T satisfies the conditions required
in the above theorem; amias already noted, this
suffices to prove the existence of a unique solution to the
Volterra integral equation (9).

The Fredholm integral equation (8) (with all
functions again continuous) can be considered in much
the same way. We again use the Banach space Xy4, and
define a continuous linear operator by

1
(Tx) (s) = | a(s,t)x(t)dt (O<s <1). (14)

0
With minor modifications, the method used above for (9)
can be applied here also, to prove the existence of a unique
solution of (8), provided there is a constant M such that
la(s,t)| <M < 1, for all s and t. Without the conditon
M < 1, the method fails (and indeed, (8) may have no
solution).

In this section, I have tried to show that Banach
spaces and continuous linear operators arise naturally,
and are relevant to certain classical problems. The
examples I have chosen, involving linear integral equations
are among the earliest and the easiest. There are many
more recent, and more sophisticated applications, for
example in the theory of partial differential equations.

ae Some problems, great and small
Section 1 includes the Alternative Theorem, for alinear

Qperatoracting on a finite-dimensional vector space. Does

it apply also to every continuous linear operator acting
on a Banach space? It does not: In the Banach space X4
(continuous functions) we can define a continuous linear
M by the equatton

M(x) (s) = sx(s) (0 <s <1).
It is easy to check that the null space of M consists of
the zero function only; but M has no inverse, since (Mx) (0)
= 0 for each x, and thus the range of M does not contain
all continuous functions.

When a(s,t) is a continuous function, equation (14)
defines a continuous linear operator T on the Banach space
X4.- It can be shown that the Alternative Theorem applies
to the operator I + T, but not (in general) to T itself.’
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This is good for the integral equation (8), but not so
good for (7).

A linear operator acting on a finite-dimensional
complex vector space always has an eigenvector. However,
this result does not extend to continuous linear operators
acting on Banach spaces; for example, it is not difficult
to show that the operator M, defined above, has no eigen-
vector.

If T is a linear operator, acting on a complex vector
space X of finite dimension n(>1l), there is a subspace L
of X such that {0} # L # X and Tx«€L whenever xeL (why?).
Does the result apply in an infinite-dimensional Banach
space X, if we assume that T is continuous, and require L
to be closed? This problem is much harder than the earlier
ones. There is an example (as yet unpublished), due to
the Scandinavian mathematician P. Enflo, which shows that in
general the answer is negative. In the case of Hilbert
Space operators, the question remains a well known unsolved
problem - the "invariant subspace problem".

Every finite-dimensional vector space has a basis. In
an infinite-dimensional Banach space X, it seems reasonable
to define a basis as a sequence e],e2,... in X, with the
following property: each x in X can be represented uniquely
as the sum of a convergent series 2cney, in which c 1rCQe0-
are scadars. (Such a basis is called a Schauder basis. )
Does every Banach space have a basis?

One has to confine attention to Banach spaces which are

 

separable (which means "not too big", in a certain sense).
This "basis problem" was recently solved (in the negative),
again by P. Enflo [1] , having been first posed over forty
years earlier. All the particular Banach spaces described
in Section 4 have bases, except X,; which is not separable,
but the proof is none too easy in the case of Xq.

Banach spaces provide the right setting in which to
consider a variety of problems. The theory of such spaces
includes many deep and powerful theorems, and many hard
unsolved problems.
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The Archimedeans
by Roger Dix, President 1976-1977

The last two years have seen a generally successful
attempt by the canmittees involved to blend serious
mathematical discussion with events of a more informal
nature.

The 1975/6 programme of evening talks included Professor
John Taylor of King's College, London who believed in
"spoon-bending' (Science and ESP); Professor E. C. Zeeman of
Warwick University who believed that the Greeks were
mathematically ahead of their time (The lost group theory of
Eudoxus); and Mr. G. E. Perry of Kettering Grammar School who
believed that something Red up there is watching us (The
Soviet Space Programme).

Four Lunch meetings were held each term and were
reasonably well attended. The Invariants were defeated in the
problems drive and a tape recording of the President (Hilary
Stark) opened the games afternoon on our visit to Oxford. The
perennial pre- and post-examination events were enjoyed by
all who attended; the ramble following the Roman road to
Hildersham on a scorching pre-drought day and then, at
closing time, wending its way somewhat stochastically back
to Cambridge.

In 1976/7, the evening speakers had a varied reception.
A small but enthusiastic crowd gathered for the more serious
talks such as the one on the race to find simple groups of
large order (The search for simplicity) given by
Dr. P. M. Neumann of the Queen's College, Oxford; whereas more
general lectures, such as the one on peculiarities of
perception (Visual space) given by Professor Richard Gregory
of Bristol University, were better attended. The meeting
most well remembered, however, must have been the one
addressed by Mr. G. Spencer-Brown on "A Proof of the Four Colour
Theorem". Unfortunately, the minutes secretary was unable to
follow what was said, as were the rest of the audience, so no
record of this 'proof' is available. Room A of the Arts
School was filled to capacity with latecomers having to
stand - a record?

At the first lunch meeting, addressed by Dr. Reid, we were
unfortunately unable to serve food but we were back to normal
at the second meeting, when Dr. Conway spake on "Formulae for 7
and other things", and for the six other meetings.

On November 26th 1976, the Society held its Triennial
Dinner in the Old Kitchens, Trinity College. We were
honoured to have as guests Drs. J. C. Burkill, H. Burkill and
K. Moffatt. A most enjoyable time was had by the seventy or
so members and their friends who attended.

It was sad to note the demise of both the Bridge Group
and the Puzzles and Games Ring during the year: the continual   
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growth of new 'games' societies in Cambridge has taken its

toll at last. The Bookshop and Computer Group continued to

operate smoothly.

Unfortunately, we lost the Problems Drive, probably for

the first time in its history (although the wooden spoon

still went to an Oxford pair:!), and so we are now more

determined than ever to regain the ashes of the pencils and

Paper burned that sad evening when we visit Oxford next year.

We were pleased to welcome a group of about thirty maths/

physics students from Utrecht State University to Cambridge
and, together with CUPS, to give them a guided tour of the

colleges, followed by a reception and dinner in Trinity

College Hall, finishing up in a local pub, or the computer

lab. according to taste.
Some of the summer events were marred by bad weather and

the new president defied aquatic tradition by not entering

the Cam, nay, not even entering a punt, on the trip to

Grantchester. He had, however, been immersed several times

during the punt jousting and claimed that this was sufficient,

though of course not really necessary:

| Our thanks are due to all the members of the committee
over these two years, to the college representatives, to
members who have lent a hand at some time or other and
especially to the two secretaries, Dave Peters (who, due to

a disagreement with the Part IB examiners, is no longer with

us) and Mike Kipling.

The Disappointing Mean Circle
by J. J. Hitchcock

It can easily be shown that an ellipse with semi-major

axis a and semi-minor axis b has perimeter

P= [2%)n"cos*e + b*sin“e de ;

r| 2
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this equals 4aE(m), where E is the complete elliptic integral
of the second kind, and the parameter m is the squareof the

eccentricity, i.e.



~~ 1G os

2 2
m==)

According to all the books (e.g. [1] ) E(m) cannot be expressed
in terms of elementary functions; but it can be expanded asa
power series which gives

_ ~m_3,2 5,3 #175 4 |

This article is about finding a simple approximation to
P by taking the circumference of a circle with radius equal
to some mean of a and b.

The obvious answer is 21(a + b)/2, while Spiegel [2

suggests using a root-mean-square radius, 21V(a +b") /2.
To find the "best" solution, consider the generalised mean

p Py
27 (2tbyp

Expressing this in terms of a and m, and expanding using the
binomial theorem gives

2Ta (1 - It - BP)n? = gee)

The first two terms are exact, so let (3-p)/32 = 63/64.
This makes p = 14. The next term in the series is found to

- GP)n3, and substituting 14 for p gives - seem,

which surprisingly is also exact.
When I discovered this, I set about calculating the next

coefficient, and when oe minutes later I found that it
-176 4 “175

was yé3e84™ (and not T6384"4) I felt that there must

have been a mistake in my arithmetic. Unfortunately there
wasn't.

Aeceptdine that it is an approximation, how good is it?
As I have only calculated the next two coefficients (they are
correct to within 4%), consider two "practical" examples:

Let a = 6378.142 km, b = 6356.757 km, then P (the polar’:
circumference of the earth) is given with an error of about
0.0049 mm.

let a= 1, b= 0. The perimeter of this degenerate

ellipse is 4, while 2n (%)273 = 3.958; so the error is only
about 1 in 100.

Anyone wishing to consider the matter further should

consult Smirnov [3] where there is a similar (but less
accurate) approximation.

References

fa] M. Abromowitz and I. A. Stegun, "Handbook of Mathematical
Functions", p. 589.

{2} M. R. Spiegel, "Mathematical Handbook", p. 7. |

(3) V. I. Smirnov, "A Course of Higher Mathematics; Vol I",
pp. 345-348.  a



Pentaplexity
A class of non-periodic tilings of the plane

by Professor R. Penrose

Some readers may be acquainted with an article by Martin
Gardner in the January 1977 issue of Scientific American. In
this he described a pair of plane shapes that I had found,
called 'kites' and 'darts', which, when matched according to
certain simple rules, could tile the entire plane, but only in
a non-periodic way. The tilings have a number of remarkable
properties, some of which were described in Gardner's article.
I shall give here a brief account explaining how these tiles
came about and indicating some of their properties.

The starting point was the observation that a regular
pentagon can be subdivided into six smaller ones, leaving only
five slim triangular gaps. (See Fig. 1; this is familiar as
part of the usual 'net' which folds into a regular
dodecahedron.) Imagine, now, that this process is repeated a
large number of times, where at each stage the pentagons of
the figure are subdivided according to the scheme of Fig. l.
There will then be gaps appearing of varying shapes and we
wish to see how best to fill these. At the second stage of
subdivision, diamond-shaped gaps appear between the pentagons
(Fig. 2). At the third, these diamonds grow 'spikes', but it
is possible to find room, within each such 'spiky diamond',
for another pentagon, so that the gap separates into a star
(pentagram) and a 'paper boat' (or jester's cap?) (Fig. 3).
At the next stage, the star and the boat also grow 'spikes',
and, likewise, we can find room for new pentagons within
them, the remaining gaps being new stars and boats (as before).
These subdivisions are shown in Fig. 4.

Since no new shapes are now introduced at subsequent
stages, we can envisage this subdivision process proceeding
indefinitely. At each stage, the scale of the shapes can be
expanded outwards so that the new pentagons that arise become
the same size as those at the previous stage. As things stand,
however, this procedure allows an ambiguity that we would like
to remove. The subdivision of a 'spiky diamond' can be achieved
in two ways, since there are two alternative positions for the
pentagon. Let us insist on just one of these, the rule being
that given in Fig. 5. (When we examine the pattern of
surrounding pentagons we necessarily find that they are
arranged in the type of configuration shown in Fig. 5). It may
be mentioned that had the opposite rule been adopted for
subdividing a 'spiky diamond', then a contradiction would
appear at the next stage of subdivision, but this never
happens with the rule of Fig. 5.

This procedure, when continued to the limit, leads toa
tiling of the entire plane with pentagons, diamonds, boats
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and stars. But there are many ‘incorrect' tilings with these
same shapes, being not constructed according to the above
prescription. In fact, "correctness" can be forced by
adopting suitable matching rules. The clearest way to depict
these rules is to modify the shapes to make a kind of infinite
jigsaw puzzle, where a suggested such modification is given
in Fig. 6. It is not too hard to show that any tiling with
these six shapes is forced to have a hierarchical structure

of the type just described.
Furthermore, the forced hierarchical nature of this

pattern implies that the tiling has a number of very
remarkable properties. In the first place, it is necessarily
non-periodic (i.e. without any period parallelogram). More
about this later. Secondly, though the completed pattern is
not uniquely determined - for there are 2°° different
arrangements - these different arrangements are, in a certain
'finite' sense, all indistinguishable from one another: Thus,
no matter how large a finite portion is selected in one such
pattern, this finite portion will appear somewhere in every
other completed pattern (infinitely many times, in fact).
Thirdly, there are many unexpected and aesthetically pleasing

 

features that these pattems exhibit (see Fig. 7). For example,
there are many regular decagons appearing, which tend to
overlap in places. Each decagon is surrounded by a ring of
twelve pentagons, and there are larger rings of various kinds

also. Note that every straight line segment of the pattern
extends outwards indefinitely, to contain an infinite number
of other line segments of the figure. The hierarchical
arrangement of Fig. 7 is brought out in Fig. 8.

After I had found this set of six tiles that forces non-
periodicity, it was pointed out to me (by Simon Kochen) that
Raphael Robinson had, a number of years earlier, also found a
(quite different) set of six tiles that forces non-periodicity.
But it occurred to me that with my tiles one could do better.
If, for example, the third 'pentagon' shape is eliminated by
being joined at two places to the 'diamond' and at one place
to the bottom of the 'boat', then a set of five tiles is
obtained that forces non-periodicity. It was not hard to
reduce this number still further to four. And then, with a

little slicing and rejoining, to two:
The two tiles so obtained are the 'kites' and ‘'darts'

mentioned at the beginning (*). The precise shapes are
illustrated in Fig. 9. The matching rules are also shown,
where vertices of the same colour must be placed against one
another. There are many alternative ways to colour or shade
these tiles to force the correct arrangements. One way which
brings out the relation to the pentagon-diamond-boat-star
tilings is shown in Fig. 10. A patch of assembled tiles
(partly shaded in this way) is shown in Fig. 11 (overleaf).

 

(*) These names were suggested by John Conway.
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The hierarchical nature of the kite-dart tilings can he
seen directly, and is illustrated in Fig. 12. Take any sueh
tiling and bisect each dart symmetrically with a straight lie
segment. The resulting half-darts and kites can then be
collected together to make darts and kites on a slightly
larger scale: two half-darts and one kite make a large dart;

two half-darts and two kites make a large kite. It is not
hard to convince oneself that every correctly matched kite
dart tiling is assembled in this way. This ‘inflation'
property also serves to prove non-periodicity. For suppose
there were a period parallelogram. The corresponding inflated
kites and darts would also have to have the same period
parallelogram. Repeat the inflation process many times, unti!
the size of the resulting inflated kites and darts is greateé}
than that of the supposed period parallelogram. This gives a
contradiction.

The contradiction with periodicity shows up in another
striking way. Consider a very large area containing d darts
and k kites, which is obtained referring to the inflation
process a large number of times. The larger the area, the

closer the ratio x = k/d of kites to darts will be to satisfying
the recurrence relation x = (1+2x)/(1+x) (since, on
inflation, a dart and two kites make a larger kite, while a

dart and a kite make a larger dart). This gives, in the limit
of an infinitely large pattern, x = 4(1+4)= tT, the golden
ratio: Thus we get an irrational relative density (+) of
kites to darts - which is impossible for a periodic tiling.

There is another pair of quadrilaterals which, with
Suitable matching rules, tiles the plane only non-periodically,
This is a pair of rhombuses shown in Fig. 13. In Fig. 14 a
Suitable shading is suggested where similarly shaded edges are
to be matched against each other. In Fig. 15, the hierarchical!
relation to the kites and darts is illustrated. The rhombuses
appear mid-way between one kite-dart level and the next
inflated kite-dart level.

Many different jigsaw puzzle versions of the kite-dart
pair or the rhombus pair can evidently be given. One
suggestion for modified kites and darts, in the shape of two
birds, is illustrated in Fig. 16. The inflation process (in
reverse) is illustrated in Fig. 17.
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Other modifications are also possible, such as alternativematching rules, suggested by Robert Ammann (see Fig. 18)which force half the tiles to be inverted.
Many intriguing features of the tilings have not beenmentioned here, such as the pentagonally-symmetric ringsthat the stripes of Fig. 14 produce, Conway's classificationof 'holes' in kite-dart patterns (i.e. regions surrounded by‘legal' tilings but which cannot themselves be legally filled)Ammann's three-dimensional version of the rhombuses (foursolids that apparently fill space only non-periodically),Ammann's and Conway's analysis of 'empires' (the infinitesystem of partly disconnected tiles whose positions areforced by a given set of tiles).
It is not known whether there is a Single shape that cantile the Euclidean plane only non-periodically. For thehyperbolic (Lobachevski) Plane a single shape can be providedwhich, in a certain sense, tiles only non-periodically (seeFig. 19) - but in another sense a periodicity (in one directiononly) can occur.

(+) This is the numerical density. The kite has t times thearea of the dart, so the total area covered by kites ist? (= 1+t) times that covered by darts.

References

Gardner, M., Scientific American January 1977, pp. 110-121.Penrose, R., Bull. Inst. Maths. & its Applns. 10 No. 7/8 (1974)pp. 266-271.
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Little Arrows

by Dr. P. T. Johnstone

One of the salient features of twentieth-century
mathematics has been the proliferation of different types of
Structure which are studied by mathematicians, and the
consequent increasing specialization of mathematical research.
A notable exception to this trend, in the past thirty years,

has been the rise of category theory, which has its origins in
the joint work of Samuel Eilenberg and Sawders Mac Lane around
1945 (1). In this article I shall try to describe the aims of
category theory, and some of its present areas of application.

Category theory begins with the idea that if you want to
study a particular type of mathematical structure, you must
study not only the structures of that type, but also the
structure-preserving maps between them. Thus if you are
interested in topological spaces, it is useless to study the
spaces by themselves, without the concept of continuous map
which binds them together. Similarly, the study of groups,
rings or vector spaces cannot proceed far without the appropriate
notion of homomorphism.

A category thus consists of three things: a collection of
objects, a collection of arrows or morphisms each of which is
associated with a pair of objects called its source and target
(we use the diagrammatic notation "f: A > B" for "f is an
arrow with source A and target B"), and a composition law which
assigns to each "composable pair" of arrows (f: A+ B, g: B + C)
a third arrow gf: A+ C. In addition, we require that
composition be associative (i.e. that h(gf)=(hg)f whenever the
composites are defined), and that for each object A there
should exist an identity arrow la: A + A such that fl, = f and
lag = g whenever the composites are defined.

Familiar examples include the category Set of sets and
functions, algebraic categories Gp, Rng, Lat, ... of groups,
rings, lattices, ... and the appropriate homorphisms, the
category Top of topological spaces and continuous maps, the
category Ban of Banach spaces and linear contractions, and so
on. These are all camcrete categories; i.e. their objects are
sets with some kind of structure, their arrows are structure-
preserving maps, and their composition law is the usual
composition of functions. But there are also many categories
which are not concrete; for example, we can make any partially
ordered set P into a category whose objects are the elements
of P, and whose arrows are instances of the order-relation
(i.e. there is just one arrow p > gq if p< q, and none if
p £q). (The composition law in this case is obvious, since
there is always at most one arrow with a given source and
target. )

The astute reader will have noticed that I used the vague
word "collection" rather than the precise word "set" in the’
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definition of a category, and the last paragraph suppliesthe reason: from Russell's paradox, we know that the
collection of all séts cannot itself be a set. The
relationship between category theory and set theory is oftensomewhat strained, precisely because the business of the
former is to study such things as the totality of all setsor of all groups, which are inadmissible objects to the
latter. There are modifications of Standard set theory whichprovide a "respectable" foundation for category theory (2);but in fact category theory, because of its fundamental
nature, can itself be used as a basis for the rest of
mathematics, including set theory! We shall return to thispoint later; for the present, let us merely introduce theterm small category (also called a kittygory (3)!) to describeone whose objects and arrows are the elements of some set. Aweaker, but equally useful, notion is that of locally smallcategory; we say C is locally small if, for each pair ofobjects (A,B), the arrows of C with source A and target B arethe elements of a set C(A,B). Note that a concrete categoryis automatically locally small.

We may now take any mathematical concept or theorem whichcan be expressed solely in terms of objects, arrows and
composition, and apply it to any of the categories mentionedearlier. An obvious example is the concept of isomorphism;we Say two objects A and B are isomorphic if there existf: A> B and g: B + A such that gf = la and fg = lp. Moreinterestingly, the notion of Cartesian product is a categoricalone. Normally we define the cartesian product of two sets byspecifying its elements, but we can also define it (at leastup to isomorphism) by specifying the arrows into it: a productof two objects A and B is an object A x B together with
arrows p: A x B > A and q: A x B + B such that, for any pairof arrows (f: C> A, g: C + B), there exists a unique
h: C + A x B with ph = f and gh = g.

This definition coincides with the usual one in all theconcrete categories mentioned above, but since it doesn'tinvolve elements we can also apply it to non-concrete
categories; in a partially ordered set, it coincides with thenotion of meet (greatest lower bound). But there is anotherpossibility: by reversing all the arrows in a categoricaldefinition or theorem, we get a new "dual" concept which maybe just as useful as the old one. Thus we have the dualnotion of coproduct: a coproduct of A and B consists of anobject A+B and arrows A > A+B, B > A+B such that ... As anexercise, try working out what coproducts look like in Set,Top, Gp, Ab (abelian groups) and CRng (commutative rings);the answer in each case is a familiar construction in theappropriate subject.

So far, however, we have not taken to heart thefundamental dictum of category theory: "Always look to themorphisms". The appropriate notion of morphism betweencategories is called a functor: a functor C + D consists oftwo functions sending objects of C to objects of D, arrowsof C to arrows of D, and preserving composition and identities.
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(Thus (small) categories and functors between them themselves
form a category Cat.) This is sometimes called a covariant
functor, to distinguish it from the notion of contravariant
functor which is similar, but reverses the direction of
arrows and the order of composition. Among the simplest
examples of (covariant) functors are the forgetful functors
Gp > Set, Top + Set, etc., which simply forget the ot
additional structure on the objects and arrows of a
concrete category. Many familiar constructions in algebra,
such as "commutator subgroup": Gp + Gp, "group of units":
Rng > Gp, and "nxn matrix ring": Rng + Rng, are in fact
functors; although we normally think of them as defined only
on objects of the appropriate category, in fact each of them
has a natural definition on homomorphisms as well. As an
example of a contravariant functor, we give the power-set
functor P: Set + Set, which sends A to the set of all

subsets of Aand f:A > B to the map (B' » £f71(B')).
But there is actually a third level of structure here,

Since we can also talk about maps between functors. If S and
T are two functors from C to D, a natural transformation
a: S > T is a function assigning to each object A of C an

arrow aa: SA * TA in D, such that for each f: A + B in C the
composites op.Sf and Tf.aqg: SA + TB are equal in D. The
best-known example of a natural transformation is the familiar
"natural isomorphism" between a finite-dimensional vector
Space and its double dual; indeed, one could almost say that

category theory was invented in order to give a precise
meaning to the word "natural" in this context.

To see how it works, let R-Mod be the category of
modules over a commutative ring R. For any module A, the set

of linear maps A > R forms a module A*, the dual of A, and

the assignment A’A* is a contravariant functor R-Mod + R-Mod
(since if we are given f: A + B, composition with f induces
a linear map B* + A*). The composite of this functor with

itself, however, iS covariant; and there is a natural
transformation a from the identity functor lp-mog to **, such
that aa(a) is the linear map “evaluate at a": A*> R. If A
is a finitely-generated free module, then aq iS an isomorphism;
this is the natural isomorphism we all know and love.

The notion of natural transformation enables us to make
the functors from C to D into the objects of a category bc.
An important part of category theory consists in studying
these functor categories, particularly those of the form

Set& where C is locally small. The importance of the latter
is eeaneseS with the existence, for each object A of C, of
a functor hA: Cc > Set which sends B to C(A,B) and f: B= B'

to the function "Compose with f". (Similarly, we have a
contravariant functor ha: C + Set which sends B to C(B,A).)

The Yoneda Lemma (4) saysthat, for any functor
T: C + Set, the arrows h‘* > T in set© are in natural 1-1
correspondence with the elements ofthe set TA; explicitly,
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a natural transformation aq: hn” + T is completely specified by
the element ag(la) of TA. This seemingly innocuous
observation has far-reaching consequences. For example, we
deduce that arrows hA + hB in Set©& correspond to elements of
hB(A), i.e. to arrows B + A in C; thus the assignment A» hA
is not only a contravariant functor C + set, but actually
a full embedding (i.e. it is bijective on arrows between a
given pair of objects). We say that a functor T: C ~~Set
is representable if it is isomorphic to some h4, and define
a representation of T to be a pair (A,a) with A an object of
C and ae TA, such that the induced arrow h4 + is an
isomorphism. Another consequence of the Yoneda lemma is
that the representation of T, if it exists, is unique up to
canonical isomorphism.

Almost all the important concepts of category theory can
be described, at least for locally small categories, as
representations of certain functors. For example, a product
of A and B is a representation of the (contravariant) functor
which sends C to the set of pairs (f: C + A, g: C + B). The
contravariant power-set functor is represented by (2,{1})
where 2 is the two-element set{0,1}, and the forgetful
functor U: Gp + Set is represented by (Z,1) where Z is the
additive group of integers. More generally, for each set A,
the composite hA.U is represented by (FA,nq) where FA is the
free group generated by A and na: A + UFA is the insertion of
the generators.

This last is an example of an adjunction; if F: G+ D
and U: D+ are functors, we say F is left adjoint to U if
we are given a bijection, natural in A and B, between the
sets D(FA,B) and C(A,UB). A remarkable theorem asserts that
every such bijection arises from a pair of natural
transformations ny: lc + UF, ¢«: FU + lp (the unit and counit
of the adjunction) stch that epa.Fnag = lpg and Ueg-nyp = lus
for all A and B; thus the notion or adjunction is an
"elementary" one which can be defined without reference to
local smallness. A great many key constructions in mathematics
turn out to be left or right adjoints to certain familiar
functors; we have just mentioned the example of free groups,
and the construction of integral group-rings is a functor
which is left adjoint to the "group of units" functor mentioned
earlier. Again, the categorical notion of product can be
described as an adjoint; if each pair of objects of C has a
product, then the assignment (A,B) » A x B defines a functor
from the cartesian product C x C to C which is right adjoint
to the "diagonal functor" Ap», (A,A).

We say a category C is cartesian closed if it has products
as above and, for each object A, the functor (-) x A: C+ C
has a right adjoint, the exponential functor(-)A. Set is
cartesian closed, with BA = Set(A,B), for it is well known
that functions C + Set(A,B) correspond to functions C x A+ B.
Similarly, Cat is cartesian closed, the exponentials being
the functor categories defined earlier. The importance of
cartesian closedness is that we can regard the exponentials BA
as "internal" equivalents of the hom-sets C(A,B), and (by
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suitably reformulating notions such as representability) we

can remove the dependence of what we have done on set-

theoretic notions like local smallness - i.e. we can give

a truly autonomous development of category theory.

This line of development was pioneered by William

Lawvere, who in 1963 (5) gave a number of purely categorical

axioms characterizing the categorical properties of Set;

more recently, Lawvere and Myles Tierney have introduced the

notion of topos, which has been the cause of some of the

most exciting categorical developments in recent years. A

topos is simply a cartesian closed category which satisfies

an "autonomous" version of the representability of the power-

set functor (as Lawvere has pointed out, the latter

condition for Set is just the categorical version of the

set-theorists' Axiom of Comprehension!); to the category-

theorist, it serves as a "universe of discourse" within which

he is able to carry out categorically all sorts of

constructions previously understood only for the category

of sets.
The most striking thing about this development is that

the concept of topos had been introduced earlier (admittedly

with a different definition, which was dependent on set theory)

by the French school of algebraic geometers headed by

Alexander Grothendieck (6); and indeed examples of toposes

arise naturally in algebraic geometry, topology and elsewhere.

Thus through topos theory it is possible for the category-

theorist to bring ideas of logic (such as the completeness

theorem) directly to bear on geometry and algebra, or

conversely to apply topological notions such as localization

to problems in logic. In this way, it can be seen that

category theory is indeed fulfilling its ambition to bring

together different areas of mathematical research and expose

their fundamental unity.

I close with some suggestions for further reading. (7)

is the category-theorist's bible, written by one of the

founders of the subject who is also a superb expositor, but

it can be rather hard going for the beginning student. (8)

is a praiseworthy, and not altogether unsuccessful, attempt

to write a category-theory text for those with much less

familiarity with abstract mathematics. (9) is a short and

readable introduction to the wonders of topos theory.
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Attributed to N. Yoneda, J. Fac. Sci. Tokyo 7 (1954),

193-227. In fact the lemma does not appear there
explicitly, and Lawvere has pointed out that the
idea of the lemma is older than category theory
itself - it goes right back to Cayley's representation
theorem for groups.
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Homological Knot Theory
IN THE CONTEXT OF AN EXPANDING ECONOMY

by Professor E. Grimshaw

Section 1: Introduction
In 1973, using the newly developed quasi-topological

techniques of Brauer and Suzuki outlined in their ground-
breaking paper delivered at the Helsinki colloquium,
Kaczinski and Grimshaw proved the long-standing conjecture
of Lefschetz on the paranormality of q-reducible semiknots.
This had long been the sticking point which had hindered the
discovery of any useful theory of Homological Knots. Although
it was not realised at the time, the subsequent investigations
provided results which were to have applications to a wide
range of mathematical disciplines. Perhaps the most surpris ing
use of the theory has been in the solution of economic models
for which previously no methods had been available. It is the
aim of this note to summarise the advances in this field and
to give a new proof of the Atlee-Umagaki Lemma.

 

 

Section 2: Preliminaries
The terminology we shall employ is Atlee's [1] . We shall

assume the following:
(i) Each pseudo-regular Lindeldé6f space is paracompact, and

this property is distinguished.
(ii) If K is a connected, not necessarily normal topological

manifold with the finite cover property, then Hy,(K) is.
trivial for all n > M(K), where M(K) is the Urysohn
number of K. [2)

(iii)H * (K-g) paranormal wrt the Schellmann-Zariski
topology iffg lies in every q-reducible representation
of K * (K) induced by its tensor dual K @ K/(g). [3)

(iv) The Slutzky aggregate of any macro-economic model is
separable provided the Neumann-Morgenstern equations
are satisfied. Sincesuch a model is mt-equivalent to the
semiknot ideal space K, which will be assumed paranormal
(see [1] ), these equations will automatically hold in
all our applications. [4]

Section 3: Chief Results
The main people working in the field have been Atlee,

F. J. Bingham, Grimshaw, Kaczinski and Forsyth. Following the
Kaczinski-Grimshaw paper, Bingham derived an algorithm for
q-reducibility of ideal spaces using finite element analysis
(5) and in a further series of papers he and Grimshaw

extended this to a general semiknot space which for the

purpose of this note may be assumed homotopic to its bidual.
It was Kaczinski who first noticed that the new methods could
be used to tackle a host of other problems (*), notably the

solution of the equilibrium state of a macro-economic model
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(MEM). Following discussions between him and Grimshaw under
the auspices of Heriot-Watt University, an analogous algorithm
for MEMs was devised. This algorithm was tested on an
IBM-370/145 at Cambridge University, England by Dr. Forsyth and
emerged successfully. In fact the model was used subsequentl
in the predictions of the evolution of the English economy [6 .
Basically the results and techniques show that a quasi-static
MEM has a finite set of equilibria only if the Slutzky
aggregate is double separable. It is the converse implication
which forms the content of a brilliant lemma due to Atlee and
Simultaneously discovered by independent methods by Umagaki
Qi, 7) . The main interest in the subject now is the extension
of their result to systems of MEMs with possibly higher degrees
of separability.

Section 4: Proof of th Atlee-Umagaki Lemma
Without loss of generality we may assume the MEM is totally

balanced. It may therefore be represented as a semigroup of
operators (not necessarily of bounded degree) on a connected
topological manifold. As C. Foias has demonstrated in [8], the
Slutzky aggregate can be uniquely extended to the
compactification of this manifold and hence, provided of
course that this compactification is of finite type, that the
coefficient of separability remains invariant. But a compact
connected manifold is homeomorphic to a pseudo-regular Lindelof
space [9] and hence is paracompact. We now show that the
manifold K which we have constructed has the finite cover
property. Let %v be a base of absolutely convex neighbourhoods

 

of K in some localisation of K, say K*. Then, if the maximum
filtration of m® isn*, the elements of 11* will be a suitably

*dense cover of kK*. K* = nif, (MNn + e€M(K)K')

where M, N are non-convergent integers (in the p-adic topology)
and K' and € are arbitrarily tensor-free. Elementary
manipulation of this fundamental equation shows that K* may
be expressed as a partially finite disjoint wnion of reduced
elements of ¥U*. We may now invoke the Reduced Cover Lemma [8
to show that any partially finite cover on K* is finite; but
of course this is exactly what we want. The 2-separability
condition may now be substituted in the equation.

M(K) = |S(K) + 5 YTS(K)T |

where S(K) = -2 using Atlee's convention, so in particular
H2(K) is trivial. Now choose an arbitrary element g contained
in an everywhere bounded subset @ of K. What are the
absolutely flat neighbourhoods of g in the S-Z topology on
(K-g)? Plainly they are a sub-linear set on which a group
operation can be defined and using a familiar trick of
Umagaki, by considering the duals of these on K, they may be
q-realised as distinct (up to homotopy class) generators of
H) ¢ (K-g), a subgroup (linear hence paranormal) of H f (K-g).
But paranormality is a distinguished property so the
overgroup is itself paranormal. By (iii), g must lie in
every q-reducible representation of K f K, and hence of
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H, * K. This immediately implies that the absolutely flat
neighbourhoods are subdirectly irreducible and as such there
can only be finitely many of them. Because the MEM is quasi-
static, using Bingham's. selection theorem and its associated
algorithm, we may set up a bijective map between the
approximately dense states of the MEM and the absolutely flat
neighbourhoods of the central point g' of K. Since there are
only finitely many of them one mayinfer immediately that they
are W-equivalent to equilibria states.

Section 5: Conclusions |
The above proof is significantly shorter than that produced

by Atlee, who was forced to employ obsolescent transfinite
techniques in his proof. It would perhaps be fitting to mention
some powerful uses to which this key Lemma can be, and has
been,. put. Firstly, in Bangladesh the presence of subversive
peasant factions in the workforce disrupted the finite set of
equilibria states, thus annihilating the 2-separability of the
SA. This was manifested by the spectacular drop in world grain
prices, which would have occurred but for the intervention of
Russian tycoons. Secondly, in Berchampstead, Mrs. J. Spidermouth
using a subtle application of the Lemma, succeeded in making
the sale of comestibles with less than 31% starch content a
viable proposition [10]. Finally, we cite the current
instability of the Finnish rural economy as an example of a
singly separable Slutzky aggregate situation.

 

(*) In much the same way as the Golod-Schafarevitch theorem.
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Cambridge Mathematics since1910

by Professor Sir Harold Jeffreys and Lady Jeffreys

Sir Harold (J) Up to 1909 the Mathematical Tripos was in two
parts. The first was normally taken in the third year; by some
candidates in the second. The second part was on advanced work
and usually had about ten candidates, most of whom got firsts.
In Part I the candidates were listed in order of merit; the
Senior Wrangler received much newspaper publicity, out of all
proportion to his later achievements; in a comparison I made
about 1915 the first and second wranglers had exactly the
Same number of noteworthy performances later in life. In 1909
the top six all did something important later, but the third
and the fifth did most. At the other end of the list came the
Wooden Spoon, the last man to be classed. His friends
presented him with a large spoon, and the last of these
treasures, in form something like an oar as the recipient was
a rowing man, now hangs in the small Combination Room at
St. John's. Teaching for Part I was mainly by coaching. Each
coach covered the whole of the Tripos, with special emphasis
on the sort of questions likely to be set. There were stories
of the last famous coach, R. R. Webb, that he had coached all
the Wranglers in a year, and (I think) all but one of the last
twenty Senior Wranglers. Webb published little, but his
predecessor, E. J. Routh, produced some important papers and
several textbooks, better than many later ones.

Lady &ffreys(J') In about 1965 a pupil told me that she had
found a good book on Dynamics in the library by "a man called
Routh", Some research into the Girton records shows that in
the late 19th century and up to 1914 the teaching was done by
a team of lecturers which included N. M. Ferrers, W. M. Hicks,
Arthur Berry, A. N. Whitehead, and also W. H. Young, who after
his marriage to Grace Chisholm went to live in Gottingen, but
returned to teach in Cambridge during term. For a time
Constance Herschel, daughter of Sir John Herschel and great-
niece of Caroline Herschel, was the resident lecturer in
Mathematics and Natural Sciences. Caroline won the Royal
Astronomical Society Gold Medal in 1828, and this was later
presented to the College by another great-niece, Lady Gordon.

J I came up in 1910, so that the new system had been in
operation for four years when I took the Tripos in 1913. In
this, Part I was usually taken at the end of the first year
and was often used as a preliminary examination to work for
other triposes, especially Natural Sciences and Geography.
Part I had the peculiarity that anyone failing to be classed
could take it again in the second year. Part II was divided
into Schedule A and Schedule B, Sehedule A more or less
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corresponding to the old Part I, Schedule B to the old Part II,

and both were taken in the same year. St. John's was the only

college that had college lecturers covering the whole of
Part I and Schedule A; even Trinity sent some people to
Baker's Theory of Functions. Otherwise people took lectures,

including those for Schedule B, in several different colleges.

One consequence of the new arrangement was that more people

proceeded to advanced work. It was, however, rather a strain.

In fact, those aiming at a star in Schedule B tried to cover

nearly all the work for Schedule A in their second year and

concentrated on Schedule B in their third, but they had to

keep revising all of Schedule A at the same time. The strain

was lessened by calling Schedule A Part II in 1934 and

Schedule B Part III in 1935, and this system of taking the

two parts in different years has persisted. Most of the former

coaches became college lecturers in 1909 and these became
university lecturers in 1926 in consequence of the Royal

Commission of 1919-22. Coaching, so far as it survived, was

replaced by college supervision. As it happened, in my year

St. John's had four scholars and four exhibitioners, and to a

large extent we supervised one another. Baker, as Director of

Studies, gave us a standing invitation to go and see him if

we were particularly bothered, and we did so about twice a

term. The character of both lecturing and supervision has

changed. When I lectured for Schedule A lecturers usually set

questions and looked over the answers; if questions were found

difficult solutions were given in the next lecture. In my time

the possible subjects for Schedule B and later Part III were

arranged in about 15 groups and spread more or less evenly
Over six papers. Candidates were not obliged to confine
themselves to the subjects they had announced. I remember

that I had announced Elliptic Functions, and Dynamics and
Hydrodynamics, but I managed to pick up questioms in Theory of

Functions, Differential Equations, and Celestial Mechanics and

Spherical Astronomy. The present arrangement of papers, in

closely related subjects, discourages general reading and I do

not consider it a good thing.

J' When I cameup in 1921 some of the old coaching terminology

Survived at Girton. We had four coachings a week, in pairs; the

coaches included J. C. Burkill, Harold Jeffreys and L. A. Pars.

In my first term I went to one course of lectures, by F.J. M.

Stratton at Caius, on Optics and Hydrostatics. The subject matter

was not enthralling, but I learned from him not to use the word

"obviously". The next term was better - S. Pollard at Trinity

on Analysis, and in the Easter Term we went to G.P. (later Sir

George) Thomson at Corpus, for Electricity and Magnetism. He

did experiments in the Corpus lecture room, not very

successfully, but at least we were left in no doubt that this

was an experimental subject. In later terms I went to more

lectures in other colleges, including © Arthur Berry's on

Elliptic Functions, in King's., He used to stand before the fire

with the tail of his gown dangerously near it, and there was
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always the prospect that he might catch fire, but I think he
never did. I learned a lot from Mary Taylor, who was working
with Appleton. Hardy had left Cambridge for a Chair in Oxford,
but she lent me her excellent notes of his lectures. Partly
through her influence I went to Gottingen for the winter of
1927-8. Until 1933 the Institute for Theoretical Physics
Shared with Niels Bohr's Institute at Copenhagen the place of
highest importance in Quantum Theory. I think my interest in
Atomic Physics came in the first place not from Cambridge, but
from school physics and from reading a popular book by Sir
Oliver Lodge at a friend's house in the vacation before I
took Part II.

 
I spent two terms reading for Physics Part II and proving

a very unsuccessful experimenter in the Cavendish Laboratory.
In those days if you wanted to do research you went to see
the Professor, and Rutherford said "They tell me you aren't
much good at experiments, so you had better go and see Fowler".
The Ph.D degree was comparatively new and R. H. Fowler
Supervised the half-dozen or so of us working in Quantum
Theory or Statistical Mechanics. There was no regular central
meeting place like DAMTP; we worked in college, or the
Philosophical Library, or the Cavendish Library, and we went
to advanced lectures. There was a weekly colloquium in the
Cavendish; I remember one by Dirac, who gave an account of
Born's Collision Theory just after the paper came out in 1926.
In the Easter Term of 1926 Dirac gave his first course of
lectures, attended by about a dozen people, in a lecture room
at St. John's. The isolation in which we worked may have been
good for us in some ways, by encouraging independence. I

ee
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thought I missed contacts because I was a woman, but I have
since learned that there was very little mixing between the
research students from different colleges. There were two
evening discussion groups, V?V and the Kapitza Club, both now
sadly extinct. Women were not eligible for membership of V?V
until after 1945. At both of these clubs papers were read on
widely differing topics, with the hope that workers in
different fields might understand one another.

I was away from Cambridge from 1928 until 1938 at
Manchester and elsewhere; this was a period when the Tripos
was restructured, but its content was not greatly altered.
When I returned in 1938 numbers were still compared with
those of today, and certainly for Part I lecturers took
in written work from their classes. The Archimedeans had been
very active in criticising lectures and lecturers, and in
1940 I served on a small liaison committee: there is nothing
new under the sun: The truth is that Mathematics is a difficult
subject to lecture m-or just a difficult subject.

J The Ph.D degree was started about 1923. Before that,
people doing research usually bothered any senior member that
they thought likely to be helpful, and in fact most of them
were. One consequence of its introduction was that the title
"Doctor" carried some prestige away from Cambridge, and this
was already held by many D.Sc.'s from other universities. It
was said that the introduction of the Ph.D was to attract
Americans, for whom it was a necessary condition for an
academic post, but in fact this was quite a minor part of the
reform. I mostly went to Newall, Eddington, Stratton and
occasionally Larmor for advice. Newall was Professor of
Astrophysics, but he knew a lot about many things. He lived
in Madingley Rise, now the home of the Department of Geodesy
and Geophysics. He was very stately (so was Mrs. Newall),
especially when driving in his carriage drawn by a beautiful
pair of glossy black horses. He did not hold with motor
transport and perhaps my allegiance to the bicycle carries

on the tradition, in a less elegant way.

 

At a high table sherry party n couples were present,
and much shaking of hands occurred. No one shook his own or
his spouse's hand, and no one shook hands with the same >
person twice. Mr. A asked the other 2n-1 people how many hands
they had shaken, and he received a different answer each time.
How many hands did Mrs. A shake?
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Problems Drive 1977
by J. Mestel

Find a positive integer that is multipled by 7 when its
last digit is shifted to the front.
Indicate how to construct such an integer larger than any
given integer.

Dr. Spock was making patternswith
his dominoes
(fEpj, O< i ¢ 6, 0 <j € 6)
when Captain Kirk sat on his ray
gun and fused them into the
following array.
Draw in the erased boundaries.

U
N
W
E
w
o
u

O
N
W
U
R
O
O

;?
A

N
N
P
U
W
E
W
D

F
P
R
O
A
U
O
N
N
.
A

N
U
E
A
F
O
W
F

O
C
O
W
O
R
O
D
A
e
E

D
O
W
N
h
w

UW

The combination to the secret safe behind the washbasin
in the outside toilet consists of seven different integers
in descending order, whose sum is 36. A burglar knew the
first two numbers, and tried to bribe a porter into
telling him the value and position of another.
"You'll have to pay me for two, sir", said the porter,
“since no matter which one I gave you, you wouldn't be
able to deduce the exact code”.
Technically he was correct, but he did not get any money.
(The porter is aware of the burglar's knowledge).

In the following sums each letter represents a unique
digit. Furthermore no two different letters stand for
the same digit.
ONE + ONE + ONE + ONE = FOUR, FOUR + ONE = FIVE,

' TWO - ONE - ONE = O

What is NOW FURTIVE?

The audience at a Natural Sciences lecture on rag day
consists of various numbers of spiders, starfish,
tapeworms and relations of Cyclops, a solitary peacock
and, of course, Macbeth's corpse. The first lecturer of
the day observes as many arms as legs in the audience,
and so assumes all is as usual. The second lecturer
compares arms and eyes, with a similar result. The third
lecturer notes twice as many eyes as heads, but is
surprised by how many of them are open.
Describe the constitution of the least possible audience.
Biological Data

heads eyes arms legs
spider 0
starfish
tapeworm
Cyclops

Macbeth
peacock K
H
O
R
F
O
F

N
N
M
N
O
O

o
O

5
0
2
2
0
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Three 2p coins and_two lp coins are arranged thus:

A move consists of translating a 2p coin and a touching
lp coin any distance along the line of their centres.
€.g.: —>-)——s— ke
Show how to obtain in four moves a position of the form:

AND HERE IT IS ... the inevitable what's the next number
in the series problem. Explanations of solutions are
advisable.
(a) O, 1, -1l, 2, ~l, 5, ~—4, 29, «.-
(b) 6, 11, 37, 135, 2059, ...
{c) 1, 2,-9, 12, 70, 89, 97, 102, 112, 182, «es

Following Cambridge University's {®
UDI the 25 colleges (unit squares
in the diagram) were each A|B: * DIE
occupied by one of five peace- : ‘
keeping forces, the Apaches,
Bootboys, Cowgirls, Deviants and : ‘
Extras. This was done in such a mete =
way that each N-S strip, each E-W 1 ‘
strip and every local parish (in ..... © bees ce

 

  

    

   

black outlines) contained a :
college occupied by each force.
Given the information in the ore eee

diagram, colour Cambridge using

       five colours without reference to
any controversial theorems.

The hands on my alarm clock are indistinguishable, and
there are no numbers around the outside. Accidentally
woken up by it one morning, I observed with a snarl
that the hands were both pointing at minute divisions,
and that they were 9 minutes apart.
Had it not been for my hangover, what could I have
deduced?

 

@A@@. GAGG
The C.I.A. have developed a new @@@) @eeeee
technique to destroy their secret @@e@
book-keeping. Unfortunately for @@@
the free world, it merely obscures @e@
the digits, and does not remove @@@

decimal points from a calculation. eee
As an aspiring Commy, can you fill @@@
in the blurred digits in the exact eee
long division below? . @a@e@

@@ae@

 

  



LT Four\ impoverished students have a solitary, full,
cylindrical glass of beer. They share it out according
to the following measurements:

YereA) ~Q.
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What proportion does each get of the total volume?

 

 
 

   
  

 

       

 

 



Ramsey Problems in

Euclidean Geometry
by Dr. B. Bollobas

Most of you are probably familiar with Ramsey's theorem,
proved by the Cambridge logician F. P. Ramsey [2] in 1930:
any colouring of the pairs of the natural numbers with two
colours contains a monochromatic infinite set, i.e. an
infinite set of natural numbers, all of whose pairs have the
same colour. For over twenty years this result seemed to be
no more than a curiosity. In the fifties, however, it became

increasingly clear (due mostly to the efforts of Professor
Paul Erdds) that there are many similar results and problems
under rather different conditions.

In the early sixties a branch of set theory was born,

called the partition calculus, which aims at answering the
question: for which cardinals n, m, r and c is the following
statement true?

"Let X be a set with |X|=m and X(r) the set of subsets
of X with cardinality r. If we colour X(r) with c colours,
then we can find Y©X with |y|=m and all elements of
Y(r) having the same colour".
In a variant of this problem we restrict our attention to

colourings which are 'regular' in some sense. Thus if we
colour 2N = p(w), the set of all subsets of IN, with two
colours, then there need not be an infinite set M¢N, all of
whose infinite subsets have the same colour; but if one of
the colour classes is open (in the product topology on aN,
the product of countably many 2-point discrete spaces), then
there has to be such an M. (This result and some extensions
of it are very useful in analysis.)

The nature of the problem changes again if we colour an
algebraic or geometric object and look for a monochromatic
set with a given structure. A result of this kind was proved
by van der Waerden [B) three years before Ramsey's theorem:
given n there exists an N such that if {1,2,...,N} is coloured
with two colours then at least one colour class contains an
arithmetic progression of length n. Recently several deep
results were proved in this vein, including extensions of
van der Waerden's theorem to commutative semigroups.

The aim of this article is to draw attention to some
Ramsey type problems discussed in [lI] , which, though not very
deep, are rather amusing,. have not been investigated too much
and can be tackled by first year undergraduates with a fair
chance of success. (See [1] for many more results and
problems.)

Let L be a finite set of points in IR", m-dimensional
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Euclidean space. We shall be interested in subsets X, of

another Euclidean space R", for which in every colouring of

X with k colours, there is a monochromatic set L', congruent

(in the usual geometrical sense) to L. For brevity, we shall

denote this property by L < (X),. (Some authors prefer to

write X > (L),x-) To gain familiarity with this definition,

the reader is advised to prove the following easy lemma.

lemma 0 If Ig € Ly, X, € Xz and Ly, < (X,), then Lg < (X2),
—

We say Lis Ramsey if for every (finite) k there is an

n = n(k) such that L < (R"®);,. =%In deciding whether a set L

satisfies L < (QR"),, and hence whether or not L is Ramsey,

it may seem necessary at first glance to consider colourings

of the whole of IRD and not just some finite subset of it.

A standard compactness argument, however, shows that this is

not the case.

Theorem 1 L< mm"), iffthere is a finite set x ¢ RR such

that L< (X),.

Proof By lemma 0, L< (X), immediately implies L < OR™) ,.

To prove the other implication we need some preparation. For

simplicity we put M = R® and hb ,k) = {1,2,...,k}. We want to

find a 'natural' set whose elements correspond exactly to the

distinct colourings of M with k colours: {1,2,..-,k}. We take

the set S with |M| coordinates, labelled by the points x of M,

where the xth coordinate takes values lying in [1,k]. The set

we have constructed is nothing but fi ,k]™, the product of |m]

copies of f.,k] . Clearly, given any colouring of M, we can

uniquely define an element of S as the one which has the

colour of x as xth coordinate; and conversely any element of

S determines a colouring of M in the obvious way. So we have

obtained a natural identification between {1,k}]

“

and the set

of colourings of M with k colours.

We can put a topology on {i,k}, namely the discrete

topology, and we can then put the product toplogy on bw”,

Tychonov's theorem from general toplogy tells us that fl,

is compact since it is the product of compact spaces.

Given a subset X of M, we define a bad colouring for X

to be a colouring of M in which X does not contain a

monochromatic L' congruent to L, and we let Bad(X) be the set

of bad colourings for X. Thus Bad(X) is a subset of fi ,k)™

and if X is finite, it is clear that Bad(X) is both closed

and open: for being a bad colouring only places restrictions

on the (finitely many) coordinates corresponding to X.

We are now ready to prove the second implication.

Suppose L ¢ (X), for every finite set xX¢ M, that is

Bad(X) # © for every finite set X ¢ M. A moment's thought

shows that Bad(X) nm Bad(Y) 2 Bad(XuY) for any subsets X,Y of

M. Hence the system {Bad(X): X finite, X ¢ M} of closed sets

has the finite intersection property. The compactness of

fi,k)M implies that MBad(xX) # 6, that is we can find a

colouring ce f\Bad(X) which is bad for all finite subsets of
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M and hence clearly bad for M.
Iet us see what we can say about the simplest non-trivial

geometrical configuration.

Theorem 2 In any colouring of R* with 3 colours we can
find a pair of points distance 1 apart, with the same colour.
However, if R2 is coloured with 7 colours we cannot necessarily

find such a pair of points.

Proof Let P be a pair of points distance 1 apart. [In our
notation, the theorem becomes

P < (R2)3, but P £ (R2)7.
Figure 1 shows the first assertion. For suppose that ina
red-blue-yellow colouring of the seven points there is no
monochromatic adjacent pair. We may assume that x is red. Then
Yl, Z, are blue and yellow (in some order) and so x) is red.
Similarly x2 is red, but x, and x2 are adjacent.

 

x, Xs

Figure 1. Adjacent points are at distance l.
To show P ¢ (R“)7, we merely have to exhibit a colouring of
R2 with 7 colours in which tin each monochromatic component the
distance between any two points can never be l. For this
purpose we tesselate the plane with regular hexagons with side

‘ 4v5 - 5
a, where 4 <a < iI and colour them as in Figure 2.  

Problem 1 Determine the maximal value of k for which

P< (R*),.
Theorem3 lIlet Q9 be the set of vertices of a unit

Square. Then Q < (R®) > ;

Proof We must find a finite set X € R° for which

Qo < (X)2.- In fact for X we take the 15 points:
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—xy2 = (1/V2,1/72,0,0,0,0), x3 = (1/¥2,0,1/72,0,0,0), «--
x56 = (0,0,0,0,1/¥2,1/v¥2), and in general

X.. = (xt... xe.)
; ij ij’, ij

(1 ¢ i <j < 6) is defined by xj4 = 1/¥2 (k = i or j); and

xf; = 0 (k # i,j). It is easily verified that the points
Xabr Xbcr Xcar Xda form a unit square (a, b, c, d distinct).

Now suppose we have a red-blue colouring of R®. We now reduce

our problem to a combinatorial one: let K be the complete

graph of order 6, that is a graph with 6 vertices {v,,--..,v6}

Say, where every pair of vertices {vj,vj} is joined by an

edge vivj- We next define a red-blue colouring of K” by

colouring the edge vjv4 (i < j) with the same colour aS Xj4-

It is left as an exercise to the reader to check that every

colouring of the edges of a K® with two colours contains a
monochromatic quadrilateral. (This can be done by a case by

case discussion.) Suppose VaVpr VbVcr VoVqg, VdVa is such a

quadrilateral. Then Xap, Xbc, Xcds Xda form a monochromatic

square. n
Given Ll, €¢ R Lo ¢ R , their cartesian product Ll) x L2

lies in RM x RN 2 RMI,

Theorem 4 If L,; and Lg are Ramsey then so is lj x lg.

m
’  

Proof Since L) is Ramsey, given k there is anm for

which L] <(IR™);}.. Hence by Theorem 1 there is a finite set

X ¢ R™ such that L, < (X)x, where the k colours are 1,2,...,k,

say. We now define a set of new colours: we let every sRThee

k-colouring of X be a new colour, so that we obtain c = k|*%

new colours. Since Ij is Ramsey, there is an n such that

In <. (R®)oc-
We claim Ll, x Ll2 < ® )e- By Lemma 0, it suffices to

show L] x lo < (X x R®),. Suppose then that we are given a

k-colouring of X x RM. This automatically determines a

c-colouring of R". as follows: any point y of R=® is simply

given the new colour corresponding to the k-colouring of X

induced by that of X x fy}. Since Lz < (R"),, we can find a

monochromatic L3 ¢ R"™ congruent to 12; that is, whatever point

y of L4 we choose, X x {y} induces the same colouring on X. For
this colouring of X, we can find a monochromatic Lj © X

congruent to L,, since L, < (X)x- Clearly it follows that

Lj x lj is a monochromatic subset of m™*N congruent to Ly, x L2.

Hence Lj x Ig is Ramsey.

m+n

We now generalise the two examples we have looked at, that

is P and Qj, and define the notion of a brick. A brick in R®
is a set congruent to B = (€]a],€2€82,+--r€yan): €4 = 9 OF l

where every aj > 0. Thus a brick is just the cartesian product

of a finite number of different sized point-pairs (for

example P x P =Q). A unit simplex in R* (that is, in R° a

triangle with unit sides, in R3 a tetrahedron with unit sides,

etc.) shows that {0,1} < (RK), so every point-pair is Ramsey.

So by Theorem 4 and Lemma 0 we immediately have
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Theorem 5 Any subset of a brick is Ramsey.
Call a set L¢ R™ spherical if it is embeddable in some sphere
(of arbitrary dimension and radius). It is somewhat more
complicated to show that every Ramsey set is spherical. It is
intriguing that Theorems 4 and 5 say all that is known about
Ramsey sets.

Problem 2 Is there a spherical set which is not Ramsey?

Problem 3 Is there a Ramsey set which is not a subset
of a brick?

Since an obtuse-angled triangle is spherical but not a
subset of a brick, in particular we have the following very
simple looking problem.

Problem 4 Is every triangle Ramsey?
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Algernon and Basil had been poring over some problems in
an old copy of Eureka. "Golly", said Basil, "Look what I've
found here, Algie. Mme of those dreadful problems which ask
you to find the next term in the series." "Oh, I can never
be bothered with those", replied Algernon, "I have my own
foolproof way of handling that sort of question. I simply
take a polynomial, possibly complex, of smallest degree which
has the given terms of the series as its values at the first
however many positive integers and then I use it to calculate
the rest of the series." Basil appeared puzzled. "I don't
know if I'm being an utter oaf, Algie, or whether you're
being dashed clever, but I can't for the life of me see
firstly why all the subsequent terms worked out according
to your rule should be integers, and secondly why the series
you get should be unique". Algernon smiled. "Bad luck, old
chap".
Who was right - Algemon or Basil?
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The Thirteen Spheres Problem
by A. J. Wassermann

In an unpublished notebook at Christ Church, Oxford

there is an account of a conversation held in 1694 between

David Gregory and Isaac Newton about the distribution of

stars of various magnitudes. The question arose as to

whether a solid sphere could simultaneously be brought into

contact with thirteen other spheres of the same size:

Gregory believed that it was possible, but Newton disagreed.

It took 180 years before R. Hoppe proved that Newton was in

fact right.

The problem we wish to solve is the following: how many

Spheres of unit radius can simultaneously touch a fixed

sphere of unit radius? Clearly this is equivalent to

determining the maximum number of points, N say, which can

be placed on the surface of a unit sphere which are separated

from each other by a distance of at least l (that is, great

circle distance 1/3). (See Figure 1). It is an easy matter

to show that N=12 or 13. For on the one hand if we place

12 points on the surface of the sphere so that they form

the vertices of a regular icosahedron, it can be checked

that the minimum distance constraint is not violated; and

on the other hand, given the N points lying on the sphere,

if we draw a circle round each of great circle radius 1/6,

our condition implies that they do not intersect. But the area

of each such circle is (2-/3)m, so we have N(2-73)m < 4m

and hence N < 8+4/3, which forces N < 13.
- The solution of the problem we give is due to Leech [1]

and is a variation on a method used by van der Waerden and

Schiitte [3] , which we will briefly discuss later. Basically

the idea of the proof is to consider areas in some detail

and hence to reduce the problem to an elementary question

in graph theory. Before we embark on the proof, however,

we recall some results about spherical triangles. If AABC

is a spherical triangle on a unit sphere, with all edges

great circles, then

(i) sin a = sin b = sine (Sine Rule)

sin a sin 8 sin y

 
 

(ii) cos c = cos a.cos b + sin a.Sin b. sin y
(Cosine Rule)

(iii) Spherical area of AABC =a+8+ Y ~- T-

(See Figure 2). A

(KAA B - C
Fret

Figure l y Figure 2   
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(Note that as AABC grows smaller, it approximates more
closely to a planar triangle and (i) and (ii) become the
familiar (planar) sine and cosine rules.)

Our proof proceeds by way of contradiction, that is we
assume Gregory was right and N=13. In the following all
the spherical distances are great circle distances anda
(spherical) line joining two points on our sphere is a
shortest great circle arc joining them (ambiguity can occur
only when the points are antipodal). We start by constructing
a graph on the surface of the sphere by taking the thirteen
given points as vertices and joining any two vertices whose
distance apart is strictly less than cos~1(1/7). We observe
that no edges of the graph cross, that is have a common
interior point; to show this it suffices to show that a
quadrilateral on the sphere with sides of length 7/3 must
have a diagonal longer than 1/2 (>cos7!(1/7)). Since the
distance between any two points inside the quadrilateral is
always less than the length of the longer diagonal and
since we can always construct an equilateral quadrilateral
of side 1/3 inside the quadrilateral, it is clear that we
may assume that it is actually equilateral of side 1/3. But
then it is clear that the length of the larger diagonal is
least when such a quadrilateral is regular; in which case,
by the cosine rule, the diagonal distance is 1/2.

The next step is to simplify the graph so that it
divides the sphere into polygons. We employ 2 strategies:
1. Each vertex may be moved so that it is joined to at

least 2 other vertices.
2. . We may ensure that the graph is connected, since if

the graph has more than one canponent we can slide
one of them across the surface of the sphere until one
of its points is within cos~1(1/7) of some point of
another component, thus reducing the number of
components.

Each angle of the polygons so formed is strictly greater
than 1/3: one merely needs to consider spherical triangles
AABC with sides a,b,c where a,b,c 2 1/3, b,c < cos7!(1/7) and
minimise ZBAC. The minimum (which is unattained in the graph)
occurs when a = 1/3, b = 1/3, c = cos!(1/7) and a = 1/3,
8 = 1/3, y = cos7!6¢1/7). Hence at most five edges meet in
any one vertex, that is each vertex has valency <5.

We now show, by considering areas, that all the polygons,
except for possibly one quadrilateral, must be triangles.
First of all we determine when the areas of the polygons are
minimised: -1

Triangle equilateral of side 1/3, with angles of cos (1/3)
and area =A = 3cos71(1/3) - 7 2 0.5513 by (iii).
Quadrilateral equilateral of side 1/3, one of diagonals

 

 
of length cos~1!(1/7) and area = 2(cos71(1/7) + 2/31-T)
> 1.334 by (iii).
Pentagon equilateral of side 1/3, with two diagonals .
emanating from the same vertex of length cos71(1/7) and
area > 2.226 by (iii).
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Thus if we define w, = (least possible area of an n-gon)-(n-2)A
we have w420.231 and wWw520.572. It is also clear that w,
increases with n, for given an (n+l)-gon of minimal area we
may remove a triangle formed by three consecutive vertices to
obtain an n-gon: shortening the new side of the n-gon if
necessary so that it is less than cos~!(1/7) can only decrease
the area and so the result follows by an easy induction
argument. Thus w,20.572 for n25d.

Now let V, E, F be the number of vertices, edges and faces
(=polygons) in the graph. By Euler's formula we have
V+PF=E- 2. Tet Fy, = number of n-gons in the graph. Then
F=F3 + Fg + ... and 2E = 3F3 + 4F4, +... Euler's formula now
gives 2V-4 = Fz + 2F4 + 3F5 + ...

Furthermore the area of the sphere is equal to the sum of
the areas of the polygons in the graph, so

ae (wi + (n-2)A)F. = (2V-4)A + (W3F,+w,F jt...)

2 22x0.5513 + 0.231F4 + 0.572 (w5+..)
So 0.231F4 + 0.572(F5 + ...) < 0.438, and hence F,4=0' or 1 and
Fo=Fe= .-- =0. So all the polygons are triangles except for
possibly one quadrilateral.

Case 1: All the polygons are triangles We have F3=2/3 E
and by Euler's formula 13+2/3E = E + 2. Hence E = 33 and the
average number of edges at each vertex is 66/13>5, a
contradiction.

Case 2: Qne polygon is a quadrilateral By Euler's formula
we obtain F3=20, E=32 and all vertices have valency five
except for one which has valency four. This configuration,
however, can never arise on the surface of a sphere for
topological reasons: to verify this one should sit down with
Pencil and paper for an hour or two and just try to construct
such a system (the proof is elementary, but rather long
and tedious). This contradiction shows that Newton was
right and completes the proof. ,

The proof of van der Waerden and Schutte ( [2], [3B] ) also
uses graph theory. They consider the smallest sphere (of
radius r say) on which 13 points can lie separated by an
(actual) distance of at least 1. Their graph is formed by
joining all points which are separated by a distance of
exactly 1 - as before edges do not cross. However, instead
of simplifying the graph, they split it up. To be more

Precise they define a point to be removable if it can be
displaced a small distance so that its minimum distance
from all other vertices is strictly greater than 1. The
graph can thus be transformed so that it is the disjoint
union of isolated points and irreducible (connected)
components: plainly not all vertices can be isolated by the
minimality of the sphere. Assuming that r<l, they show
that the graph consists only of one irreducible camponent,
containing only triangles, quadrilaterals and pentagons all
with intevor angles less than 180°. Furthermore the
graph can only contain one pentagon or one regular
quadrilateral and not both together. A contradiction is
then produced by considering excess areas as in our proof.
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The thirteen spheres problem has been much generalised -
it leads naturally into such subjects as the packing of
spheres. More specifically, however, one can ask how many
spheres of the same size can simultaneously touch a unit
sphere, if one allows the size of the smaller spheres to
vary; equivalently, let N(¢) be the largest number of points
on the unit sphere which are separated by a spherical distance
of at least > - can N(¢) be determined? In fact, N(¢) has
been determined almost completely for ¢225° and some useful
upper and lower bounds due to Fejes Toth and van der Waerden
are known (for a full discussion see |4] ). One would also
like to know in what configurations the points must lie for
those critical values of $ for which N(d) 'jumps' between
integers. In connection with these jumps, it is interesting

to note that if 5(or 11) spheres of equal size can
simultaneously touch a unit sphere, then so can 6 (or 12)

spheres of the same radius.
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"Our new postman is not very efficient. On each of
Monday and Tuesday there was one letter addressed to each
house in the street, and indeed the postman delivered one of
them to each house, but on Monday Alf was ... Bert, while on

Tuesday Charlie was ... Dave."
In this extract from a letter from my friend Ed, I have

replaced by dots two passages, each consisting of "the person
who got the letter addressed to" written several times, 1%
times as many in one passage as in the other. I know the
number of houses in Ed's street, so I could deduce that the
postman delivered all the letters incorrectly on just one of

these days.
How many houses are there in Ed's street?
(It may be assumed that the people mentioned by name live

in different houses in the street.)

a 
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Magnetic Monopoles

by Dr. P. Goddard

From time to time reports that magnetic monopoles have

been discovered reach the front page of the newspapers. In.
1975 it was claimed that the track of a magnetic monopole
had been seen in observations of cosmic rays using balloon
borne detectors over Sioux City, Iowa. However it is very
difficult to distinguish a magnetic monopole from a heavy
nucleus using such apparatus and this claim is now generally
discounted. Although experimental evidence for their existence

is lacking, magnetic monopoles are objects of considerable
theoretical interest and this has been further enhanced in the
last four or five years.

Maxwell's equations contain a tantalising asymmetry
between electricity and magnetism. Whereas the electric
charge and electric current appear in the equations

(E,=c= 1), V.E = 9, VaB-E=j, (1)

magnetic charge and magnetic current are explicitly excluded
by the equations V.B=0, VAE+B=0. (2)

In vacuo, the equations are symmetric under the transformation
E>B, B>-E. This symmetry could be restored when charges are
present if we introduce a hypothetical magnetic charge density,
o, and magnetic current density, k, replacing equations (2)

PY V.B=0, VaAE+B=-k, (3)
and adding (9,j)-(0,k), (o,k)+(-p,-j) to the transformation law.

One cannot object to this modification (i.e. the
replacement of equations (2) by equations (3)) of classical
electrodynamics on the grounds of lack of consistency. In
some ways it would be less easy to handle since equations (2)
are essential to justify the introduction of the electro-
magnetic potentials $» and A, and these are convenient in
solving problems. While at the classical level one might
wonder why nature should fail to exploit this potential
symmetry, it is necessary to progress to the quantum mechanical
level to see why the existence of magnetic monopoles would be
so significant theoretically.

The modern theory of magnetic monopoles begins with a
paper of Dirac published in 1931. Dirac was trying to
generalise quantum mechanics and he found that his efforts
led naturally to the existence of magnetically charged
particles whose magnetic charge, g, must satisfy

qg = 27fn (4)

where q is the electric charge of any other given particle,
h is Planck's constant and n must be an integer. This is
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Dirac's celebrated quantisation condition for magnetic charge.
Elementary number theory immediately gives than any electric
and magnetic charges occurring would have to be multiples of
some basic units, qo and go, respectively, satisfying equation
(4): GoJo = 2T™HN, for some integer N.

Thus Dirac's argument shows that the existence of a
Single magnetic monopole would imply the quantization of both

electric and magnetic charge (that is that they should both
occur in multiples of some basic units). Electric charge
quantization is one of the striking facts observed in nature
for which a compelling theoretical reason is, as yet, lacking:
the charge of each observed particle is an integral multiple
of the charge on the electron. The most attractive aspect of
the observation of a magnetic monopole is that it would make
this observed fact a theoretical necessity.

Arguments leading to the Dirac condition (4) may be given

at various levels of sophistication and rigour. In the present
article I have only space for the most naiive. Consider a
particle of mass m and electric charge q moving in the field
of a fixed magnetic monopole of strength g situated at the

 

 

origin. The equation of motion is

mi = qra B= G4, rar (5)
Although the magnetic field is spherically symmetric, the

conservation of angular momentum does not quite take the
usual form. In fact the rate of change of the particle's

angular momentum is

d_ ". _ 4g . _ 4 gg

where f = r/r, the unit vector in the r direction. So what is
conserved is J=xra mr _ we ge (7)

It may be shown quite easily that the second term in equation
(7) is the angular momentum of the complete electromagnetic
field and so J is the total angular momentum of the system.

Now, in quantum mechanics, all components of angular momentum
have values which are integral multiples of h, or at worst *h.
If this applies to the component of J in the direction of r,

e.g = - 2
a= At

we obtain Dirac's condition (4) immediately.
Dirac drew attention to the fact that his quantization

condition meant that the ratio of the force between two
magnetic poles to that between two similarly placed electric

charges would be large, being

a

22-2 1,2 qf ,-2
Jo Ig = GN aie)

if the charges are the smallest possible. If qg equals the
charge on the electron, q6/4m is the fine structure constant,

a, which is approximately 1/137, giving the ratio as about
500 N2. Thus although there is a theoretical symmetry
between electricity and magnetism, using the observed value
of the fine structure constant, we see that there will be
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quantitative asymmetries in practice. The larger force shald
mean that it is more difficult to separate particles with
opposite magnetic charges than their electric counterparts.
Further, since the strengths of a particle's interactions are
thought to be reflected in its mass, magnetic monopoles should
be much heavier than electrons. These may be the basic reasons
why they have not been observed.

During the last twelve years various theories have been
proposed which unify the "weak" nuclear forces, which are
responsible for phenomena such as nuclear §8-decay, with
Maxwell's theory of electromagnetism. In 1974 a Dutch
physicist, G.'t Hooft, and, independendently, a Russian,
A. M. Polyakov, pointed out that in certain of these unified
theories, solutions corresponding to magnetic monopoles exist.
These magnetic monopoles are solutions to the classical
version of these theories, before quantum mechanics is taken
into account. They are not point particles but objects with a
certain (very small) spatial extent. At the classical level
they have a definite calculable mass.

Our knowledge of the quantum mechanics of such theories is
incomplete but certain comments can be made with reasonable
confidence. Firstly, each of the fields in the theory can be
thought of as made up of particles quantum mechanically, just
as the electromagnetic field is made up of photons.
Electrically charged elementary particles will enter the
theory in this way; in particular, one will obtain particles

conventionally called W bosons, which, although electrically
charged and massive, mediate the "weak" interactions in the
same way that the photons mediate electromagnetism. Secondly,
we shall expect to obtain quantum particles corresponding to
the classical magnetic monopole solutions. The Dirac condition
(4) seems to be built in from the beginning, ensuring
consistency. The mass of the magnetic monopole can be shown
to be at least 30 times that of the W boson. The W boson
itself is still hypothetical, though its discovery is
confidently anticipated by many theorists. Its mass must be
considerably more than 20 proton masses. This puts the
monopoles of 't Hooft and Polyakov way beyond the range of
most current observations.

These new theoretical ideas open up a whole range of
speculations. Itis possible that these new theories of
Magnetic monopoles are equivalent, at the quantum mechanical
level, to "dual" theories in which the roles of electricity
and magnetism are reversed. In the dual theories the electrical
charges would appear first as classical extended objects. This
introduces the possibility of a dual symmetry (indeed a new
kind of wave-particle duality) between forces of disparate
strengths. Such a symmetry might even explain the relationship

between the "strong" and "weak" nuclear forces. But for the
moment this is merely piling speculation upon speculation.
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et in Cantabrigiense ego...

by Ambrose Bonwicke (1715)

BLS: is observable that among the university men that
almost half of them are hypt (as they call it), that is,
disordered in their brains, sometimes mopish, sometimes wild,
the two different effects of their laginess and debauchery. If
there be a sober and diligent tutour, he is affronted, abus'd,

injur'd: and when he is so he can find no redress, but brings
On himself a greater odium, as in the case of Clare Hall. It
May be added that there is no restraint or check on these
disorders, but impunity reigns every where, and the most
extravagant behaviour is not reform'd. A fellow of St. John's,
a rector of a parish not far off of Cambridge, a nephew of an
archbishop, runs up and down the country, is at all hors-
matches and cockfightings, appears in grey clothes and a
crevat. Yet he is not check'd either by the diocesan or the
college, though this behaviour is both against canon and
statute.

With the immorality of these academics is joynd prophaness
and impiety. I have heard them with these ears swear and curse
and damn like hectors: and nothing is more usual with them in
their common conversation. And this prophane swearing prepares
them for that breach of oaths of another nature, which they
are guilty of. They solemnly swear to keep the statutes of the
university, and of their particular colleges, and yet live in
a most visible violation of them, them I mean which respect
not only their manners, but their exercises: but at the end
of the year they meet in the Regent house, and are absolvd by
a priest without shewing any signs of repentance. They shew
little regard and reverence for the Lord's day: on all Sundays
in the afternoon they go immediately from the church to the
coffee-houses, as if they thought it were but passing from one
place of diversion to another. Though there was her majesties
proclamation against prophaning this day, in which persons
were particularly forbid to go to coffee-houses, yet the

vice-chancellor and clergy take no notice of it, but act
contrary to it. And whether the undergraduates and scholars
repair to church on this day, or stay at home, is little
minded by their tutours: but when they go, every body knows
of it, for they talk aloud in the church, they laugh, they
most irreverently behave themselves even in the time of divine
service. If they meet not with the desirable spectacle, they
run out of the church as if they were frighted: and their
practice is to ramble up and down from church to church
throughout the town, to gaze on the young women, and (as some
of them are wont to confess) to tell how many patches they
wear.
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Pell’s Equation
by R. C. Mason

"'?Twas graduation day, and all the scholars about to

graduate were assembled in the First Court. As he was
inspecting them, the Senior Tutor, a man of no mean
mathematical ability, suddently noticed that those scholars
present could be formed into squares of equal size, and
numbering forty one. Delighted with this observation, he

formed the groups accordingly.
A sorry figure stumbled into the court. The Senior Tutor

was furious, and berated him: "Late again, Shufflesworth, you
Miserable specimen." The Senior Wrangler however, was able to
prove his reputation, and spoke thus: "Surely, Professor, if
we re-form into one large group we shall make but one perfect
square." "

Who was the Senior Wrangler?
We are required to solve m2 - 41 n* = 1 in integers.
Plainly 6n < m < 7n, so if m = 6n + a, then 0 < a <n and

-5n* + l2an + a’ =]
It follows that 2a <n < 3a, so if n = 2a + b, then 0 < b<a

and 5a* - Bab - 5b* = 1
Then, if a = 2b +c, 0 <c <b and -b* + 12be + 5c* = 1.
Then, if b = l12c + d, 0 <a <c and 5c* - 12ca - a” = 1.
Then, if c = 24 +e, 0 <e < d and -5d” + Bde + 5e* = 1.
Then, if d = 2e + f, 0 < £ < e and e* - 12ef - 5f7% = 1.
which is just the Euclidean algorithm. Now we write
M =e - 6f and N = f, and then M@ - 41 N42 = 1.

2049 M + 13120 N (4)
n 320 M+ 2049 N

and it may be verified directly that . M?-41N7=1 »>m?-41n7=1.
Thus every solution is obtained by successive applications of
the transformation (*) to the trivial solution m= 1, n= 0.
In other words, if we write m 2049 m, + 13120 n

t+1
Nea = 320 my + 2049 n,

m= 1, nom o = O, then the set {(m ny): t « NN} is just the

set of solutions. It is immediate that

Also we have, on substitution, m

m, = 5 [(2049 + 320/f1)* + (2049 - 320/%1)*]
- _l t _ _ tand on, = x99, [(2049 + 320,41) , aes 320471) *)

that is, m +n, vY4l= (m, + n, 741) °
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It is clear that the above gives an algorit for peceuesng
all the solutions to equations of the form m“ - dn¢* = 1, for
da fixed integer.

There is a short cut to this solution, which is to observe
that substituting c = 0, b = 1 gives m = 32, n = 5 a solution

of m? = 41n? = -l1, squaring which gives m4 - 82n“m2 + 417n4 = l,

that is (m* + 41n*)? - 41(2mn)* = 1, and m. = 2049 = m* + 41n’,
n, = 320 = 2mn follows. 1

We gain a little insight into this apparent coincidence
if we consider 2[/41] = {a +b V41: a,b € 2} as a subring of
€. We can define N: 2[V41] + 2 by N(a + bY41) = a2 - 41b2,
and N is clearly multiplicative, that is N(xy) = N(x)N(y).
We are looking for solutions of m2 - 41n¢ = +1, i.e. N(x) = +1,
where x = m + nv4l1, which is to say x is a unit of z({/Y41).
Then if N(m + nV41) = -1, N((m + nV41)2) = 1, whence the
short cut.

Reasonable proficiency can be acquired in the use of the
algorithm, and the reader may care to try his hand at
m2 - 53n2 = 1 and m2 - 19n2 = 1. The ambitious and numerically
perfect may care to attempt m2 - 94n2 = 1, for which the
smallest known solution is m = 2143295, n = 221064 (that is,
for m and n strictly positive).

The algorithm may be somewhat simplified by taking a
(very) slightly different approach. Define the continued
fraction of a positive number x as a sequence of positive
integers r,,Y5,%3,--. and write x = Cri rforX3--- J

where r,is defined inductively as follows: Let x, = x and
r, = [x]+, and for i > 0 define x,,,=1/(x,-r,) if x, > 4

i i

otherwise definex,.1=0 and then define Ya417 (x,444 .

Then x = ry + TT and so by an abuse of notation we
th. t=
2 Tatece

may write [a,1a5,--- a7] for [ay ragre ee ray rTyrlore ee] .

For a rational m/n the continued fraction is necessarily
finite (that is rj is eventually zero) and the calculation
is the same as the Euclidean algorithm for determining the
HCF of m and n. For example, 32/5 = [6,2,2] and
2049/320 = [6,2,2,12,2,2] , which agrees with our original
calculation. 5 5

We now make a small observation, namely that if m’-4ln’=1
then m2/n2 - 41 = 1/n2 and som/n is a good approximation to
J41. We may now reasonably guess that the continued fraction
forJ41 is intimately connected with that for m/n. Indeed,
it is not hard to see that the calculations are essentially
the same. It so happens that by a stroke of ‘luck' the
continued fractions for square roots are quite easy to
calculate.

= Y4l,Put x =/41, and note that 6 < Y4l1 < 7. Then xX)
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| v41 + 6 v41 + 4 nr
r = 6, Xo ——5 x = Ze X34 ——5¢ 5 a 23 ay = 41+6,
1 2

r, 12 and x, =x,. Thus 41 = [6,2,2,12,2,2,12,2,2,-..] .
It is to be noted that only the approximation 6 < v4l < 7
was neededto calculate the continued fraction, which is to

Say no x, = av4i+bgor [a] > 1 occurs. We will see that
there is no mere coincidence.

If Y41 = [6,2,2,12,2,...,2,2,x+6] then x = /41 and we
on . 3n terms

Y4j = SX“2 where 2 = [6,2,2,1 2,2]also see that or a at @ es [6,2,;2,1l2Zy,ccer2y

(obtained by formally putting x = ~). Then it is easy to
show that a = d, b = 4lc.

+
We define, for z(y) = Py=~9 A(z(y)) = ps - qr.

x

 

 

ry + s’
(p,q,x,s integers with no factor common to all). Plainly

A(z(y) - 1) = A(z(y)) = - A(l/z(y)). (@)

Hence, if z(y) = + : = ayAls, we obtain by

successive applications of (@) that A(z(y)) = (-1) 37 = (-1)",
But for n even this is exactly what we want, for then
A(z(y)) = a2 - 4lc2 = 1. If n = 1 we recover a = 32, c= 5, a

solution of a2 - 41c? =-1.
We now see why we had that stroke of 'luck'. In

calculating the continued fraction for v41, we had occasion
to consider the integer part of x}. By taking n large enough,

we can use the above to write x,=e, for some integers

P,g,r,S given by the continued fraction. Upon rationalising

: _ p¥41_ +q _ (ps-qr)/41 + (gs-4lpr).
the denominator we have x5 Jil se = 5 aan

eo. s - 41 rx
and since ps-qr = (-1)? tA (z) = (-1)*+ 1 we have the stroke.

Thus in general the most efficient way to solve Pell's

 

equation, m? - an? = 1, in integers, is to take m/n as a
suitable truncation of the continued fraction for 4d.

We end with a glance at a generalisation. It has been
remarked that the solutions of a2-41b2=+1, are, when written

as a + bvY41, the (group of) units of Zz [/41] , and the
algorithm shows directly that this group must be isomorphic
to Co x Co, where Cp is the group generated by -1 and C, is
an infinte cyclic group, generated by (32 + 5/741), given by
the smallest solution of a2-41b2=+1 in positive integers.
Indeed, the algorithm also shows that the group of units of

a(va] is isomorphic either to Cp x C, or to Co (although it
does not show that the latter occurs only when d is a perfect
square). This result is a special case of Dirichlet's Unit
Theorem in the case that d is square-free and d = 2 or 3 (4),
for in this case a[va] is a ring of algebraic integers.
Dirichlet's Unit Theorem states that the group of units of
a ring of algebraic integers is isomorphic to W x F, where W is
a group of roots of 1 and F is a free Abelian group of finite
rank, which is 1 in the case of 2{/d] .
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Lecture-Dynamics
by P. Verschuéren

This paper attempts a brief introduction to one of the
newest and most rapidly growing fields of mathematics, that
of Lecture Dynamics. A full account of the foundations and
development of this subject is given in the survey article
by N. Paulver in the British Association of Lecture Dynamics

Quarterly Vol. I pp. 2-3.

Basic Definitions Lecture-Dynamics comprises the study of the
way in which a lecturer proceeds along a lecture course, of
the mode of transfer of information, and of the induced flow
in the students' notes. Collation and analysis of data
concerning lecture courses as integral units, without
reference to their internal dynamical systems, forms the
Objective of the complementary science of Lecture-Statistics,
usually called Lecture Statics.

Terminology We say that a theorem A is (logically) implied
by a theorem B, if the result of B can be used as a

j (n irredundant) step in the proof of A, written Bé€«A.
q The set of the theorems with the ordering relation of
f logical implication defines the logic space. The equivalence

class of a theorem is the set {B:B < A and A < B}; A and B
are then said to be equivalent.

A path is defined as any sequence of theorems in the
space. The path is continuous or connected if each theorem
of the path is logically implied by its predecessor.

Basic to all the work in Lecture-Dynamics and related
fields is the need to isolate quantitative variables which
are measurable in the physical environment. This is
equivalent to defining a metric on the logic space.

 

Fundamental Lemma The logic space is metrisable.
Proof We define the following system of measurables and
units.

The lecture motive force, E, of a lecturer, is the
force which causes information to flow from him to each
individual student. A lecture motive force of one Jolt
is the force required to overcome the (possibly very
complex) impedance to communication generated by holding a
standard nine o'clock lecture.

The inductance, L, is the ability of the audience to
Produce motivation in the lecturer. An inductance of one
Noose is that which produces a motivation equivalent to
that provided by a single coil (of rope) hanging from the
ceiling of the lecture room. This unit is far too large
for normal purposes, so we usually use a micro-Noose.

The ability of the lecturer to remain indifferent,
when a charge of incompetence or boredom is laid against

him, is termed capacitance.

  
 
 
Ra 
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The magnetic attraction of the lecturer's vice (normally
negligible) is denoted by B.

Then recent work leads us to believe that, statistically,
E = 2mL/C + B.

The direction and rate of flow of lecture delivery along
its course is denoted by j,(t). The unit of magnitude is
defined as that rate of flow along two infinitely long,
uniformly progressing, parallel lecture courses, which
produces a tension (or rivalry) between the lecturers of
one insult per lecture.

We have now constructed a system of measurement using
Systéme Internationale or S.I. units almost everywhere.
Elementary semantic analysis gives immediately that we
therefore have a metric space. Q.E.D.

The metric thus defined is called the Paulver-Lebesgue
metric. “

We now return to consider the transfer of information
from lecturer to student. Using j, as defined above, the

lecture course is defined by s(t) = 5 Jo (x) dx, called

the flow-path. We call the paths followed by the notes of
the students the note-paths, denoted s,,...,s, (for n
students). Obviously, under ideal conditions, these will
all follow the lecture course exactly, Or So = Sj = «..- = Sny-
However, information is of course quantized, so that, by
the Uncertainty Principle, miscommunication can occur,
causing a discrete jump in the student's notes toa
neighbouring connected path, so that the notepath is now
disconnected. The complete set of corresponding note-flows
Jor+++r,jJn are denoted by J, the flow tube. We now simplify
the situation by assuming the number of students, n, to be
large. The flow tube at time t\ then approximates a multi-
variate normal distribution, under the P-L metric, with mean
Jo(t). The variance of the distribution is clearly an
increasing function of time, so that the flow tube behaves
like a Gaussian wave packet. In fact the variance is here
the value of a rather more general measure (which applies for
any n), namely the divergence of the flow tube, V.J. Our
"ideal conditions" can now be expressed as V.J = 0, known
as the conditon for maximised, well-defined flow, or Maxwell

condition. The main aim of lecture-dynamics is to minimise
V.J.
' We are now in a position to state and sketch the proof
of the central theorem of Lecture-Dynamics.

Heineken-Borel Theorem In any lecture course, all note-paths
will eventually diverge from the flow-path, and tend in the
limit to Markov processes. The rate of divergence is directly
proportional to the proof density of the course. (Thus, in
general, the attempt to absorb courses of high proof content
will rapidly induce random walks.)
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Sketch Proof: Apply the flow equation. To show Markov, use
Kolmogorov's 0-1 Law, and the lack-of-memory property of the

students.

We conclude this paper with an example of some recent. work

in the field.
We define a Russell subject as one in which all lemmata

are finitely generated and of essentially bounded proof-
length. Henceforth we shall restrict our attention to such

subjects.

Theorem (Hopkins-Morris BALD Quar. Vol. VII pp 63-68). The
eventual power spectrum of any simple well-formed course in
a Russell subject is invariant under finite timetable

transformation.

Proof Since the subject is Russell, the set of essentially
different theorems is finite, Ng say. But each final note
path is a random walk (Heineken-Borel) and so these theorems
will generate the note-path space which thus has dimension

No. Now by a corollary of the Kurtz-Siegfried lemma
(BALD Quar. Vol. II pp 37-39), this means that any finite
transformation can be expressed as a finite composition of
alternating lecture transpositions without affecting the net
final divergence (since the course is simple). But the course
is also well-formed so that it must be motivation and
communication invariant under such transpositions. Thus the
final divergence and associated power spectrum are invariant.

Q.E.D.

Corollary Since all positive-valued courses can be expressed
as a direct Cantor sum of simple, well-formed courses, it
follows that only degenerate courses are affected by finite

transformations.
Hence we see that the uniformly most powerful syllabus

contains only Russell subjects lectured in a non-degenerate

manner.

 

A convex polyhedron P, with just nine vertices A,,...,Ag

is given. P; is a polyhedron obtained by translating Py
through the vector A\A,;, for i=1to9. Prove that at least
two of the polyhedra Pj,P5,...,Pg have some interior point

in common.

A soldier has to test an area of a region shaped like an
equilateral triangle, including its boundary, for mines. His
detector has a range of half the altitude of the triangle.
Starting from one vertex, what is the shortest path for him

to take such that he scans the whole region.

i 
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Book Reviews

Proofs and Refutations: The Logic of Mathematical Discovery

by Imre Lakatos
£7.50 (Hardback), £1.95 (Paperback) 1976 C.U.P.

This is a serious study of the methodology of mathematics
written in the form of a discussion between teacher and
students on the Euler conjecture that for a polyhedron
vertices, edges and faces are connected by V - E+ = 2.
The discussion largely mirrors historical devélopment;
throughout Lakatos presses the view of mathematics as a
growing, maturing study, rather than a series of infallible
deductions from basic axioms, which has always been
considered the essence of mathematics.

The first problem we face is: given a proof of a
conjecture, what do we do in the face of a counterexample
which contradicts it? We can reject the conjecture; we can
reject the counterexample as a "monster"; we can compile a
list of counterexamples and thus construct a "region of
validity" of the conjecture; or we can analyse our "proof",
discover which lemma (explicit or implicit) in it is
contradicted by the counterexample, and modify the theorem
(not the proof) accordingly. This is the method of proofs
and refutations; by it a succession of counterexamples leads
to a creative refinement of our knowledge. That this last
course is the best seems obvious; but in an appendix we are
shown that it was lack of appreciation of this which was
responsible, among other things, for the inordinate difficulty
nineteenth-century mathematicians found in correcting
Cauchy's "theorem" that "the limit of a convergent series of
continuous functions is continuous", when contradicted by
series due to Fourier, by inventing the concept of uniform
convergence.

This is an immensely readable and very comprehensible
book; a second-year undergraduate would cope with it easily,
although it will make its deepest appeal to those whose
special interest is foundations of mathematics and
metamathematics generally. It is a book which has made me
think.

O. L. C. Toller

A First Course in Abstract Algebra
by P J. Higgins
£4.50 (Hardback), £2.25 (Paperback) 1975 Van Nostrand

Professor Higgins has set out to write a book in which
"the student's first encounter with any new mathematical
concept ... (is) closely followed by a study of the
applications which justify its introduction", and in this
aim, at least, he has been largely successful (he admits,
and I am sure that the pun is unintentional, that "in the   
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case of rings ... there are some difficulties in achieving
the ideal"). The structures which he introduces are groups,
rings and fields, and the applications, which occupy a
considerable proportion of this fairly short text, include
separate chapters on factorisation and linear congruences in
the integers, polynomials over the familiar number rings, and
a study of Zand @ as canonical ring and field examples.
Even the more theoretical chapters are written in a very
concrete style, with copious, often unusual, examples
offered at every stage, but this does mean that the book
is rather short on solid material, so that, for instance, it
would not be adequate for any of the Cambridge algebra
courses.

In an elementary book of this sort, one might have hoped
for rather more exercises, and in particular more theoretical
exercises, since a course of abstract algebra should surely
leave the student able to handle confidently the concepts
involved, as well as giving him facility in calculation.
Finally, though no book is perfectly error free, it cannot
encourage the beginner to be presented early on with the
ambiguous statement "the composite function gof exists only
when the domain of g is the same as the range of f".

M. C. Davies

Dimension Theory of General Spaces
by A. R. Pears
£16.50 1975 C.U.P.

Everyone knows that the dimension of WR" isn. The object
of dimension theory is to define and investigate integer or
infinite valued dimension functions on more general classes
of topological spaces. These functions should assign the
same dimension to homeomorphic spaces and give the usual
result for the spaces RX. There are many plausible ways of
defining dimension functions, and this book gives a clear
account of their properties and interrelationships. In
particular, it contains the most lucid presentation that I
have ever come across of Prabir Roy's example of a metrisable
space with small inductive dimension equal to zero, but with
large inductive dimension and covering dimension both equal
to one. The printing is well up to the usual high standard
set by the CUP, and, at £16.50, this book is excellent
value for money. QMpage 141, one finds the following
proposition:

Let X be a normal regular space and let M be a subspace
of X which is weakly paracompact, normal and locally strongly
paracompact. Then dim M<dim X.

If you are at least a Part III student and if results
like this really turn you on, you should rush out and snap
up Heffer's last remaining copy of this book.

Dr. A. M. Tonge  ye
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Topos Theory
by P. T. Johnstone
£17.40 1977 Academic Press

Pure Mathematicians should be feeling their foundations
shaking beneath their feet. In recent years (as the blurb of
this book so quaintly puts it, "since the pioneering work ...
in 1969 and 1970") it has been realized that one gains a
much better understanding of many mathematical matters by
replacing the static concept of 'set' by a dynamic concept
of ‘variable set'. Benefits of this attitude include a
fertile interplay between geometry and logic (each enriching
the other) and a vast clarification of universal algebra.

This book provides a systematic introduction to the
theoretical details of this change of outlook. After a
summary of essential background: (merely category theory,
sheaf theory, and concepts originally motivated by
algebraic geometry) it gives the definition and properties of
the basic objects, elementary toposes, each of which can be
thought of as a suitable replacement, as universe of discourse,
for the category of sets. There follow chapters on
constructions within and without toposes; logical matters,
showing that the logic of toposes is not always 2-valued
(true, false), but rather close to that of intuitionism;
and concepts, such as cohomology, imported from the geometric
side. Especially important are the accounts of such basic

objects as natural numbers, real numbers, and algebraic
theories in a topos (where the attitude reveals, for instance,
the essence of the difference between the Dedekind-section
and Cauchy-sequence definition of real numbers); the study
of points of a topos, putting the logical Lowenheim-Skolem
and Godel-Henkin theorems into their (geometric) perspective;
and the account of forcing using toposes, leading to a topos-
theoretic proof of the independence of the Continuum
Hypothesis and (as an exercise!) of the Axiom of Choice.

Of course, the difficulty is that all this is
incomprehensible: the fate of most prophets in their own
time. This is not to say that the book is badly written: on
the contrary, in mathematical terms it is excellently
presented, and for erudition the phrase tour-de-force is
broyght to mind. But as the author himself writes: "The
average mathematician, who regards category theory as
"generalised abstract nonsense', tends to regard topos
theory as generalised abstract category theory". Contrariwise,
an understanding of even the basic attitude of the theory
requires a formidable background in several difficult areas
of mathematics. But given this, the book provides a splendid
introduction to one of the most exciting recent developments
in pure mathematics.

Dr. B. R. Tennison
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Newer Uses of Mathematics
edited by Professor Sir James Lighthill
£2.25 1978 Penguin

The pertinent word in the title of this very readable.
book is ‘uses'. Six eminent mathematicians describe
developments in that branch of the subject generally known
as applicable mathematics.

Professor Lighthill opens with his own chapter on the
Physical Environment, the section on numerical weather
prediction being verbatim the text of his talk to the
Trinity Mathematical Society in 1976. The chapter on finance
is written by Professor R. E. Beard, a prominent actuarial
theorist, in which the mathematical complexity of modern
accountancy, banking and investment is described. There are
four other chapters - on biomathematics, operational research,

networks and planning. Catastrophe Theory, however, is not
discussed in the book because it is "too new and too
technical", but an elementary account was given recently by
Professor Zeeman on television. A noticeable theme running
through the book is that of the parallel development of
applicable techniques and computer technology.

An excellent feature of 'Newer Uses’ is the bibliography
after each chapter, referring the interested reader to
introductory works on all topics covered. The book should be
easily within the reach of any sixth-former and I would
recommend it to every mathematician who does not see his work
applied to problems in the real world.

M. R. Kipling  
Nonlinear Ordinary Differential Equations
by D. W. Jordan and P. Smith
£12 (Hardback), £6.50 (Paperback) 1977 Clarendon Press

The theory of non-linear systems is one of wide
applicability to the physical, biological and social
sciences. This book is an elementary account of the theory
with a continual emphasis on problems of practical interest,
and a qualitative slant to the novel phenomena which obtain
in the presence of non-linear effects. The chapters form
fairly self-contained groups covering. two dimensional
systems and second order equations, small parameter singular
perturbations and forced oscillations, formal stability, and
the existence of periodic solutions in certain representative
equations.

The layout is tidy, comprehensive and readable, and there
are many examples both worked and as exercises. The result is
an excellent text which would be a useful accompaniment to a
course on Non-linear equatiqms at the 2nd or 3rd year
undergraduate level.

C. M. Noble  et
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Solutions to Problems Drive

10°82

ogy , a= 7, 8 or 9; n any positive integer.

7 ed eo

eet
eo ee e

9, 8, 7, 5, 4, ae l

439 1806725

166 spiders, 266 starfish, 2 tapeworms, 2553 cyclops
1. peacock and Macbeth's corpse.

y a) CoO ) © COO
"OOD OC) Wii) CCCOO)

ae, gy

(a) “n “n-2 “n-1
(b) if p. is the nth prime, u,= 2Pn 4 P, - so next

term is 8205.

(c) u. - 1 is the nth natural number with rotational
symmetry, so next term is 610.

   

, SO next term is -13.
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