Skip to main content

Advertisement

Log in

Histone methyltransferase KMT2D inhibits ENKTL carcinogenesis by epigenetically activating SGK1 and SOCS1

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Epigenetic alteration plays an essential role in the occurrence and development of extranodal natural killer/T cell lymphoma (ENKTL). Histone methyltransferase (HMT) KMT2D is an epigenetic regulator that plays different roles in different tumors, but its role and mechanism in ENKTL are still unclear.

Methods

We performed immunohistochemical staining of 112 ENKTL formalin-fixed paraffin-embedded (FFPE) samples. Then, we constructed KMT2D knockdown cell lines and conducted research on cell biological behavior. Finally, to further investigate KMT2D-mediated downstream genes, ChIP-seq and ChIP -qPCR was performed.

Results

The low expression of KMT2D was related to a decreased abundance in histone H3 lysine 4 mono- and trimethylation (H3K4me1/3). In KMT2D knockdown YT and NK-YS cells, cell proliferation was faster (P < 0.05), apoptosis was decreased (P < 0.05), the abundance of S phase cells was increased (P < 0.05), and the level of H3K4me1 was decreased. Notably, ChIP-seq revealed two crucial genes and pathways downregulated by KMT2D.

Conclusions

KMT2D is a tumor suppressor gene that mediates H3K4me1 and influences ENKTL proliferation and apoptosis by regulating the cell cycle. Moreover, in ENKTL, serum- and glucocorticoid-inducible kinase-1 (SGK1) and suppressor of cytokine signaling-1 (SOCS1) are downstream genes of KMT2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to their containing information that could compromise the privacy of research participants.

Abbreviations

ENKTL:

extranodal natural killer/T cell lymphoma

HMT:

histone methyltransferase

FFPE:

formalin-fixed paraffin-embedded

H3K4me1/2/3:

monomethylation, dimethylation or trimethylation of histone 3 lysine 4

SGK1 :

serum- and glucocorticoid-inducible kinase-1

SOCS1 :

suppressor of cytokine signaling-1

EBV:

Epstein–Barr virus

WHO:

World Health Organization

FBS:

foetal bovine serum

MOI:

multiplicity of infection

NC:

negative control

DAB:

diaminobenzidine

BCA:

bicinchoninic acid

PVDF:

polyvinylidene difluoride

ECL:

electrochemiluminescence

CCK8:

Cell Counting Kit-8

KEGG:

Kyoto Encyclopedia of Genes and Genomes

χ2 :

chi-square

OS:

overall survival

SEM:

standard error of the mean

PTCL-NOS:

peripheral T cell lymphoma, not otherwise specified

GC:

germinal center

References

  • Alam H, Tang M, Maitituoheti M, Dhar SS, Kumar M, Han CY, Ambati CR, Amin SB, Gu B, Chen TY et al (2020) KMT2D Deficiency impairs super-enhancers to Confer a glycolytic vulnerability in Lung Cancer. Cancer Cell 37:599–617e597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405

    Article  PubMed  CAS  Google Scholar 

  • Ehrentraut S, Schneider B, Nagel S, Pommerenke C, Quentmeier H, Geffers R, Feist M, Kaufmann M, Meyer C, Kadin ME et al (2016) Th17 cytokine differentiation and loss of plasticity after SOCS1 inactivation in a cutaneous T-cell lymphoma. Oncotarget 7:34201–34216

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao LM, Zhao S, Zhang WY, Wang M, Li HF, Lizaso A, Liu WP (2019) Somatic mutations in KMT2D and TET2 associated with worse prognosis in Epstein-Barr virus-associated T or natural killer-cell lymphoproliferative disorders. Cancer Biol Ther 20:1319–1327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC et al (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487:239–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo C, Chen LH, Huang Y, Chang CC, Wang P, Pirozzi CJ, Qin X, Bao X, Greer PK, McLendon RE et al (2013) KMT2D maintains neoplastic cell proliferation and global histone H3 lysine 4 monomethylation. Oncotarget 4:2144–2153

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji MM, Huang YH, Huang JY, Wang ZF, Fu D, Liu H, Liu F, Leboeuf C, Wang L, Ye J et al (2018) Histone modifier gene mutations in peripheral T-cell lymphoma not otherwise specified. Haematologica 103:679–687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang L, Gu ZH, Yan ZX, Zhao X, Xie YY, Zhang ZG, Pan CM, Hu Y, Cai CP, Dong Y et al (2015) Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet 47:1061–1066

    Article  PubMed  CAS  Google Scholar 

  • Kämmerer U, Kapp M, Gassel AM, Richter T, Tank C, Dietl J, Ruck P (2001) A new rapid immunohistochemical staining technique using the EnVision antibody complex. J Histochem Cytochem 49:623–630

    Article  PubMed  Google Scholar 

  • Kim JH, Sharma A, Dhar SS, Lee SH, Gu B, Chan CH, Lin HK, Lee MG (2014) UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells. Cancer Res 74:1705–1717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Küçük C, Jiang B, Hu X, Zhang W, Chan JK, Xiao W, Lack N, Alkan C, Williams JC, Avery KN et al (2015) Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat Commun 6:6025

    Article  PubMed  Google Scholar 

  • Kwong YL (2005) Natural killer-cell malignancies: diagnosis and treatment. Leukemia 19:2186–2194

    Article  PubMed  CAS  Google Scholar 

  • Kwong YL, Kim WS, Lim ST, Kim SJ, Tang T, Tse E, Leung AY, Chim CS (2012) SMILE for natural killer/T-cell lymphoma: analysis of safety and efficacy from the Asia Lymphoma Study Group. Blood 120:2973–2980

    Article  PubMed  CAS  Google Scholar 

  • Kwong YL, Chan TSY, Tan D, Kim SJ, Poon LM, Mow B, Khong PL, Loong F, Au-Yeung R, Iqbal J et al (2017) PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood 129:2437–2442

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Wang C, Xu S, Cho YW, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W et al (2013) H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. Elife 2:e01503

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee S, Park HY, Kang SY, Kim SJ, Hwang J, Lee S, Kwak SH, Park KS, Yoo HY, Kim WS et al (2015) Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget 6:17764–17776

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, Johnson NA, Severson TM, Chiu R, Field M et al (2011) Frequent mutation of histone-modifying genes in non-hodgkin lymphoma. Nature 476:298–303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ortega-Molina A, Boss IW, Canela A, Pan H, Jiang Y, Zhao C, Jiang M, Hu D, Agirre X, Niesvizky I et al (2015) The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat Med 21:1199–1208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasqualucci L, Khiabanian H, Fangazio M, Vasishtha M, Messina M, Holmes AB, Ouillette P, Trifonov V, Rossi D, Tabbò F et al (2014) Genetics of follicular lymphoma transformation. Cell Rep 6:130–140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruthenburg AJ, Allis CD, Wysocka J (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25:15–30

    Article  PubMed  CAS  Google Scholar 

  • Salem ME, Battaglin F, Goldberg RM, Puccini A, Shields AF, Arguello D, Korn WM, Marshall JL, Grothey A, Lenz HJ (2020) Molecular analyses of Left- and right-sided tumors in adolescents and young adults with colorectal Cancer. Oncologist 25:404–413

    Article  PubMed  CAS  Google Scholar 

  • Schif B, Lennerz JK, Kohler CW, Bentink S, Kreuz M, Melzner I, Ritz O, Trümper L, Loeffler M, Spang R et al (2013) SOCS1 mutation subtypes predict divergent outcomes in diffuse large B-Cell lymphoma (DLBCL) patients. Oncotarget 4:35–47

    Article  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Song TL, Nairismägi ML, Laurensia Y, Lim JQ, Tan J, Li ZM, Pang WL, Kizhakeyil A, Wijaya GC, Huang DC et al (2018) Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood 132:1146–1158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tse E, Kwong YL (2013) How I treat NK/T-cell lymphomas. Blood 121:4997–5005

    Article  PubMed  CAS  Google Scholar 

  • Tse E, Kwong YL (2017) The diagnosis and management of NK/T-cell lymphomas. J Hematol Oncol 10:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuchiyama J, Yoshino T, Mori M, Kondoh E, Oka T, Akagi T, Hiraki A, Nakayama H, Shibuya A, Ma Y et al (1998) Characterization of a novel human natural killer-cell line (NK-YS) established from natural killer cell lymphoma/leukemia associated with Epstein-Barr virus infection. Blood 92:1374–1383

    Article  PubMed  CAS  Google Scholar 

  • Weniger MA, Melzner I, Menz CK, Wegener S, Bucur AJ, Dorsch K, Mattfeldt T, Barth TF, Möller P (2006) Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25:2679–2684

    Article  PubMed  CAS  Google Scholar 

  • Wong GC, Li KK, Wang WW, Liu AP, Huang QJ, Chan AK, Poon MF, Chung NY, Wong QH, Chen H et al (2020) Clinical and mutational profiles of adult medulloblastoma groups. Acta Neuropathol Commun 8:191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong J, Cui BW, Wang N, Dai YT, Zhang H, Wang CF, Zhong HJ, Cheng S, Ou-Yang BS, Hu Y et al (2020) Genomic and transcriptomic characterization of natural killer T cell lymphoma. Cancer Cell 37:403–419e406

    Article  PubMed  CAS  Google Scholar 

  • Yagita M, Huang CL, Umehara H, Matsuo Y, Tabata R, Miyake M, Konaka Y, Takatsuki K (2000) A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation. Leukemia 14:922–930

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Kwong YL, Kim WS, Maeda Y, Hashimoto C, Suh C, Izutsu K, Ishida F, Isobe Y, Sueoka E et al (2011) Phase II study of SMILE chemotherapy for newly diagnosed stage IV, relapsed, or refractory extranodal natural killer (NK)/T-cell lymphoma, nasal type: the NK-Cell Tumor Study Group study. J Clin Oncol 29:4410–4416

    Article  PubMed  CAS  Google Scholar 

  • Yodoi J, Teshigawara K, Nikaido T, Fukui K, Noma T, Honjo T, Takigawa M, Sasaki M, Minato N, Tsudo M et al (1985) TCGF (IL 2)-receptor inducing factor(s). I. Regulation of IL 2 receptor on a natural killer-like cell line (YT cells). J Immunol 134:1623–1630

    Article  PubMed  CAS  Google Scholar 

  • Yu G, Wang LG, He QY (2015) ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31:2382–2383

    Article  PubMed  CAS  Google Scholar 

  • Yu P, Wang Y, Yu Y, Wang A, Huang L, Zhang Y, Liu W, Wu H, Yao M, Du YA et al (2021) Deep Targeted Sequencing and Its Potential Implication for Cancer Therapy in Chinese Patients with Gastric Adenocarcinoma. Oncologist

  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Grubor V, Love CL, Banerjee A, Richards KL, Mieczkowski PA, Dunphy C, Choi W, Au WY, Srivastava G et al (2013) Genetic heterogeneity of diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 110:1398–1403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Dominguez-Sola D, Hussein S, Lee JE, Holmes AB, Bansal M, Vlasevska S, Mo T, Tang H, Basso K et al (2015) Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med 21:1190–1198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was financially supported by the national natural science foundation of China (81900197, 81272626) and the Science and Technology Program of Sichuan Province (2020YJ0104).

Author information

Authors and Affiliations

Authors

Contributions

YHZ and QT designed the study, analyzed and interpreted the data; YHZ and LMG were major contributors to writing the manuscript. WYZ and SZ revised the manuscript. WPL and LMG were responsible for the acquisition of data and institutional review board application, and gave final approval for the version to be published. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei-Ping Liu or Li-Min Gao.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics approval

The Medical Ethics Committee of West China Hospital of Sichuan University approved this study (registration number: WCH2019-00121). All recruited patients gave written informed consent following the Declaration of Helsinki.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publish

All authors agreed to publish this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YH., Tao, Q., Zhang, WY. et al. Histone methyltransferase KMT2D inhibits ENKTL carcinogenesis by epigenetically activating SGK1 and SOCS1. Genes Genom 46, 203–212 (2024). https://doi.org/10.1007/s13258-023-01434-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-023-01434-1

Keywords

Navigation