Advertisement

Ancient Genomics

The Denisovans were archaic humans closely related to Neandertals, whose populations overlapped with the ancestors of modern-day humans. Using a single-stranded library preparation method, Meyer et al. (p. 222, published online 30 August) provide a detailed analysis of a high-quality Denisovan genome. The genomic sequence provides evidence for very low rates of heterozygosity in the Denisova, probably not because of recent inbreeding, but instead because of a small population size. The genome sequence also illuminates the relationships between humans and archaics, including Neandertals, and establishes a catalog of genetic changes within the human lineage.

Abstract

We present a DNA library preparation method that has allowed us to reconstruct a high-coverage (30×) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in these archaic hominins was extremely low. It also allows tentative dating of the specimen on the basis of “missing evolution” in its genome, detailed measurements of Denisovan and Neandertal admixture into present-day human populations, and the generation of a near-complete catalog of genetic changes that swept to high frequency in modern humans since their divergence from Denisovans.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S38
Tables S1 to S58
References (29196)

Resources

File (1224344s2.xls)
File (meyer.sm.pdf)
File (papv2.pdf)

References and Notes

1
Green R. E., et al., A draft sequence of the Neandertal genome. Science 328, 710 (2010).
2
Reich D., et al., Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053 (2010).
3
Hublin J. J., Out of Africa: Modern human origins special feature: The origin of Neandertals. Proc. Natl. Acad. Sci. U.S.A. 106, 16022 (2009).
4
Krause J., et al., The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464, 894 (2010).
5
Gibbons A., Who were the Denisovans? Science 333, 1084 (2011).
6
Reich D., et al., Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516 (2011).
7
Burbano H. A., et al., Targeted investigation of the Neandertal genome by array-based sequence capture. Science 328, 723 (2010).
8
Materials and methods are available as supplementary materials on Science Online.
9
Briggs A. W., et al., Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl. Acad. Sci. U.S.A. 104, 14616 (2007).
10
Orlando L., et al., True single-molecule DNA sequencing of a pleistocene horse bone. Genome Res. 21, 1705 (2011).
11
Kircher M., Sawyer S., Meyer M., Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).
12
Li H., Durbin R., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754 (2009).
13
McKenna A., et al., The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297 (2010).
14
Green R. E., et al., A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416 (2008).
15
Goodman M., The genomic record of humankind’s evolutionary roots. Am. J. Hum. Genet. 64, 31 (1999).
16
J. Pickrell, J. Pritchard, Inference of population splits and mixtures from genome-wide allele frequency data. Nature Precedings (2012); http://precedings.nature.com/documents/6956/version/1.
17
Skoglund P., Jakobsson M., Archaic human ancestry in East Asia. Proc. Natl. Acad. Sci. U.S.A. 108, 18301 (2011).
18
Currat M., Excoffier L., Strong reproductive isolation between humans and Neanderthals inferred from observed patterns of introgression. Proc. Natl. Acad. Sci. U.S.A. 108, 15129 (2011).
19
Petit R. J., Excoffier L., Gene flow and species delimitation. Trends Ecol. Evol. 24, 386 (2009).
20
J. A. Coyne, H. A. Orr, in Speciation and its Consequences, D. Otte, and J. A. Endler, Eds. (Wiley, New York, 1989), pp. 180–207.
21
Kidd J. R., Black F. L., Weiss K. M., Balazs I., Kidd K. K., Studies of three Amerindian populations using nuclear DNA polymorphisms. Hum. Biol. 63, 775 (1991).
22
Li H., Durbin R., Inference of human population history from individual whole-genome sequences. Nature 475, 493 (2011).
23
Conrad D. F., et al., 1000 Genomes Project, Variation in genome-wide mutation rates within and between human families. Nat. Genet. 43, 712 (2011).
24
Cerqueira C. C., et al., Predicting homo pigmentation phenotype through genomic data: From neanderthal to James Watson. Am. J. Hum. Biol. 24, 705 (2012).
25
IJdo J. W., Baldini A., Ward D. C., Reeders S. T., Wells R. A., Origin of human chromosome 2: An ancestral telomere-telomere fusion. Proc. Natl. Acad. Sci. U.S.A. 88, 9051 (1991).
26
Durbin R. M., et al., 1000 Genomes Project Consortium, A map of human genome variation from population-scale sequencing. Nature 467, 1061 (2010).
27
Vernes S. C., et al., A functional genetic link between distinct developmental language disorders. N. Engl. J. Med. 359, 2337 (2008).
28
Enard W., et al., A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137, 961 (2009).
29
Briggs A. W., et al., Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2010).
30
Rohland N., Hofreiter M., Ancient DNA extraction from bones and teeth. Nat. Protoc. 2, 1756 (2007).
31
Margulies M., et al., Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376 (2005).
32
Bentley D. R., et al., Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53 (2008).
33
Blondal T., et al., Isolation and characterization of a thermostable RNA ligase 1 from a Thermus scotoductus bacteriophage TS2126 with good single-stranded DNA ligation properties. Nucleic Acids Res. 33, 135 (2005).
34
Li T. W., Weeks K. M., Structure-independent and quantitative ligation of single-stranded DNA. Anal. Biochem. 349, 242 (2006).
35
M. Meyer, M. Kircher, Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protoc., 10.1101/pdb.prot5448 (2010).
36
Meyer M., et al., From micrograms to picograms: Quantitative PCR reduces the material demands of high-throughput sequencing. Nucleic Acids Res. 36, e5 (2008).
37
Dabney J., Meyer M., Length and GC-biases during sequencing library amplification: A comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. Biotechniques 52, 87 (2012).
38
Varshney U., van de Sande J. H., Specificities and kinetics of uracil excision from uracil-containing DNA oligomers by Escherichia coli uracil DNA glycosylase. Biochemistry 30, 4055 (1991).
39
Krause J., et al., A complete mtDNA genome of an early modern human from Kostenki, Russia. Curr. Biol. 20, 231 (2010).
40
Sawyer S., Krause J., Guschanski K., Savolainen V., Pääbo S., Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE 7, e34131 (2012).
41
Jiang D., Hatahet Z., Melamede R. J., Kow Y. W., Wallace S. S., Characterization of Escherichia coli endonuclease VIII. J. Biol. Chem. 272, 32230 (1997).
42
Briggs A. W., et al., Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science 325, 318 (2009).
43
Kircher M., Stenzel U., Kelso J., Improved base calling for the Illumina Genome Analyzer using machine learning strategies. Genome Biol. 10, R83 (2009).
44
Kircher M., Analysis of high-throughput ancient DNA sequencing data. Methods Mol. Biol. 840, 197 (2012).
45
Li H., et al., 1000 Genome Project Data Processing Subgroup, The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078 (2009).
46
Cann H. M., et al., A human genome diversity cell line panel. Science 296, 261 (2002).
47
Rohland N., Reich D., Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939 (2012).
48
Paten B., Herrero J., Beal K., Fitzgerald S., Birney E., Enredo and Pecan: Genome-wide mammalian consistency-based multiple alignment with paralogs. Genome Res. 18, 1814 (2008).
49
Paten B., et al., Genome-wide nucleotide-level mammalian ancestor reconstruction. Genome Res. 18, 1829 (2008).
50
McVicker G., Gordon D., Davis C., Green P., Widespread genomic signatures of natural selection in hominid evolution. PLoS Genet. 5, e1000471 (2009).
51
McVicker G., Green P., Genomic signatures of germline gene expression. Genome Res. 20, 1503 (2010).
52
Fujita P. A., et al., The UCSC Genome Browser database: Update 2011. Nucleic Acids Res. 39, (Database issue), D876 (2011).
53
Siepel A., et al., Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034 (2005).
54
Rosenbloom K. R., et al., ENCODE whole-genome data in the UCSC Genome Browser: Update 2012. Nucleic Acids Res. 40, (Database issue), D912 (2012).
55
R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2010).
56
Langmead B., Trapnell C., Pop M., Salzberg S. L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
57
Lindahl T., Instability and decay of the primary structure of DNA. Nature 362, 709 (1993).
58
Hodgkinson A., Eyre-Walker A., Variation in the mutation rate across mammalian genomes. Nat. Rev. Genet. 12, 756 (2011).
59
Presgraves D. C., Yi S. V., Doubts about complex speciation between humans and chimpanzees. Trends Ecol. Evol. 24, 533 (2009).
60
Scally A., et al., Insights into hominid evolution from the gorilla genome sequence. Nature 483, 169 (2012).
61
Makova K. D., Li W.-H., Strong male-driven evolution of DNA sequences in humans and apes. Nature 416, 624 (2002).
62
Pool J. E., Nielsen R., Population size changes reshape genomic patterns of diversity. Evolution 61, 3001 (2007).
63
Duret L., Arndt P. F., The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet. 4, e1000071 (2008).
64
Keinan A., Mullikin J. C., Patterson N., Reich D., Measurement of the human allele frequency spectrum demonstrates greater genetic drift in East Asians than in Europeans. Nat. Genet. 39, 1251 (2007).
65
Wall J. D., Lohmueller K. E., Plagnol V., Detecting ancient admixture and estimating demographic parameters in multiple human populations. Mol. Biol. Evol. 26, 1823 (2009).
66
Schaffner S. F., et al., Calibrating a coalescent simulation of human genome sequence variation. Genome Res. 15, 1576 (2005).
67
Bischoff J. L., et al., High-resolution U-series dates from the Sima de los Huesos hominids yields 600(-66)(+infinity) kyrs: Implications for the 66 evolution of the early Neanderthal lineage. J. Archaeol. Sci. 34, 763 (2007).
68
Stringer C., The status of Homo heidelbergensis (Schoetensack 1908). Evol. Anthropol. 21, 101 (2012).
69
Busing F. M. T. A., Meijer E., Van Der Leeden R., Delete-m jackknife for unequal m. Stat. Comput. 9, 3 (1999).
70
Durand E. Y., Patterson N., Reich D., Slatkin M., Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239 (2011).
71
Moorjani P., et al., The history of African gene flow into Southern Europeans, Levantines, and Jews. PLoS Genet. 7, e1001373 (2011).
72
Seielstad M. T., Minch E., Cavalli-Sforza L. L., Genetic evidence for a higher female migration rate in humans. Nat. Genet. 20, 278 (1998).
73
Kayser M., et al., Independent histories of human Y chromosomes from Melanesia and Australia. Am. J. Hum. Genet. 68, 173 (2001).
74
Wilkins J. F., Marlowe F. W., Sex-biased migration in humans: What should we expect from genetic data? Bioessays 28, 290 (2006).
75
Tucker P. K., Sage R. D., Warner J., Wilson A. C., Eicher E. M., Abrupt cline for sex-chromosomes in a hybrid zone between 2 species of mice. Evolution 46, 1146 (1992).
76
Patterson N., Richter D. J., Gnerre S., Lander E. S., Reich D., Genetic evidence for complex speciation of humans and chimpanzees. Nature 441, 1103 (2006).
77
Hammer M. F., et al., The ratio of human X chromosome to autosome diversity is positively correlated with genetic distance from genes. Nat. Genet. 42, 830 (2010).
78
Gottipati S., Arbiza L., Siepel A., Clark A. G., Keinan A., Analyses of X-linked and autosomal genetic variation in population-scale whole genome sequencing. Nat. Genet. 43, 741 (2011).
79
Bailey J. A., et al., Recent segmental duplications in the human genome. Science 297, 1003 (2002).
80
Alkan C., et al., Personalized copy number and segmental duplication maps using next-generation sequencing. Nat. Genet. 41, 1061 (2009).
81
Sudmant P. H., et al., 1000 Genomes Project, Diversity of human copy number variation and multicopy genes. Science 330, 641 (2010).
82
Conrad D. F., et al., Wellcome Trust Case Control Consortium, Origins and functional impact of copy number variation in the human genome. Nature 464, 704 (2010).
83
T. C. S. and Analysis Consortium, Chimpanzee Sequencing and Analysis Consortium, Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69 (2005).
84
Prüfer K., et al., The bonobo genome compared with the chimpanzee and human genomes. Nature 486, 527 (2012).
85
Ventura M., et al., Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee. Genome Res. 21, 1640 (2011).
86
Locke D. P., et al., Comparative and demographic analysis of orang-utan genomes. Nature 469, 529 (2011).
87
Sturm R. A., et al., A single SNP in an evolutionary conserved region within intron 86 of the HERC2 gene determines human blue-brown eye color. Am. J. Hum. Genet. 82, 424 (2008).
88
Eiberg H., et al., Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression. Hum. Genet. 123, 177 (2008).
89
Dennehey B. K., Gutches D. G., McConkey E. H., Krauter K. S., Inversion, duplication, and changes in gene context are associated with human chromosome 18 evolution. Genomics 83, 493 (2004).
90
Goidts V., Szamalek J. M., Hameister H., Kehrer-Sawatzki H., Segmental duplication associated with the human-specific inversion of chromosome 18: A further example of the impact of segmental duplications on karyotype and genome evolution in primates. Hum. Genet. 115, 116 (2004).
91
Yunis J. J., Prakash O., The origin of man: A chromosomal pictorial legacy. Science 215, 1525 (1982).
92
Haubold B., Pfaffelhuber P., Lynch M., mlRho - a program for estimating the population mutation and recombination rates from shotgun-sequenced diploid genomes. Mol. Ecol. 19, (Suppl. 1), 277 (2010).
93
Karolchik D., et al., The UCSC Genome Browser Database: 2008 update. Nucleic Acids Res. 36, (Database issue), D773 (2008).
94
Howrigan D. P., Simonson M. A., Keller M. C., Detecting autozygosity through runs of homozygosity: A comparison of three autozygosity detection algorithms. BMC Genomics 12, 460 (2011).
95
Kirin M., et al., Genomic runs of homozygosity record population history and consanguinity. PLoS ONE 5, e13996 (2010).
96
Li H., A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987 (2011).
97
Hernandez R. D., et al., 1000 Genomes Project, Classic selective sweeps were rare in recent human evolution. Science 331, 920 (2011).
98
Lohmueller K. E., et al., Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome. PLoS Genet. 7, e1002326 (2011).
99
Adzhubei I. A., et al., A method and server for predicting damaging missense mutations. Nat. Methods 7, 248 (2010).
100
Gibbs R. A., et al., Rhesus Macaque Genome Sequencing and Analysis Consortium, Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222 (2007).
101
Wang K., Li M., Hakonarson H., ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).
102
DePristo M. A., et al., A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491 (2011).
103
McLaren W., et al., Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26, 2069 (2010).
104
Ng P. C., Henikoff S., Predicting deleterious amino acid substitutions. Genome Res. 11, 863 (2001).
105
Desseyn J. L., Aubert J. P., Porchet N., Laine A., Evolution of the large secreted gel-forming mucins. Mol. Biol. Evol. 17, 1175 (2000).
106
Niimura Y., Nei M., Evolutionary changes of the number of olfactory receptor genes in the human and mouse lineages. Gene 346, 23 (2005).
107
Zhang Q., et al., Ru2 and Ru encode mouse orthologs of the genes mutated in human Hermansky-Pudlak syndrome types 5 and 6. Nat. Genet. 33, 145 (2003).
108
Faber P. W., et al., Huntingtin interacts with a family of WW domain proteins. Hum. Mol. Genet. 7, 1463 (1998).
109
MacDonald M. E., et al., A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971 (1993).
110
Durfee L. A., Lyon N., Seo K., Huibregtse J. M., The ISG15 conjugation system broadly targets newly synthesized proteins: Implications for the antiviral function of ISG15. Mol. Cell 38, 722 (2010).
111
Tang Y., et al., Herc5 attenuates influenza A virus by catalyzing ISGylation of viral NS1 protein. J. Immunol. 184, 5777 (2010).
112
Wang J. B., et al., Human μ opiate receptor. cDNA and genomic clones, pharmacologic characterization and chromosomal assignment. FEBS Lett. 338, 217 (1994).
113
Quillen E. E., et al., OPRM1 and EGFR contribute to skin pigmentation differences between Indigenous Americans and Europeans. Hum. Genet. 131, 1073 (2012).
114
Barreiro L. B., Laval G., Quach H., Patin E., Quintana-Murci L., Natural selection has driven population differentiation in modern humans. Nat. Genet. 40, 340 (2008).
115
Dolphin C. T., Shephard E. A., Povey S., Smith R. L., Phillips I. R., Cloning, primary sequence and chromosomal localization of human FMO2, a new member of the flavin-containing mono-oxygenase family. Biochem. J. 287, 261 (1992).
116
Dolphin C. T., et al., The flavin-containing monooxygenase 2 gene (FMO2) of humans, but not of other primates, encodes a truncated, nonfunctional protein. J. Biol. Chem. 273, 30599 (1998).
117
Saleh M., et al., Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429, 75 (2004).
118
Xue Y., et al., Spread of an inactive form of caspase-12 in humans is due to recent positive selection. Am. J. Hum. Genet. 78, 659 (2006).
119
Prüfer K., et al., FUNC: A package for detecting significant associations between gene sets and ontological annotations. BMC Bioinformatics 8, 41 (2007).
120
Kumar P., Henikoff S., Ng P. C., Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073 (2009).
121
Galdzicka M., et al., A new gene, EVC2, is mutated in Ellis-van Creveld syndrome. Mol. Genet. Metab. 77, 291 (2002).
122
Ruiz-Perez V. L., et al., Mutations in two nonhomologous genes in a head-to-head configuration cause Ellis-van Creveld syndrome. Am. J. Hum. Genet. 72, 728 (2003).
123
Shen W., Han D., Zhang J., Zhao H., Feng H., Two novel heterozygous mutations of EVC2 cause a mild phenotype of Ellis-van Creveld syndrome in a Chinese family. Am. J. Med. Genet. A. 155A, 2131 (2011).
124
Brkić H., Filipović I., [The meaning of taurodontism in oral surgery—case report]. Acta Stomatol. Croat. 25, 123 (1991).
125
B. W. Neville, D. D. Damm, C. M. Allen, J. E. Bouquot, Oral & Maxillofacial Pathology (Saunders, Philadelphia, ed. 5, 2002).
126
Jafarzadeh H., Azarpazhooh A., Mayhall J. T., Taurodontism: A review of the condition and endodontic treatment challenges. Int. Endod. J. 41, 375 (2008).
127
Barker B. C., Taurodontism: The incidence and possible significance of the trait. Aust. Dent. J. 21, 272 (1976).
128
Glancy M., et al., Transmitted duplication of 8p23.1-8p23.2 associated with speech delay, autism and learning difficulties. Eur. J. Hum. Genet. 17, 37 (2009).
129
Gibbons R. J., Suthers G. K., Wilkie A. O., Buckle V. J., Higgs D. R., X-linked alpha-thalassemia/mental retardation (ATR-X) syndrome: Localization to Xq12-q21.31 by X inactivation and linkage analysis. Am. J. Hum. Genet. 51, 1136 (1992).
130
Alarcón M., et al., Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am. J. Hum. Genet. 82, 150 (2008).
131
Arking D. E., et al., A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am. J. Hum. Genet. 82, 160 (2008).
132
Lai C. S., Fisher S. E., Hurst J. A., Vargha-Khadem F., Monaco A. P., A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413, 519 (2001).
133
Strauss K. A., et al., Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N. Engl. J. Med. 354, 1370 (2006).
134
Jaeken J., Van den Berghe G., An infantile autistic syndrome characterised by the presence of succinylpurines in body fluids. Lancet 2, 1058 (1984).
135
Stone R. L., et al., A mutation in adenylosuccinate lyase associated with mental retardation and autistic features. Nat. Genet. 1, 59 (1992).
136
Stenson P. D., et al., The Human Gene Mutation Database: Providing a comprehensive central mutation database for molecular diagnostics and personalized genomics. Hum. Genomics 4, 69 (2009).
137
Matsumura K., Ervasti J. M., Ohlendieck K., Kahl S. D., Campbell K. P., Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature 360, 588 (1992).
138
Roberds S. L., et al., Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell 78, 625 (1994).
139
Ervasti J. M., Campbell K. P., Membrane organization of the dystrophin-glycoprotein complex. Cell 66, 1121 (1991).
140
Stenirri S., et al., Denaturing HPLC profiling of the ABCA4 gene for reliable detection of allelic variations. Clin. Chem. 50, 1336 (2004).
141
Liu Y., et al., The human inward rectifier K+ channel subunit kir5.1 (KCNJ16) maps to chromosome 17q25 and is expressed in kidney and pancreas. Cytogenet. Cell Genet. 90, 60 (2000).
142
Ellerman D. A., et al., Izumo is part of a multiprotein family whose members form large complexes on mammalian sperm. Mol. Reprod. Dev. 76, 1188 (2009).
143
Long K. R., Trofatter J. A., Ramesh V., McCormick M. K., Buckler A. J., Cloning and characterization of a novel human clathrin heavy chain gene (CLTCL). Genomics 35, 466 (1996).
144
Desmaze C., et al., Physical mapping by FISH of the DiGeorge critical region (DGCR): Involvement of the region in familial cases. Am. J. Hum. Genet. 53, 1239 (1993).
145
Wray G. A., The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206 (2007).
146
Gruber J. D., Vogel K., Kalay G., Wittkopp P. J., Contrasting properties of gene-specific regulatory, coding, and copy number mutations in Saccharomyces cerevisiae: Frequency, effects, and dominance. PLoS Genet. 8, e1002497 (2012).
147
Lim L. P., et al., Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769 (2005).
148
Selbach M., et al., Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58 (2008).
149
Pasquinelli A. E., et al., Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86 (2000).
150
Somel M., et al., MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates. PLoS Biol. 9, e1001214 (2011).
151
Morin R. D., et al., Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 18, 610 (2008).
152
Bryne J. C., et al., JASPAR, the open access database of transcription factor-binding profiles: New content and tools in the 2008 update. Nucleic Acids Res. 36, (Database issue), D102 (2008).
153
Bao L., Zhou M., Cui Y., CTCFBSDB: A CTCF-binding site database for characterization of vertebrate genomic insulators. Nucleic Acids Res. 36, (Database issue), D83 (2008).
154
Raab J. R., Kamakaka R. T., Insulators and promoters: Closer than we think. Nat. Rev. Genet. 11, 439 (2010).
155
Hardy J., Singleton A., Genomewide association studies and human disease. N. Engl. J. Med. 360, 1759 (2009).
156
Manolio T. A., Genomewide association studies and assessment of the risk of disease. N. Engl. J. Med. 363, 166 (2010).
157
Becker K. G., Barnes K. C., Bright T. J., Wang S. A., The genetic association database. Nat. Genet. 36, 431 (2004).
158
Cariaso M., Lennon G., SNPedia: A wiki supporting personal genome annotation, interpretation and analysis. Nucleic Acids Res. 40(Database issue), D1308 (2012).
159
Buckanovich R. J., Yang Y. Y., Darnell R. B., The onconeural antigen Nova-1 is a neuron-specific RNA-binding protein, the activity of which is inhibited by paraneoplastic antibodies. J. Neurosci. 16, 1114 (1996).
160
Park J. A., Kim K. C., Expression patterns of PRDM10 during mouse embryonic development. BMB Rep. 43, 29 (2010).
161
Lohi H., et al., Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9. J. Biol. Chem. 277, 14246 (2002).
162
Jin L., Williamson A., Banerjee S., Philipp I., Rape M., Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653 (2008).
163
Mayr M. I., et al., The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr. Biol. 17, 488 (2007).
164
Abelson J. F., et al., Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 310, 317 (2005).
165
Hsu C. Y., et al., LUZP deficiency affects neural tube closure during brain development. Biochem. Biophys. Res. Commun. 376, 466 (2008).
166
Pisareva V. P., Pisarev A. V., Komar A. A., Hellen C. U., Pestova T. V., Translation initiation on mammalian mRNAs with structured 5’UTRs requires DExH-box protein DHX29. Cell 135, 1237 (2008).
167
Okabe T., et al., RICS, a novel GTPase-activating protein for Cdc42 and Rac1, is involved in the beta-catenin-N-cadherin and N-methyl-D-aspartate receptor signaling. J. Biol. Chem. 278, 9920 (2003).
168
Bevilacqua L., et al., A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature 470, 424 (2011).
169
Doly S., et al., Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro. J. Neurosci. 28, 2933 (2008).
170
Speicher D. W., Weglarz L., DeSilva T. M., Properties of human red cell spectrin heterodimer (side-to-side) assembly and identification of an essential nucleation site. J. Biol. Chem. 267, 14775 (1992).
171
Jones S. S., D’Andrea A. D., Haines L. L., Wong G. G., Human erythropoietin receptor: Cloning, expression, and biologic characterization. Blood 76, 31 (1990).
172
Longmore G. D., Lodish H. F., An activating mutation in the murine erythropoietin receptor induces erythroleukemia in mice: A cytokine receptor superfamily oncogene. Cell 67, 1089 (1991).
173
Yu X., Lin C. S., Costantini F., Noguchi C. T., The human erythropoietin receptor gene rescues erythropoiesis and developmental defects in the erythropoietin receptor null mouse. Blood 98, 475 (2001).
174
Rubinsztein D. C., Easton D. F., Apolipoprotein E genetic variation and Alzheimer’s disease: A meta-analysis. Dement. Geriatr. Cogn. Disord. 10, 199 (1999).
175
Pohjalainen T., et al., The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol. Psychiatry 3, 256 (1998).
176
Lucht M., et al., Influence of DRD2 and ANKK1 genotypes on apomorphine-induced growth hormone (GH) response in alcohol-dependent patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 45 (2010).
177
David S. P., et al., Bupropion efficacy for smoking cessation is influenced by the DRD2 Taq1A polymorphism: Analysis of pooled data from two clinical trials. Nicotine Tob. Res. 9, 1251 (2007).
178
Burton P., et al., Wellcome Trust Case Control Consortium, Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661 (2007).
179
Frayling T. M., et al., A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889 (2007).
180
Lyssenko V., et al., Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J. Clin. Invest. 117, 2155 (2007).
181
Heinz A., Smolka M. N., The effects of catechol O-methyltransferase genotype on brain activation elicited by affective stimuli and cognitive tasks. Rev. Neurosci. 17, 359 (2006).
182
Frank M. J., Doll B. B., Oas-Terpstra J., Moreno F., Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nat. Neurosci. 12, 1062 (2009).
183
Pálmason H., et al., Attention-deficit/hyperactivity disorder phenotype is influenced by a functional catechol-O-methyltransferase variant. J. Neural Transm. 117, 259 (2010).
184
Gupta M., et al., Genetic susceptibility to schizophrenia: Role of dopaminergic pathway gene polymorphisms. Pharmacogenomics 10, 277 (2009).
185
Duffy D. L., et al., A three-single-nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye-color variation. Am. J. Hum. Genet. 80, 241 (2007).
186
Frändberg P. A., Doufexis M., Kapas S., Chhájlani V., Human pigmentation phenotype: A point mutation generates nonfunctional MSH receptor. Biochem. Biophys. Res. Commun. 245, 490 (1998).
187
Yoshiura K.-i., et al., A SNP in the ABCC11 gene is the determinant of human earwax type. Nat. Genet. 38, 324 (2006).
188
Enattah N. S., et al., Identification of a variant associated with adult-type hypolactasia. Nat. Genet. 30, 233 (2002).
189
Bersaglieri T., et al., Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74, 1111 (2004).
190
Mulcare C. A., et al., The T allele of a single-nucleotide polymorphism 13.9 kb upstream of the lactase gene (LCT) (C-13.9kbT) does not predict or cause the lactase-persistence phenotype in Africans. Am. J. Hum. Genet. 74, 1102 (2004).
191
Tishkoff S. A., et al., Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 39, 31 (2007).
192
Mou C., et al., Enhanced ectodysplasin-A receptor (EDAR) signaling alters multiple fiber characteristics to produce the East Asian hair form. Hum. Mutat. 29, 1405 (2008).
193
Kimura R., et al., A common variation in EDAR is a genetic determinant of shovel-shaped incisors. Am. J. Hum. Genet. 85, 528 (2009).
194
Rodrigues S. M., Saslow L. R., Garcia N., John O. P., Keltner D., Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proc. Natl. Acad. Sci. U.S.A. 106, 21437 (2009).
195
Roth S. M., et al., The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur. J. Hum. Genet. 16, 391 (2008).
196
Ellis J. A., Stebbing M., Harrap S. B., Polymorphism of the androgen receptor gene is associated with male pattern baldness. J. Invest. Dermatol. 116, 452 (2001).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 338 | Issue 6104
12 October 2012

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 7 May 2012
Accepted: 14 August 2012
Published in print: 12 October 2012

Permissions

Request permissions for this article.

Acknowledgments

The Denisovan sequence reads are available from the European Nucleotide Archive (ENA) under study accession ERP001519. The present-day human sequence reads are available from the Short Read Archive (SRA) under accession SRA047577. Alignments and genotype calls for each of the sequenced individuals are available at www.eva.mpg.de/denisova/. In addition, the Denisovan sequence reads and alignments are available as a public data set via Amazon Web Services (AWS) at http://aws.amazon.com/datasets/2357/ and as a track in the University of California, Santa Cruz genome browser. We thank D. Falush, P. Johnson, J. Krause, M. Lachmann, S. Sawyer, L. Vigilant and B. Viola for comments, help, and suggestions; A. Aximu, B. Höber, B. Höffner, A. Weihmann, T. Kratzer, and R. Roesch for expert technical assistance; R. Schultz for help with data management; and M. Schreiber for improvement of graphics. The Presidential Innovation Fund of the Max Planck Society made this project possible. D.R. and N.P. are grateful for support from NSF HOMINID grant no. 1032255 and NIH grant GM100233. J.G.S., F.J., and M.S. were supported by NIH grant R01-GM40282 to M.S. P.H.S. is supported by an HHMI International Student Fellowship. F.R. is supported by a German Academic Exchange Service (DAAD) study scholarship. E.E.E. is on the scientific advisory boards for Pacific Biosciences, Inc., SynapDx Corp, and DNAnexus, Inc.

Authors

Affiliations

Matthias Meyer*, [email protected]
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Martin Kircher*
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Present address: Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
Marie-Theres Gansauge
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Heng Li
Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
Fernando Racimo
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Swapan Mallick
Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
Joshua G. Schraiber
Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
Flora Jay
Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
Kay Prüfer
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Cesare de Filippo
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Peter H. Sudmant
Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
Can Alkan
Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey.
Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
Qiaomei Fu
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
CAS-MPS Joint Laboratory for Human Evolution, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, China.
Ron Do
Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
Nadin Rohland
Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
Arti Tandon
Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
Michael Siebauer
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Richard E. Green
Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
Katarzyna Bryc
Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
Adrian W. Briggs
Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
Udo Stenzel
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Jesse Dabney
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Jay Shendure
Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
Jacob Kitzman
Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
Michael F. Hammer
Arizona Research Laboratories, Division of Biotechnology, University of Arizona, Tucson, AZ 85721, USA.
Michael V. Shunkov
Palaeolithic Department, Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia.
Anatoli P. Derevianko
Palaeolithic Department, Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia.
Nick Patterson
Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
Aida M. Andrés
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Evan E. Eichler
Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
Howard Hughes Medical Institute, Seattle, WA 98195, USA.
Montgomery Slatkin
Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
David Reich [email protected]
Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
Janet Kelso
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Svante Pääbo [email protected]
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.

Notes

*
These authors contributed equally to this work.
To whom correspondence should be addressed. E-mail: [email protected] (M.M.); [email protected] (D.R.); [email protected] (S.P.)

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Ancient mitogenomes from Pre-Pottery Neolithic Central Anatolia and the effects of a Late Neolithic bottleneck in sheep (Ovis aries), Science Advances, 10, 15, (2024)./doi/10.1126/sciadv.adj0954
    Abstract
  2. Balancing selection on genomic deletion polymorphisms in humans, eLife, 12, (2023).https://doi.org/10.7554/eLife.79111
    Crossref
  3. Regulatory dissection of the severe COVID-19 risk locus introgressed by Neanderthals, eLife, 12, (2023).https://doi.org/10.7554/eLife.71235
    Crossref
  4. Pathogenic Variants Associated with Rare Monogenic Diseases Established in Ancient Neanderthal and Denisovan Genome-Wide Data, Genes, 14, 3, (727), (2023).https://doi.org/10.3390/genes14030727
    Crossref
  5. Advancements and Challenges in Ancient DNA Research: Bridging the Global North–South Divide, Genes, 14, 2, (479), (2023).https://doi.org/10.3390/genes14020479
    Crossref
  6. Methodological Changes in the Field of Paleogenetics, Genes, 14, 1, (234), (2023).https://doi.org/10.3390/genes14010234
    Crossref
  7. What made us “hunter-gatherers of words”, Frontiers in Neuroscience, 17, (2023).https://doi.org/10.3389/fnins.2023.1080861
    Crossref
  8. A review of ancestrality and admixture in Latin America and the caribbean focusing on native American and African descendant populations, Frontiers in Genetics, 14, (2023).https://doi.org/10.3389/fgene.2023.1091269
    Crossref
  9. Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently, Molecular and Cellular Biology, 37, 21, (2023).https://doi.org/10.1128/MCB.00190-17
    Crossref
  10. Deep-time paleogenomics and the limits of DNA survival, Science, 382, 6666, (48-53), (2023)./doi/10.1126/science.adh7943
    Abstract
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media