Supporting Information

A computational insight on the aromatic amino acids conjugation with $[Cp*Rh(H_2O)_3]^{2+}$ by using the Meta-dynamics/FMO3 approach.

Roberto Paciotti¹*, Alessandro Marrone¹

¹ Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, I-66100, Italy.

*corresponding to: <u>r.paciotti@unich.it</u>

Table of Contents

Fig. S1	2
Table S1	2
Table S2	3
Fig. S2	3
Fig. S3	4
Fig. S4	5
Table S3	5
Fig. S5	6
Fig. S6	7

Fig. S1 Lowest energy structures computed at B3LYP// ω B97X-D/6-311+G(d,p) of A) [Cp*Rh(pC)]²⁺, B) [Cp*Rh(3MI)]²⁺ and C) [Cp*Rh(T)]²⁺ along with the corresponding PAs with one, two and three explicit solvation waters. Hydrogen bonds are presented by green lines

	X[Cp*Rh] ²⁺ PIE					
number of explicit water molecules	5 fragments			X and H_2O in the same fragment		
	pС	<i>3MI</i>	Τ	pС	3MI	
0	-114.6	-121.8	-121.7	-114.6	-121.8	
1	-118.6	-124.0	-124.5	-120.9	-124.6	
2	-121.0	-125.7	-125.1	-123.5	-127.0	
3	-125.6	-128.3	-126.6	-130.6	-129.3	

Table S1 X--[Cp*Rh]²⁺ PIE values by varying the number of explicit waters (from zero to three) including X, $[Cp*Rh]^{2+}$, and water molecules in separated fragments and including X and water directly interacting via H bond in the same fragment. All energy values are in kcal/mol

Complex		PIE	$\mathbf{E}^{\mathbf{es}}$	E ^{ex}	$\mathbf{E}^{\mathbf{ct}}$	\mathbf{E}^{disp}	$\mathbf{E}^{\mathbf{sol}}$	СТ
PA1	average	-122.0	-196.4	245.1	-130.9	-55.0	15.2	-0.445
	std	1.6	4.3	7.0	5.0	0.7	2.2	0.012
D40	average	-130.4	-209.4	241.4	-127.7	-56.5	21.9	-0.400
PAZ	std	11.8	16.5	29.5	18.7	5.9	1.2	0.079
PA3	average	-128.8	-198.2	240.6	-128.3	-56.2	13.4	-0.420
	std	1.1	3.1	6.3	3.9	0.6	1.0	0.007

Table S2 Average X--[Cp*Rh]²⁺ PIE values with the corresponding EDAs computed considering stable η^6 -PAs obtained in run 1 and 2. Energy and CT values are reported in kcal/mol and elementary charge units, respectively

Fig. S2 EDA of X-- $[Cp*Rh]^{2+}$ PIEs computed for sampled structures of MTD(RMSD) run 1 and 2 for EC1 (a and b), EC2 (c and d) and EC3 (e and f)

Fig. S3 CT from X to $[Cp*Rh]^{2+}$ (red line) and Q₃ of $[Cp*Rh]^{2+}$ (blue line) computed for sampled structures of MTD(RMSD) run 1 and 2 for **EC1** (a and b), **EC2** (c and d) and **EC3** (e and f)

Fig. S4 Q_3 values of X and $[Cp*Rh]^{2+}$ (red and blue line, respectively) computed for sampled structures of MTD(RMSD) run 1 and 2 for **EC1** (a and b), **EC2** (c and d) and **EC3** (e and f)

Structure	E ^{INT}
pC	-17.5
3MI	-14.4
T	-10.3

Table S3 E^{INT} values computed for **pC**, **3MI** and **T** in **EC1**, **EC2** and **EC3** structures optimized at B3LYP/6-311+G(d,p)// ω B97X-D/6-311+G(d,p) level of theory. All energy values are in kcal/mol

Fig. S5 PIEs values of wat1--[CP*Rh]²⁺ (yellow line), wat2--[CP*Rh]²⁺ (green line) and wat3--[CP*Rh]²⁺ (blue line) interactions computed for the sampled structures of MD simulations of A) **EC1**, B) **EC2** and C) **EC3**

Fig. S6 EC1 structures of MD simulations sampled at 12, 13, 14 and 15 ps. Hydrogen bonds and Rh-O coordinate bonds are reported in red dashed lines and in black lines, respectively