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Foundations

Because, finally, he said:
*This is really great stuff'!
*And 1 guess the old alphabet
“ISN'T enough!”

DR. Seusst

§1 SETS, CLASSES, AND CONGLOMERATES

In the introductory chapter, we have seen that in category theory we are con-
fronted with extremely large *“‘collections™ such as *‘all sets”, “all groups”, or
“all topological spaces”. The reader with some set-theoretical background
knows that these entities cannot be regarded as sets. For instance, if % were
the set of all sets, then the subset A = {x| x € # and x ¢ x} of % would have
the property that A € A4 if and only if 4 ¢ 4 (Russell's paradox). A mathemati-
cian working, for example, in group theory or topology usually isn’t (and
needn’t be) bothered with these set-theoretical difficulties. However, it is essential
that those who work in category theory be able to deal with *‘collections™ like
those mentioned above. It is also advantageous that certain ‘““naturally arising”
categorical constructions not be outlawed simply because of foundational
considerations. There have been several attempts to find a suitable foundation
for category theory. Brief sketches of some of the currently used foundations
appear in the appendix. Each of them has its advantages and disadvantages
and it remains an open problem to design a foundation that is free of serious
disadvantages. What we desire at the moment is just a foundation that is
sufficiently flexible so as not to unduly inhibit our categorical inquiry and one
that we can be reasonably sure will not lead to paradoxes. Below we provide a
brief outline of the features we require of such a foundation. That this foundation
can indeed be realized is shown in the appendix. Thus, the reader with a good
background in axiomatic set theory should next read the appendix. The following
account is for those who, by necessity, must approach the subject on a more
naive level.

t From On Beyond Zebra, ¢. 1955 by Random House, Inc.
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1.1 SETS

Sets can be thought of as the usual sets of intuitive set theory (or of Zermelo-
Fraenkel or Godel-Bernays-von Neumann set theory). In particular, we require
that the following constructions can be performed with sets.

(1) For each set X and each “property” P, we can form the set {x | P(x) and
x € X} of all members of X having property P. (If P(x) is the property “x # x”,
this yields the empty set, denoted by &J.)

(2) For each set X, we can form the set 2(X) of all subsets of X.

(3) For any sets X and Y, we can form the following sess:
(i) The set {X, Y } whose members are exactly X and Y.
(ii) The (ordered)t pair (X, Y) = {{X}, {X, Y }} with first coordinate X
and second coordinate Y.
(iii) The union set X u Y.
(iv) The intersection set X N Y.
{v) The complement set X' — Y.
(vi) The cartesian product set X’ x Y.
(vii) The set Y * of all functions from X to Y.tt

(4) For any set 7 and any family (X});.,11t of sets, we can form the following
e (i) The image set {X;| i e I} of the indexing function.
(ii) The union set U X,
(iii) The intersection set ()Xo il # . '
(iv) The cartesian producltE ;et ]—! X,

(v) The disjoint union set [[ X; (= U (X; x {i}).
iel iel

(5) The usual “collections™:
N of all natural numbers
Z of all integers
Q of all rational numbers
R of all real numbers
are sets. So is each ordinal number and each cardinal number.

+ From now on, the word “pair” will mean “ordered pair™, “triple” will mean “‘ordered
triple”, and so forth.

1 A function from .\ to Y is defined to be a triple (X, f, V) where f < X x Y and for each
x € X there is exactly one y € Y such that (x, y) € £. The uniquely specified y is usually denoted
by » = f(x)or by x - y. Sometimes the triple (&, /, Y)isdenoted by /: X — Y or occasionally
(and inaccurately) by falone. A function is called injective if for each y € Y there is at most
one x & X such that f(x) = ». It is called surjective if for cach v € Y there is at least one
x € X such that f(x) = »; and it is called bijective if it is both injective and surjective. If
[ X= Y. Ac Xand Bc Y, then f[A) = {y]|for some x€ A, f(x) = y} and f~'[B] =
{x | for some v € B, f(x) = »}.

F++ A family (Xj)ie s (sometimes denoted by {Xj)r or even by (X)) is actually a function f with
domain 7 such that for each i€ 1, f(i) = X;.
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From the above considerations, we see, for example, that each group, each
topological space, and each lattice is a set. However, by means of the above
constructions, we cannot form “the set of all sets™, or *“the ser of all groups™.

1.2 CLASSES
To handle “large coliections” such as “all sets”, we require that:

(1) For each “property” P we can form a *‘collection” whose members are
exactly those sess that have property P. We call this the class of all sets with
property P and denote it by {x|x is a set and P(x)} (or more briefly, by
{x | P(x)}). For example, we can form the *‘class of all sets”, the “class of all
ordinal numbers”, and the “class of all groups™. Obviously, classes are precisely
the “subcollections™ of the class # of all sets. We will call % the “‘universe”.

(2) For convenience of expression, we also wish to regard sets as special classes.
(This can easily be achieved by adding to the above requirements for sets, the
additional requirement that each member of a set be a set.)t Those classes which
are not sets are called proper classes. Often sets are referred to as small classes
and proper classes are called large classes. This distinction between *small” and
*“large™ will turn out to be essential in many categorical investigations. Notice
that the universe % of all sets is a proper class and that Russell’s paradox now
translates into the harmless statement that the class of all sets that are not
members of themselves, is not a set but is a proper class.
(3) Given classes 4 and B, we can form the following classes:
(i) The unionclass 4 U B = {x|xe 4 or x € B}.

(ii) The intersection class A " B = {x | xe€ A and x € B}.

(ii}) The complement class 4 — B = {x| xe A and x ¢ B}.

(iv) The cartesian product class 4 x B = {(a¢,b)|ae A and b € B}.

(v) The disjoint unionclass 4 & B = A x {g} u B x {{T}}.
Hence, we can define functions between classes, equivalence relations on them,
and so forth.

(4) We will need the “class form™ of the choice axiom; namely:

Axiom of Choice for Classes.

Every equivalence relation on a class has a svstem of representatives.
Or, equivalently:

There is a function C: U — U such that for each non-empity set X, C(X) € X.
Notice that this implies the usual **set form™ of the Axiom of Choice.

1.3 CONGLOMERATES

If A is a proper class, then there exists no class that has A as a member
(since every member of a class must be a set). However, we will occasionally
need to consider “collections™ of classes. For this reason, we introduce the
broader concept of ‘“‘conglomerate™. Roughly speaking, conglomerates are

t This also implies that if the pair (x, ») is a set, then so are v and y.
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“collections” having classes or conglomerates as members. In particular, we
require that:

(1) Every class is a conglomerate.

(2) Conglomerates are closed under the usual set-theoretic constructions
outlined above (1.1); i.e., they are closed under the formation of pairs, unions,
products, etc.

Thus we can effectively treat conglomerates in the same manner that we treated
sets; we can construct functions between them, equivalence relations on them,
etc. There is the temptation, of course, to form the *“cartel” of all conglomerates.
However, assuming that our primary interest lies with “usual categories”,
such as the category of all sets or the category of all topological spaces, we will
not need to consider such an entity.



