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Abstract

In this paper, we consider determinants for some families of Toeplitz–Hessenberg matrices having
various translates of the Fibonacci and Lucas numbers for the nonzero entries. These determinant
formulas may also be rewritten as identities involving sums of products of Fibonacci and Lucas
numbers and multinomial coefficients. Combinatorial proofs are provided of several of the deter-
minants which make use of sign-changing involutions and the definition of the determinant as a
signed sum over the symmetric group. This leads to a common generalization of the Fibonacci and
Lucas determinant formulas in terms of the so-called Gibonacci numbers.
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1. Introduction

Let Fn denote the n-th Fibonacci and Ln the n-th Lucas number, both satisfying the recurrence

bn = bn−1 + bn−2, n ≥ 2,

but with the respective initial conditions F0 = 0, F1 = 1 and L0 = 2, L1 = 1 (e.g., see Koshy
(2017)). In this paper, we find some new relations involving the Fibonacci and Lucas sequences
which arise as determinants of certain families of Toeplitz–Hessenberg matrices.

Formulas relating determinants to Fibonacci and/or Lucas numbers have been an object of recent
interest. In some cases, these sequences arise as determinants for certain families of matrices hav-
ing integer entries, while in other cases these sequences are the actual entries of the matrix whose
determinant is being evaluated. For example, Öcal et al. (2005) studied determinantal represen-
tations of k-generalized Fibonacci and Lucas numbers and obtained as a result Binet’s formulas
for these sequences. Janjić (2010) considered a particular type of upper Hessenberg matrix and
showed its relationship with a generalization of the Fibonacci numbers (see also related work by
Bicknell-Johnson and Spears (1996)). Cereceda (2014) later provided some determinantal repre-
sentations of the general terms of second and third-order linear recurrent sequences with arbitrary
initial conditions and similar work has been done by Kaygısız and Şahin (2012) for Fibonacci-type
numbers in conjunction with various Hessenberg matrices. Civciv (2008) studied the determinant
of a five-diagonal matrix with Fibonacci entries, while in Tangboonduangjit and Thanatipanonda
(2016), determinants of matrices whose entries are powers of the Fibonacci numbers were consid-
ered. For further examples of combinatorial determinants, we refer the reader to İpek (2011), İpek
and Arı (2014), Jaiswal (1969), and Kılıç and Arıkan (2017).

In this paper, we provide determinant formulas for Toeplitz–Hessenberg matrices whose (i, j)-th
lower triangular entries are of the form Fi−j+c or F2(i−j)+c for various c. Comparable formulas
are then ascertained for the Lucas numbers and multinomial analogues are also discussed. Fi-
nally, combinatorial proofs which make use of parity-changing involutions and the definition of
the determinant as a signed sum over the symmetric group are provided for several of the iden-
tities. Adapting the combinatorial arguments yields general determinant formulas involving the
Gibonacci numbers.

2. Toeplitz–Hessenberg matrices and determinants

A lower Toeplitz–Hessenberg matrix is a square matrix of the form

Mn(a0, a1, . . . , an) =


a1 a0 0 · · · 0 0
a2 a1 a0 · · · 0 0

· · · · · · · · · . . . · · · · · ·
an−1 an−2 an−3 · · · a1 a0
an an−1 an−2 · · · a2 a1

 , (1)

where a0 6= 0 and ak 6= 0 for at least one k > 0. This class of matrices has been encountered in
various applications (e.g., Merca (2013), Vein and Dale (1999) and references contained therein).
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Expanding its determinant, which we will denote by det(Mn), repeatedly along the first row, we
obtain the recurrence

det(Mn) =
n∑
k=1

(−a0)k−1ak det(Mn−k), (2)

where det(M0) = 1, by definition.

To simplify notation, we write det(a1, a2, . . . , an) in place of det
(
Mn(1, a1, a2, . . . , an)

)
.

In the next two sections, we evaluate det(a1, a2, . . . , an) in which the entries ai are various trans-
lates of the Fibonacci or Lucas sequences (or of the respective half sequences).

3. Toeplitz–Hessenberg matrices with Fibonacci entries

The following theorem gives the value of det(a1, a2, . . . , an) for several Fibonacci entries ai. Re-
call that the n-th Pell number Pn is defined recursively by

Pn = 2Pn−1 + Pn−2, n ≥ 2,

where P0 = 0 and P1 = 1 (see Koshy (2014)).

Theorem 3.1.

Let n ≥ 1, except when noted otherwise. Then

det(F0, F1, . . . , Fn−1) = (−1)n−1, n ≥ 2; (3)
det(F0, F2, . . . , F2n−2) = (−1)n(1− 2n−1); (4)

det(F1, F2, . . . , Fn) =
1− (−1)n

2
; (5)

det(F1, F3, . . . , F2n−1) = (−1)n−12n−2, n ≥ 2; (6)
det(F2, F3, . . . , Fn+1) = 0, n ≥ 3; (7)
det(F2, F4, . . . , F2n) = (−1)n−1n; (8)

det(F3, F4, . . . , Fn+2) = 1, n ≥ 2; (9)
det(F3, F5, . . . , F2n+1) = (−1)n−1, n ≥ 2; (10)
det(F4, F5, . . . , Fn+3) = n+ 2; (11)
det(F4, F6, . . . , F2n+2) = 0, n ≥ 3; (12)

det(F5, F6, . . . , Fn+4) =
(2 +

√
2)n+2 + (2−

√
2)n+2

8
; (13)

det(F5, F7, . . . , F2n+3) = Pn+2. (14)

Proof:

We will prove formula (13) using induction on n. The other identities may be established in a
similar manner, so we omit their proofs for the sake of brevity. Clearly, formula (13) works when
n = 1 and n = 2. Suppose it is true for all k ≤ n− 1, where n ≥ 3.
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Let Dn = det(F5, F6, . . . , Fn+4). Using recurrence (2), we then have

Dn =
n∑
j=1

(−1)j−1Fj+4Dn−j

=
n∑
j=1

(−1)j−1 (Fj+3 + Fj+2)Dn−j

= F4Dn−1 +
n∑
j=2

(−1)j−1Fj+3Dn−j + F3Dn−1 − F4Dn−2 +
n∑
j=3

(−1)j−1Fj+2Dn−j

= 3Dn−1 −
n−1∑
j=1

(−1)j−1Fj+4Dn−j−1 + 2Dn−1 − 3Dn−2 +
n−2∑
j=1

(−1)j+1Fj+4Dn−j−2

= 3Dn−1 −Dn−1 + 2Dn−1 − 3Dn−2 +Dn−2

= 4Dn−1 − 2Dn−2

= 4 · (2 +
√
2)n+1 + (2−

√
2)n+1

8
− 2 · (2 +

√
2)n + (2−

√
2)n

8

=
(2 +

√
2)n+2 + (2−

√
2)n+2

8
.

Consequently, formula (13) is true in the n case and thus, by induction, it holds for all positive
integers. �

Note that formula (5) above is well-known (for example, see Merca (2014) and Goy (2016) as well
as a result of Macfarlane (2010) having (5) as a special case).

4. Toeplitz–Hessenberg matrices with Lucas entries

Next, we investigate the Lucas counterparts of some of the results from Theorem 3.1.

Theorem 4.1.

Let n ≥ 1, except when noted otherwise. Then

det(L0, L1, . . . , Ln−1) =
5 · 2n − 2(−1)n

6
; (15)

det(L0, L2, . . . , L2n−2) =
10− (−2)n

6
; (16)
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det(L1, L2, . . . , Ln) = (−1)b
n

2
c · 3 + (−1)n

2
; (17)

det(L1, L3, . . . , L2n−1) =
(1 + 3i)(−1− i)n + (1− 3i)(−1 + i)n

4
; (18)

det(L2, L3, . . . , Ln+1) = 5 · 2n−2, n ≥ 2; (19)

det(L2, L4, . . . , L2n) =
5− (−1)n

2
; (20)

det(L3, L4, . . . , Ln+2) = 5 · 2n−1 − 1; (21)
det(L3, L5, . . . , L2n+1) = 5, n ≥ 2, (22)

where i =
√
−1 and bαc is the floor of α.

Proof:

We will prove (18) using induction on n; the others may be shown inductively by comparable
arguments. When n = 1 and n = 2, the formula holds. Now assume (18) holds for all k ≤ n− 1,
where n ≥ 3.

Let Dn = det(L1, L3, . . . , L2n−1). Using (2) and the well-known formula L2k =
k∑
s=1

L2s−1 + 2

(see, e.g., Koshy (2017)), we then have

Dn =
n∑
k=1

(−1)k−1L2k−1Dn−k

= L1Dn−1 +
n∑
k=2

(−1)k−1
(
L2k−2 + L2k−3

)
Dn−k

= Dn−1 +
n−1∑
k=1

(−1)kL2kDn−k−1 −
n−1∑
k=1

(−1)k−1L2k−1Dn−k−1

= Dn−1 +
n−1∑
k=1

(−1)k
(

k∑
s=1

L2s−1 + 2

)
Dn−k−1 −Dn−1

=
n−1∑
k=1

k∑
s=1

(−1)kL2s−1Dn−k−1 + 2
n−1∑
k=1

(−1)kDn−k−1

=
n−1∑
s=1

n−s∑
k=1

(−1)k+s−1L2k−1Dn−k−s + 2
n∑
k=2

(−1)k−1Dn−k

=
n−1∑
s=1

(−1)sDn−s + 2

(
n−1∑
k=1

(−1)k−1Dn−k −Dn−1 + (−1)n−1D0

)

=
n−1∑
s=1

(−1)s−1Dn−s − 2Dn−1 + 2(−1)n−1
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=
n−1∑
s=1

(−1)s−1 (1 + 3i)(−1− i)n−s + (1− 3i)(−1 + i)n−s

4

− 2
(1 + 3i)(−1− i)n−1 + (1− 3i)(−1 + i)n−1

4
+ 2(−1)n−1

=
(−1)n−1

4

(
(1 + 3i)(1 + i)n

n−1∑
s=1

1

(1 + i)s
+ (1− 3i)(1− i)n

n−1∑
s=1

1

(1− i)s

− (1 + 3i)(1− i)(1 + i)n − (1− 3i)(1 + i)(1− i)n + 8

)

=
(1 + 3i)(−1− i)n + (1− 3i)(−1 + i)n

4
.

Thus, it follows by induction that the formula is true for all positive integers. �

5. Multinomial extensions

Next we focus on multinomial extensions of Theorems 3.1 and 4.1. To this end, we first present
the multinomial version of formula (2) (see Muir (1960)).

Lemma 5.1. (Trudi’s formula)

Let Mn be the matrix defined in (1). Then

det(Mn) =
∑

t1,...,tn≥0
t1+2t2+···+ntn=n

(−a0)n−Tnpn(t)a
t1
1 a

t2
2 · · · atnn , (23)

where Tn = t1 + · · ·+ tn and pn(t) =
(
t1+···+tn
t1,...,tn

)
= (t1+···+tn)!

t1!···tn! is the multinomial coefficient.

In particular, when a0 = 1, formula (23) is known as Brioschi’s formula (see Muir (1960)). For
example,

det(M4) = (−1)0
(

4

4, 0, 0, 0

)
a41 + (−1)1

(
3

2, 1, 0, 0

)
a21a2

+ (−1)2
(

2

1, 0, 1, 0

)
a1a3 + (−1)2

(
2

0, 2, 0, 0

)
a22 + (−1)3

(
1

0, 0, 0, 1

)
a4

= a41 − 3a21a2 + 2a1a3 + a22 − a4.

Trudi’s formula (23), coupled with Theorem 3.1 above, yields the following result.
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Theorem 5.2.

Let n ≥ 1, except when noted otherwise. Then∑
t1,...,tn−1≥0

2t1+···+ntn−1=n

(−1)Tn−1pn−1(t)F
t1
1 F

t2
2 · · ·F

tn−1

n−1 = −1, n ≥ 2;

∑
t1,...,tn−1≥0

2t1+···+ntn−1=n

(−1)Tn−1pn−1(t)F
t1
2 F

t2
4 · · ·F

tn−1

2n−2 = 1− 2n−1;

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)F
t1
1 F

t2
2 · · ·F tn

n =
(−1)n − 1

2
; (24)

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)F
t1
1 F

t2
3 · · ·F tn

2n−1 = −2n−2, n ≥ 2;

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)F
t1
2 F

t2
4 · · ·F tn

2n = −n;

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)F
t1
2 F

t2
3 · · ·F tn

n+1 = 0, n ≥ 3; (25)

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)F
t1
3 F

t2
4 · · ·F tn

n+2 = (−1)n, n ≥ 2;

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)F
t1
3 F

t2
5 · · ·F tn

2n+1 = −1, n ≥ 2; (26)

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)F
t1
4 F

t2
5 · · ·F tn

n+3 = (−1)n(n+ 2);

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)F
t1
4 F

t2
6 · · ·F tn

2n+2 = 0, n ≥ 3; (27)

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)F
t1
5 F

t2
6 · · ·F tn

n+4 =
(−2−

√
2)n+2 + (−2 +

√
2)n+2

8
;

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)F
t1
5 F

t2
7 · · ·F tn

2n+3 = (−1)nPn+2, n ≥ 2,

where Tn = t1 + · · ·+ tn and pn(t) =
(
t1+···+tn
t1,...,tn

)
.

For example, it follows from formulas (25), (26) and (27) that

F 4
2 − 3F 2

2F3 + 2F2F4 + F 2
3 − F5 = 0,

F 5
3 − 4F 3

3F5 + 3F 2
3F7 + 3F3F

2
5 − 2F3F9 − 2F5F7 + F11 = 1,
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F 6
4 − 5F 4

4F6 + 4F 3
4F8 + 6F 2

4F
2
6 + 2F4F12 − F 3

6 + 2F6F10 + F 2
8 − F14 = 0,

respectively. Note that formula (24) was stated without proof in Goy (2017).

The next theorem gives analogous results for the Lucas numbers.

Theorem 5.3.

Let n ≥ 1, except when noted otherwise. Then

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)L
t1
0 L

t2
1 · · ·Ltnn−1 =

5(−2)n − 2

6
; (28)

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)L
t1
0 L

t2
2 · · ·Ltn2n−2 =

10(−1)n − 2n

6
;

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)L
t1
1 L

t2
2 · · ·Ltnn = (−1)b

n

2 c · 1 + 3(−1)n

2
;

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)L
t1
1 L

t2
3 · · ·Ltn2n−1 =

(1 + 3i)(1 + i)n + (1− 3i)(1− i)n

4
;

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)L
t1
2 L

t2
3 · · ·Ltnn+1 = 5(−2)n−2, n ≥ 2;

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)L
t1
2 L

t2
4 · · ·Ltn2n =

5(−1)n − 1

2
; (29)

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)L
t1
3 L

t2
4 · · ·Ltnn+2 = (−1)n(5 · 2n−1 − 1);

∑
t1,...,tn≥0

t1+2t2+···+ntn=n

(−1)Tnpn(t)L
t1
3 L

t2
5 · · ·Ltn2n+1 = 5(−1)n, n ≥ 2,

where Tn = t1 + · · ·+ tn and pn(t) =
(
t1+···+tn
t1,...,tn

)
.

For example, formulas (28) and (29) yield

L4
0 − 3L2

0L1 + 2L0L2 + L2
1 − L3 =13,

L5
2 − 4L3

2L4 + 3L2
2L6 + 3L2L

2
4 − 2L2L8 − 2L4L6 + L10 =3,

respectively.
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6. Combinatorial proofs

In the proofs of this section, we will employ the combinatorial interpretation for the determinant
of an n× n matrix A = (ai,j) as a signed sum over the symmetric group Sn given by

det(A) =
∑
σ∈Sn

(−1)sgn(σ)a1,σ(1)a2,σ(2) · · · an,σ(n), (30)

where sgn(σ) denotes the sign of the permutation σ. See, e.g., Benjamin and Cameron (2005),
Benjamin et al. (2007) and Benjamin and Shattuck (2007) for combinatorial proofs of determi-
nants of various types of matrices whose entries are discrete sequences. Note that in the case of a
Toeplitz–Hessenberg matrix A, the only permutations that contribute to the sum in (30) are those
in which each cycle of the disjoint cycle decomposition comprises a set of consecutive integers in
increasing order (where it is understood that the smallest element is the first in each cycle). For if
σ is not of this form, then σ(j) > j +1 for some j, which implies that the entry aj,σ(j) of A is zero
and thus the corresponding product in (30) is zero.

Note that a permutation α of [n] = {1, 2, . . . , n} whose disjoint cycles consist of consecutive
integers as described is synonymous with a composition of n, upon identifying the cycle lengths
as parts (where cycles are assumed to be arranged in increasing order of smallest elements). So
if A is Toeplitz–Hessenberg, then each part of size i in the corresponding composition, which we
will also denote by α, is weighted by ai (assuming each superdiagonal entry of A is 1). Also, the
sign of the composition α is the same as that of the corresponding permutation and is given by
(−1)n−µ(α), where µ(α) denotes the number of parts of α. Thus, the sum in (30) may be regarded
in the case whenA is Toeplitz–Hessenberg of size n and having superdiagonal entries 1 as a signed
sum over weighted compositions α, where the sign is defined by (−1)n−µ(α) and the weight of α
is the product of the weights of its individual parts where a part of size i is assigned the weight ai
for i ≥ 1.

Recall that Fn+1 gives the number of linear square-and-domino tilings of length n, where squares
and dominos are 1× 1 and 1× 2 pieces, respectively, and are considered indistinguishable. Denote
by Tn the set of linear tilings of length n if n ≥ 1, with T0 consisting of the empty tiling. Through-
out, we will regard members of Tn as sequences of squares (s’s) and dominos (d’s) such that the
number of s’s plus twice the number of d’s equals n. Note that the tiling interpretation for Fn was
used by Benjamin and Quinn (2003) to explain combinatorially many of the identities from Vajda
(1989).

Proofs of Theorem 3.1, Identities (3), (5), (7) and (9).

Proof of (9):

We first describe a combinatorial interpretation for det(A), where A has (i, j)-th entry Fi+3−j if
j ≤ i+ 1 and 0 otherwise. Define

Ar = {(a1, t1), . . . , (ar, tr) :
r∑
i=1

ai = n, ai > 0 and ti ∈ Tai+1 for all i}
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for 1 ≤ r ≤ n and let A = ∪nr=1Ar. Let the sign of λ ∈ Ar be (−1)n−r. By the definition of the
determinant, det(A) gives the sum of the signs of all members of A. Note that, equivalently, the
sign of λ ∈ Ar is given by (−1)

∑r
i=1
|ti|, where |ti| denotes the length of the tiling ti.

Let A′ ⊆ A consist of those λ = (a1, t1), . . . , (am, tm) for any m such that either (i) am ≥ 2, with
the tiling tm ending in s, or (ii) am = 1, with tm = s2. If (i) occurs, then replace (am, tm) with the
two pairs (am− 1, tm− s), (1, s2), whereas if (ii) occurs, then we reverse this operation. Note that
n ≥ 2 implies m ≥ 2 in case (ii) and that this mapping defines a sign-changing involution of A′.

Now let λ ∈ A − A′, with λ 6= (a1, t1), . . . , (an, tn) where a1 = · · · = an = 1 and t1 = · · · =
tn = d. Let r denote the largest index such that (ar, tr) 6= (1, d). Suppose either (I) ar ≥ 2 and
tr ends in d, or (II) ar ≥ 1 and tr ends in s. Note that in case (II), we have (ar, tr) followed
by (ar+1, tr+1) = (1, d), for otherwise λ would belong to A′. If (I) occurs, then replace (ar, tr)
with (ar − 1, tr − d + s), (1, d), and if (II) occurs, then reverse the operation. This defines a sign-
changing involution ofA−A′ except for the excluded element, which has sign 1. Combining with
the previous involution of A′ implies det(A) = 1 if n ≥ 2. �

Identities (3), (5) and (7).

We proceed with similar notation as before. Let B, C and D be n × n matrices whose respective
entries are bi,j , ci,j and di,j which are zero if j > i + 1 and 1 if j = i + 1. Suppose bi,j =
Fi−j , ci,j = Fi+1−j and di,j = Fi+2−j if j ≤ i. Let B, C and D denote the collections of pairs
(a1, t1), (a2, t2), . . . , where (a1, a2, . . .) is a composition of n and ti are tilings of length ai − 2,
ai− 1 and ai for all i, respectively, with any number of pairs possible. Note that in the case of B, it
is understood that ai ≥ 2 for all i. Define the sign in each case to be (−1)n−r, where r denotes the
number of pairs. Then det(B), det(C) and det(D) are seen to give the respective sum of signs of
all members of B, C and D, respectively.

To establish the result in each case, we define an involution on the underlying set. We first
consider det(B). Let λ∗ ∈ B be given by λ∗ = (n, sn−2). Let λ ∈ B − {λ∗} be given by
λ = (a1, t1), . . . , (ar, tr), where ai ≥ 2 and ti has length ai − 2 for all i. If λ is such that ar ≥ 4
and tr contains a d and ends in exactly j s’s where j ≥ 0, then replace the pair (ar, tr) with the
two pairs (ar − (j + 2), tr − dsj), (j + 2, sj). We reverse this action if the last part is ≥ 2 with
the last tiling consisting of all squares, whence there is a predecessor pair since we are excluding
λ∗. This mapping defines a sign-changing involution of B − {λ∗}, with λ∗ having sign (−1)n−1,
which implies the formula for det(B) in (3) for n ≥ 2.

To establish the formula for det(C), let λ∗ ∈ C be given by λ∗ = (n, d(n−1)/2) if n is odd. We
define an involution on C − {λ∗} if n is odd and on all of C if n is even. Let λ ∈ C be given by
λ = (a1, t1), . . . , (ar, tr), where |ti| = ai − 1 for all i. If ar ≥ 2 and tr contains at least one square
and ends in sdj for some j ≥ 0, then replace (ar, tr) with (ar − (2j + 1), tr − sdj), (2j + 1, dj).
We reverse this action if the tiling in the last pair consists of a (possibly empty) string of dominos.
Note that there is a predecessor to the last pair in the latter case if n is odd since we are excluding
λ∗. As the sign of λ∗ is positive, the formula for det(C) given in (5) follows.
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Finally, to show (7), we assume n ≥ 3 and let λ = (a1, t1), . . . , (ar, tr) ∈ D. If ar ≥ 3 and tr ends
in d, then replace (ar, tr) with (ar − 2, tr − d), (2, d), and vice versa, if the tiling in the last pair is
a single domino. If ar ≥ 2 and tr ends in s, then replace (ar, tr) with (ar − 1, tr − s), (1, s), and
vice versa, if the tiling in the final pair is a single square. Note that n ≥ 3 implies that the reverse
operations can be performed in each case. Combining the two mappings yields a sign-changing
involution of D, which gives (7). �

Proof of Theorem 3.1, Identities (4), (8), (10) and (12).

Proof of (4):

Let E = {(a1, t1), (a2, t2), . . . : a1+a2+ · · · = n, ai ≥ 2 and ti ∈ T2ai−3 for all i}. Let λ ∈ E have
sign (−1)n−r, where r denotes the number of pairs of λ. Then det(E) gives the sum of the signs
of all members of E , where E = Mn(1, F0, . . . , F2n−2). To show (4), we will define an involution
on E whose survivors each have sign (−1)n−1 and have cardinality 2n−1 − 1.

Given m ≥ 2, let T ∗2m−3 ⊆ T2m−3 comprise those tilings τ for which the leftmost run of s within
τ is of odd length, with all other runs of s of even length. Let E ′ ⊆ E comprise those members
consisting of a single pair (n, τ), where τ ∈ T ∗2n−3. Note that each member of E ′ has sign (−1)n−1.
To show |E ′| = 2n−1 − 1, we represent τ sequentially as τ = τ1τ2 · · · τn−1, where τi = d, s or
s2 with s occurring exactly once and prior to any occurrences of s2. By concatenating the various
pieces represented by the τi, one recreates the tiling τ which one may verify indeed belongs to E ′.
Note that then there are 2n−1 − 1 such τ as they correspond to binary sequences of length n − 1
where the possibility that τ equals dn−1 is excluded.

We now define an involution of E −E ′. Let (a1, t1), . . . , (ar, tr) ∈ E −E ′. First suppose ar ≥ 4 and
tr ∈ T2ar−3−T ∗2ar−3. Consider within tr the first s of the rightmost run of odd length. Then at least
one s occurs within tr to the left of this s, for otherwise tr would belong to T ∗2ar−3. Thus, tr may be
decomposed as tr = αsdjsβ, where α is arbitrary, j ≥ 1 and all runs of s in β are of even length.
Note that α is nonempty since it must contain an s, by parity considerations. Let β have length 2`
where ` ≥ 0 and let x = j + ` + 1; note that x ≥ 2. If λ ∈ E − E ′ with (ar, tr) as described, then
replace the pair (ar, tr) with (ar − x, α), (x, dj−1sβ). Now suppose (ar, tr) within λ is such that
tr ∈ T ∗2ar−3. Then r ≥ 2, lest λ belongs to E ′. In this case, we reverse the previous operation by
adding ar to ar−1 and appending the tiling sdtr of length 2ar to tr−1. Note that tr−1sdtr belongs to
T2m−3 − T ∗2m−3 where m = ar−1 + ar since the leftmost run of s is either of even length or of odd
length with at least one other run of s having odd length. Combining the two mappings then yields
the desired involution of E − E ′, which implies the formula for det(E) given in (4). �

Identities (8) and (10).

To show (8) and (10), let F and G be the same as E above except that T2ai−3 is replaced
by T2ai−1 and T2ai

, respectively, in the definition. Let F = Mn(1, F2, . . . , F2n) and G =
Mn(1, F3, . . . , F2n+1). Then det(F ) and det(G) give the sum of the signs of all members of F
and of G, respectively.
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To complete the proof of (8), first let F ′ ⊆ F consist of those pairs for which r = 1 (i.e., a1 = n)
and t1 = dis2n−2i−1 for some 0 ≤ i ≤ n − 1. Then |F ′| = n, with each member of F ′ having
sign (−1)n−1. Suppose that λ = (a1, t1), . . . , (ar, tr) ∈ F − F ′ such that tr is of the form αds2m

for some α and m ≥ 0. Note that α 6= ∅ since it must contain an s. In this case, we replace the
final pair (ar, αds2m) with the two pairs (ar−m−1, α), (m+1, s2m+1). We reverse this operation
if r ≥ 2 and the tiling in the final pair consists of all squares. Now suppose tr = βsdjs2m+1

for some β (necessarily 6= ∅) and j ≥ 1,m ≥ 0. In this case, we replace (ar, βsd
js2m+1) with

(n − m − j − 1, β), (m + j + 1, djs2m+1), where we reverse this operation if the final tiling is
of the form djs2m+1 with r ≥ 2. Combining the two previous mappings yields a sign-changing
involution of F − F ′ which implies the formula for det(F ) given in (8).

To complete the proof of (10), we define an involution on G as follows. First, consider replacing a
final pair (ar, tr) of the form (m,αd) where α 6= ∅ (which implies m ≥ 2) with (m−1, α), (1, d),
and reversing this if (ar, tr) = (1, d). Note that in the latter case, n ≥ 2 implies r ≥ 2. On the
other hand, if the final pair has the form (m,βsdis), where β 6= ∅ and i ≥ 0, then we replace
it by (m − i − 1, β), (i + 1, sdis), and vice versa, if possible (i.e., if r ≥ 2). Combining the two
mappings yields a sign-changing involution of G − {λ∗}, where λ∗ = (n, sdn−1s). This implies
det(G) = (−1)n−1 if n ≥ 2, as desired. �

Identity (12).

Let H be the same as E above except that T2ai−3 is replaced by T2ai+1. We define a sign-changing
involution on H where n ≥ 3 in several steps as follows. Suppose λ = (a1, t1), . . . , (ar, tr) ∈ H.
If tr = αd where |α| ≥ 3, then replace (ar, tr) by (ar − 1, α), (1, sd), and vice versa, if the last
tiling is sd. If tr = βs2 where |β| ≥ 3, then replace by (ar − 1, β), (1, s3), and vice versa, if the
last tiling is s3. If (ar, tr) is such that tr = γsdis where i ≥ 1 and |γ| ≥ 3, then replace (ar, tr) by
(ar− i−1, γ), (i+1, s2dis), which we reverse if the final tiling has the appropriate form and there
is a predecessor pair.

Let H′ denote the subset of H for which the preceding (composite) involution is not defined. That
is, H′ consists of those members of H such that (ar, tr) = (i, dis) for some 1 ≤ i ≤ n, together
with (a1, t1) = (n, s2dn−1s). Let H∗ ⊆ H′ consist of those members such that all tilings ti are of
the form djs for some 1 ≤ j ≤ n, except for the first tiling t1, which can also be sd or s3 or have
the form s2djs where j < n. If ρ ∈ H′ − H∗, identify the largest index i > 1 such that either
ti 6= djs for any j, where if no such index exists, then i = 1 and t1 6= sd, s3, djs, s2djs for any
j ≥ 1. We then treat (ai, ti) as we did the final pair (ar, tr) above and apply one the operations
described, noting that if i = 1, an operation is used where no predecessor is needed.

Finally, members τ = (a1, t1), . . . , (ar, tr) ∈ H∗ are uniquely determined by the lengths of the
ti for i > 1 together with the form assumed by t1. Thus, members of H∗ are synonymous with
compositions x1 + · · · + xr = n such that the first part x1 may be marked in two or three ways
depending on whether x1 > 1 or x1 = 1. Define an involution onH∗ by replacing xr with xr−1, 1
if xr > 1 and r ≥ 2, and reversing this action if xr = 1 with r ≥ 3. This pairs all members of H∗
except those of the form x1 = n or x1 = n − 1, 1. Since n ≥ 3, there are exactly four members
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of H∗ of either form and they come in two pairs whose members have opposite sign. Combining
all of the above mappings then yields the desired sign-changing involution of H, which implies
(12). �

Remark 6.1.

A combinatorial proof may be given for (11) that is comparable to the one above for (12). We were
unable, however, to find a combinatorial proof of the formula for

det(F1, F3, . . . , F2n−1) = (−1)n−12n−2,
where n ≥ 2.

It is possible to extend the arguments above for (7), (10) and (12) to the Lucas case.

Proof of Theorem 4.1, Identities (17), (20) and (22).

Proof of (17) and (20):

Let J be the same as D in the proof of (7) except that an initial domino may be marked (denoted
by d′) within any of the tilings ti. We apply the same involution to J as was applied to D above
upon considering the rightmost pair not of the form (2, d′). Thus, the set of survivors are those
members of J of the form (a, α), (2, d′), . . . , (2, d′), where a = 1 and α = s if n is odd and a = 2
and α = d or d′ if n is even. If n is odd, then the sign of the sole survivor is given by (−1)(n−1)/2,
whereas both survivors have sign (−1)n/2 when n is even. Combining the odd and even cases
yields formula (17).

Let K be as G above in the proof of (10) except that an initial domino may be marked. Then
the involution defined on G can also be applied to K if one assumes that the pair (1, d) (where
the domino is unmarked) is moved in the first case. We then apply the involution if possible to
members of K whose final pair is (1, d′) by considering the rightmost pair not of this form. The
set of survivors are those λ ∈ K having the form (b, β), (1, d′), . . . , (1, d′), where (b, β) = (1, d),
(1, d′) or (i+ 1, sdis) for some 0 ≤ i ≤ n− 1. Let K =Mn(1, L2, . . . , L2n). If n is even, then the
sum of the signs of λ having the third stated form is zero, which implies det(K) = 2 in this case.
If n is odd, then this sum of signs is 1, which implies det(K) = 3. Combining the even and odd
cases gives (20). �

Identity (22).

Let L (L′,L∗, resp.) be the same as H (H′,H∗, resp.) in the proof of (12) above except that now
initial dominos may be marked. Since the mappings defined above on H − H′ and H′ − H∗ do
not entail moving an initial domino, they may also be applied to L−L′ and L′ −L∗, respectively.
Note that in addition to the forms described above for members ofH∗, pairs within λ ∈ L∗ can also
equal (j, d′dj−1s) for any j ≥ 1. We thus can represent λ by a composition x1+· · ·+xr = n, where
x1 is marked in one of three or four ways depending on whether x1 > 1 or x1 = 1, respectively,
with each xi for i > 1 either marked or unmarked. Define an involution on L∗ by replacing xr with
xr− 1, 1 if xr > 1 and r ≥ 2, and vice versa, if xr = 1 and r ≥ 3, where the 1 is unmarked in both
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instances (which corresponds to tr = ds). Let 1′ denote a marked non-initial 1. Then the survivors
of the involution are those of the form

i+ x+ 1′ + · · ·+ 1′ = n, (31)

where x = 1 or 1′ and the initial i is marked in three possible ways if i > 1 (corresponding to a
pair of the form (i, dis), (i, d′di−1s) or (i, s2di−1s)) and in four possible ways if i = 1 (as (1, sd)
is also possible).

Now suppose n is even. Assume for now that i is marked in one of the first three possible ways
if i = 1. Then compositions in (31) starting with i + x where i is odd and x = 1 pair up with
those starting with i + x where i < n is even, together with the case i = n. Also, compositions
starting with i+ 1′ where i > 1 is odd pair up with those starting i+ 1′ where i < n is even. This
leaves only compositions of the form 1 + 1′ + · · · + 1′ in which the initial 1 is marked in one of
three ways. Note that this corresponds to members of L∗ of the form (a, α), (1, d′s), . . . , (1, d′s),
where a = 1 and α = ds, d′s or s3. Finally, if i = 1 and is marked in the fourth way, then
there are two additional possible compositions corresponding to the members of L∗ given by
(1, sd), (b, β), (1, d′s), . . . , (1, d′s), where b = 1 and β = ds or d′s. Thus, we get five unpaired
members of L∗ altogether, each having positive sign, which implies (22) for n even. If n ≥ 3
is odd, then a similar analysis shows that the same five compositions in (31) are again unpaired,
which implies (22) for n odd and completes the proof. �

7. Gibonacci generalization

In conclusion, we state a generalization of the determinant formulas above. Let Gn denote the
Gibonacci number (for example, see Benjamin and Quinn (2003) or Vajda (1989)) defined by the
recurrence

Gn = Gn−1 +Gn−2, n ≥ 2,

withG1 = a andG0 = bwhere a and b are arbitrary (they may even be regarded as indeterminates).
Note that Fn corresponds to the case ofGn when a = 1 and b = 0, while Ln to the case when a = 1
and b = 2. Extending the combinatorial arguments from the prior section yields the following
Gibonacci determinant formulas.

Theorem 7.1.

If n ≥ 1, then

det(G1, G2, . . . , Gn) = xn, (32)

where xn is defined recursively by

xn = (a− 1)xn−1 − (b− 1)xn−2, n ≥ 3,

with initial conditions x1 = a and x2 = a2 − a− b, and

det(G2, G4, . . . , G2n) = yn, (33)
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where yn is defined by

yn = (a+ b− 3)yn−1 + (b− 1)yn−2, n ≥ 3,

with y1 = a+ b and y2 = (a+ b)2 − 3a− 2b. Furthermore, we have

det(G3, G5, . . . , G2n+1) = y∗n, n ≥ 1, (34)

where y∗n is defined by

y∗n = (2a+ b− 3)y∗n−1 + (a− 1)y∗n−2, n ≥ 3,

with y∗1 = 2a+ b and y∗2 = (2a+ b)2 − 5a− 3b.

Remark 7.2.

Note that (32) is seen to reduce to formulas (5) and (17) when (a, b) = (1, 0) and (1, 2), respec-
tively, while (33) reduces to (8) and (20) for these same values of a and b. When a = 1 in (33), one
has the explicit formula

det(G2, G4, . . . , G2n) = (b+ 1)(b− 1)n−1 − (b− 1)n−1 + (−1)n

b
, n ≥ 1.

Furthermore, note that (32) yields the Fibonacci identities (3), (7), (9), (11) and (13) when
(a, b) = (0, 1), (1, 1), (2, 1), (3, 2) and (5, 3), respectively. Also, the Lucas identities (15), (19)
and (21) correspond to the (a, b) = (2,−1), (3, 1) and (4, 3) cases of (32). Formula (33) reduces
to (4), (6), (10), (12) and (14) when (a, b) = (1,−1), (0, 1), (1, 1), (2, 1) and (3, 2), respectively,
while (16), (18) and (22) correspond to the (a, b) = (−1, 3), (2,−1) and (3, 1) cases. In general,
taking a = Fc+1 and b = Fc in (32) and (33) yields expressions for det(F1+c, F2+c, . . . , Fn+c) and
det(F2+c, F4+c, . . . , F2n+c), where c is arbitrary, with a similar remark applying to translates of the
Lucas sequence. Finally, observe that (34) may be obtained from (33) by substituting a + b for a
and a for b, or can be shown directly by extending the combinatorial proof above for (22). When
a = 1 in (34), one has

det(G3, G5, . . . , G2n+1) = (b2 + b− 1)(b− 1)n−2, n ≥ 2.

Taking b = −1, 0, 1 and 2 in the last formula yields identities (6), (10), (12) and (22), respectively.

8. Conclusion

In this paper, we have found determinant formulas for several families of Toeplitz–Hessenberg ma-
trices having various translates of the Fibonacci and Lucas numbers for the non-zero entries. This
extends an earlier result when ai = Fi for all i. In Theorem 3.1, we found determinant formulas
where the entries were translates of the Fibonacci sequence or of just the even or odd subsequence.
Some comparable results are given in Theorem 4.1 for the Lucas sequence. A common Gibonacci
generalization of the results in Theorems 3.1 and 4.1 whereby arbitrary initial conditions are al-
lowed is found in Theorem 7.1 via a combinatorial approach. The determinant formulas in all of
these results may also be expressed (see Theorems 5.2 and 5.3) equivalently as multi-sum identities
involving multinomial coefficients and a product of the terms of the sequence in question.
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Combinatorial proofs were provided for most of the determinant identities which made use of
involutions and the formal definition of the determinant. Such proofs in several instances allow
one to see relationships between the various identities that may not be readily apparent in their
algebraic derivation. Moreover, combinatorial proofs (especially in the Lucas case) point the way
to the Gibonacci generalization of the identities in Theorems 3.1 and 4.1 and also provide a means
by which to prove it. Further work on the enumerative aspects of the determinants of Toeplitz–
Hessenberg matrices whose entries are combinatorial sequences is forthcoming and will focus on
sequences which satisfy various linear recurrences with constant coefficients.
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