Altered Phenylpropanoid Metabolism in the Maize *Lc*-Expressed Sweet Potato (*Ipomoea batatas*) Affects Storage Root Development. *Hongxia Wang, JunYang, Min Zhang, Weijuan Fan, Nurit Firon, Sitakanta Pattanaik, Ling Yuan and Peng Zhang*

SUPPLEMENTARY INFORMATION

Supplementary Table S1 | qRT-PCR primers for the genes related to the flavonoid, lignin and starch metabolism pathways

Primer	Forward primer (5'→3')	Reverse primer (5'→3')
qlbPAL	GGCGAGCACGAGAAGAATGT	ATGGCAGGGTTTCCGTTCTC
qlbCHI	GCCGAAGTCAAAGTGGAGAG	CGCCTATCGCCGTGAACTTG
qlbCHS	CGCACTTGGATAGCCTGGTC	ATCGGGAGCCAAGGTCTGCG
qlbF3H	CATCGTTTCCAGCCATCTCC	TTTCCGTTACTGCCCTCCAC
qlbFLS	CCTCCTTCTGCGGTGAACTA	CCTGCAGCTTCCTTCAACTC
qlbDFR	TTTATCGGCTCCTGGTTGGT	CGTGTCCGCTTTCGGTAGTT
qlbANS	GCGTCCCTAACTCCATCATC	AGAACACCGCCCAAGAAACC
qlbGT	CGCCCTAAAAGCCCCATT	CTCACAAAGCAGCCCACAGAT
qlbC4H	TGGTGATTTCATCCCCATTT	TTTTGCTGGGCTTCAAGAAT
qlb4CL	TATTTTCCGATCGAGGTTGC	ACTTTCCGGCAAATCAAATG
qlbCCR	GCAGAGATAACGGCCAGAAG	TTGCTACAACCCACCATCAA
qlbCAD	AGCTGGTAATGGTTGGCATC	TCCAAAGCCGTGTTGACATA
qlbCOMT	AAACGGGAAAGTGATCGTTG	CCATGATCCAAGTGTTGACG
qlbCCoAOMT	CCGGTTCTTGACCAGATGAT	TTCCACAGGGTGTTGTCGTA
qlbAGPa	TCGACGGTGATGTTAGCAAG	AACAGCCTTTGGAGAAACGA
qlbAGPb	GACAAGAACGTAAGGATTGGGA	CGAATGGTTGCTTTCTCCAT
qlbGBSSI	CAGTTGGTTTGCCAGTTGAC	ACGTTGAACTTTGCCACTCC
qlbSBEl	GGTTTACGGGTCTTGATGGA	AACAGCCTGCTATCCCACAC
qlbSBEll	CTTCCCTGAAGCCATAACCA	CCATTTGCCAATCCTCATCT
qlbSS	CGGTTCACTTTGCTTTGTCA	CATTGTGTGGGGCGATACTTG
qlba-amlyase	CTGCATTTTTGTTCCTGCAA	TTCGATGCGTCCAAGTCATA
qlbB-amlyase	AGACTGGAAGGAGGCTGTGA	TGTTGGCTTCTTCGAGGACT
Ibactin	CTGGTGTTATGGTTGGGATGG	GGGGTGCCTCGGTAAGAAG

Supplementary Figure S1 | Enhanced pigmentation in Lc transgenic plants. (A) *In vitro* shoot culture. (B) Plantlets in the pots. (C) Plants in field before harvest.

Supplementary Figure S2 | HPLC-MS analyses of flavonols in wild-type and *Lc* transgenic sweet potato. Leaf (A), stem (B) and developing storage root (C) were measured.

Quercetin-3-O-hexose-hexoside (molecular weight, 625.14) and quercetin-3-o-glucoside (molecular weight, 463.09) are indicated by arrows.

Α

Supplementary Figure S3 | The Lc-binding element G-box and MYC consensus in the promoter regions of sweet potato anthocyanin and lignin biosynthetic genes and G-box binding activity by the yeast one hybrid assay. (A) Promoters containing G-box (5'-CACGTG-3') and MYC consensus (CANNTG) are indicated by "+"; their numbers are indicated within parenthesis and different available homologous gene separated by "/". NA, not available. (B) The bait vector pHIS-G-box and pHIS-mG-box harbor three copies of the regular G-box and mutant (5'-ATC**TATA**GCT-3') sequences, respectively; the prey vector pGAD424-G-BOX-Lc contains the *Lc* sequence. pGAD424 was used as the negative control. (C) The growth status of the transformed yeast report strain with prey and bait vectors. Only the strain transformed with pHIS-G-box and pGAD424-G-BOX-Lc showed resistance on the SD/-His-Leu plate supplemented with 30 mM 3-amino-1,2,4-triazole (3-AT).

Supplementary Figure S4 | Photosynthesis capacity of young, mature and old leaves in wild-type and *Lc* transgenic sweet potato. (A) Chlorophyll fluorescence. (B) Maximal quantum yield of PSII (Fv/Fm). Error bars represent the SE of three replicates.

Supplementary Figure S5 | Lignin deposition patterns (A) and Klason lignin content (B) in wild-type and *Lc* transgenic sweet potato. Stem sections of 1.5-month-old plants were stained with two dyes, phloroglucinol-HCl (P-H) and toluidine blue (TB). WT, wild type; Lc1–3, independent *Lc* transgenic lines. Error bars represent the SE of three independent replicates.

Supplementary Figure S6 | qRT-PCR analysis of the changes in the transcript levels of genes related to auxin transport in leaves and developing storage roots (S16) of 2-month-old wild-type (WT) and *Lc* transgenic sweet potato. Lc1–3, independent Lc transgenic lines. AUX1, auxin transporter protein 1; PIN1a, PIN-FORMED1a; PIN1b, PIN-FORMED1b. Error bars represent the SE of three independent replicates.