
A Specification for CDL
Character Description Language

Source: Tom Bishop <tbishop@wenlin.com> and Richard Cook <rscook@unicode.org>

Status: Expert Contribution

Date: 2003-10-31

Action: For consideration by UTC and IRG

Introduction

The CDL Font Database

Examples

Language Details

Extending the Precision and Scope of Character Sets

Managing Data for Character Set Standardization

Origin and Current Status

Conclusion

References

Notes

CONTENTS

2

2

3

4

5

5

6

6

6

7-9

1

Text Box
L2/03-404

INTRODUCTION

Character Description Language (CDL) is for accurately describing and displaying the
forms of all Han (CJKV) characters. This document, which is the first public specification of
CDL, presents the key features and syntax of the language, and discusses some of its applications,
especially to character encoding standards work. We propose adoption of CDL as a data
management tool for ensuring accuracy and long-term stability in the public character encoding
process.

The acute need for CDL is predicated upon the fact that the set of Han characters is truly
open-ended, rather like the set of English words. Historical and idiosyncratic spelling differences
present a vast quantity of data, and a large number of forms not easily related to currently
encoded forms. Witness the tens of thousands of characters being evaluated by the IRG for
inclusion in CJK Unified Ideographs Extension C1.

CDL is based on Unicode, XML, and a few well-known characteristics of Han characters:

• Most characters are formed by combining two or more simpler characters or components
and fitting them into a square.

• Basic characters or components are composed of strokes, which are classified into distinct
types in accordance with modern orthographic conventions.

• Identification of stroke types underlies consistent counting of strokes.

• Stroke types, stroke counts, and component analysis are essential to the learning process,
character recognition, indexing, and comparison of variant forms.

A set of less than fifty stroke types is sufficient for the construction of practically all
characters in a modern printed style, as demonstrated by the existence of CDL descriptions for
over 40,000 characters, including all BMP Han characters and over 12,000 in Extension B.

THE CDL FONT DATABASE

A CDL description of a character encodes an analysis of the character into its constituent
components and/or strokes, and simultaneously provides instructions for displaying the char-
acter. A collection of CDL descriptions can therefore serve as both a database and a font.

When CDL is used as a font format, a software interpreter converts the descriptions into
glyphs in real time. For Han characters, CDL has some advantages over conventional font
formats. It is much smaller — only about 12 bytes per character, on average, when compressed.
It is a kind of “meta-font” in the sense that it has variable parameters so that the same
descriptions can produce different styles of glyphs.1 New glyphs can be added to the font
relatively quickly and easily. Consistency between the forms of related characters is easier to
ensure as a consequence of the sharing of components.

2

As a database language, CDL encodes essential information for categorizing, indexing,
learning, and recognizing Chinese characters. This information includes stroke count, stroke
types, stroke order, component analysis, radicals and residual strokes, and coordinates of strokes
and components. While some of this information is, or could be, stored in an ordinary database,
CDL is better for enforcing consistency. For example, the stroke count of a character is
calculated algorithmically from actual CDL instructions for writing the character stroke-by-
stroke; it is not merely a personal impression, or gathered from one of various dictionaries that
may not be mutually consistent (or even individually self-consistent) in counting the strokes
of a particular component.

EXAMPLES

Here is a description for , as a combination of the components and :

<cdl char=" ">

<comp char=" " points="0,0 40,128" />

<comp char=" " points="60,12 128,128" />

</cdl>

Positions are given as points with two-dimensional coordinates. The square enclosing the
entire character has (x, y) coordinates ranging from (0, 0) for the top left corner, to (128, 128)
for the bottom right corner.2 The numbers after describe its bounding rectangle on the
left side of : (0, 0) is its top left corner, and (40, 128) is its bottom right corner.3 Similarly,
a rectangle is given for on the right side of .

In order for the above CDL description to be carried out as a set of instructions (e.g.,
for displaying the character or counting its strokes), it is necessary for the interpreter to refer
to the separate descriptions of the components, and , as sequences of particular stroke
types with specific coordinates. Here is a description4 for :

<cdl char=" ">

<stroke type="p" points="107,0 10,46" />

<stroke type="p" points="128,38 0,83" />

<stroke type="s" points="86,70 86,128" />

</cdl>

There are three strokes in . The first two (from top to bottom) are both type ‘p’, which
stands for piê, a curved stroke falling to the left. The third stroke is type ‘s’, which stands
for shù, a vertical falling stroke. For each of these simple stroke types, only two points are
needed. For example, the first stroke starts at (107, 0) and ends at (10, 46).

3

Some descriptions combine components and strokes. Here, the character is described
as a combination of the component (which itself is a character, and should have its own
description), and a stroke of type ‘d’ (diân, dot):

<cdl char=" ">

<comp char=" " points="0,0 128,123" />

<stroke type="d" points="45,98 66,120" />

</cdl>

LANGUAGE DETAILS

CDL is an XML application, which means that it conforms to a widely-used standard syntax
(usage of angle brackets < >, et cetera). We have already introduced most of the elements
of the language: each description is contained in a cdl element, which can contain any number
of comp (component) and/or stroke elements. There is another element, cdl-list, for
enclosing a list (or file, font, or database) of descriptions. The only CDL elements currently
defined are these four: cdl-list, cdl, comp, and stroke.

Both the cdl and comp elements have char (character) attributes. The value of the char
attribute is simply a character: typically a Han character, which might be encoded with UTF-
8 or any other XML-supported encoding. Any character can, in principle, be used as a com-
ponent.5

The stroke element has a type attribute, whose value is one of less than fifty names
of stroke types that are defined for CDL. This article has already introduced ‘p’ for piê and
a few others. One of the most complex stroke types is ‘hzzzg’, which stands for
héng-zhé-zhé-zhé-gõu, and is exemplified by the character . It has six reference points,
including four points of inflection between the starting and ending points. The essential features
of each stroke type are: its name; the number of reference points it uses; and the directions
and curvatures between the reference points. The complete set of CDL stroke types is docu-
mented in another article.6, 7

There is a form of recursion implied by CDL. For example, a description of may refer
(with a comp tag) to a description of , which in turn may refer (with another comp tag)
to a description of , which describes two individual strokes. A CDL interpreter will therefore
typically process components within components within components, using recursive algorithms
(and scaling coordinates according to bounding rectangles). Recursion stops when stroke
elements are reached.8

Any CDL description that uses comp elements can be transformed automatically into a
description that uses only stroke elements. For example, is described as a sequence of
two components and , each of which is in turn described as a sequence of three strokes.
Alternatively, could be described directly as a sequence of six strokes. A straightforward
recursive algorithm can transform the component description into the “strokes-only” descrip-
tion. The reverse transformation might be more difficult. Component descriptions are more
generally useful as well as more concise.9

4

EXTENDING THE PRECISION AND SCOPE OF CHARACTER SETS

Compared with even the largest standard character set, CDL provides more precision: the
ability to distinguish between unified variants. It also provides wider scope: a potentially infinite
number of Han characters.

CDL can describe and display particular variants of characters that are “unified” (treated
as equivalent) in standard character sets. For example, in Unicode the forms (eight strokes)
and (nine strokes) are both U+8005, but can be made distinct using CDL.10

CDL can also be used for describing and displaying characters that are not in any standard
character set. Some such characters might simply not have been encoded yet; some might be
new; some might have extremely limited and special usages, and therefore might not even be
suitable for inclusion in a standard character set.

The CDL instructions for displaying a character can be composed whenever the need arises
(preferably using a graphical user interface), and included directly in a document using XML
syntax. Of course, the program displaying the text needs to have the capability of interpreting
the language, possibly by means of a “plug-in” or “helper” application; people reading the text
simply see the resulting image of the character, not the CDL tags.

MANAGING DATA FOR CHARACTER SET STANDARDIZATION

By simultaneously producing both a (meta-)font and a database, CDL can enable standards
organizations to publish representative glyphs and stroke counts (etc.), that are consistent with
each other. Furthermore, the language can facilitate systematic treatment of the complex and
difficult problems of unification and variation. Currently, such systematic treatment is held back
by the absence of an intermediate representation of character forms, between abstract “char-
acters” and concrete “images” (or particular written/printed instances) of characters. Each
Unicode codepoint represents an abstract character, which corresponds to a potentially infinite
number of graphic images. Graphic images are useful as examples of characters, but it is
practically impossible, in general, for an algorithm to determine the stroke count of an image,
or to measure the degree of similarity between two images according to the principles of Han
unification. Consequently, with over 70,000 Han characters already encoded, it has become
difficult to determine whether a given glyph corresponds to any of the characters that have
already been encoded. Really there are two difficulties: first, to find all the likely candidates for
codepoints that might correspond to the glyph in question; second, to decide for each of those
codepoints whether the glyph belongs to that codepoint’s implicit equivalence class according
to the unification principles.

CDL can help resolve both of the difficulties just mentioned. A CDL database could be
built for all encoded Han characters. Each character could potentially have multiple CDL
descriptions, corresponding to variants11 that have been unified. Then, when confronted with
a glyph, if one were uncertain whether it was already encoded, one could construct a CDL
description for it, and run a program to compare that description with those already in the

5

database, to find the closest matches. (Several comparison algorithms could be applied for the
same character, some based on strokes, some based on components.) Of course, a perfect match
would be unlikely, but trivial differences in coordinates or stroke order would easily be rec-
ognized as falling within the scope of unification. Less trivial differences would still require
judgment by experts, but CDL would make it far easier for the experts to apply the unification
rules consistently. For example, all the characters containing a given component could be
examined to discover any precedent for unifying two variants of that component. If the decision
were made to unify the new glyph with an already encoded character, in spite of some difference,
then the CDL for the new glyph could be added to the database as a variant, thus providing
a precedent, making the unification rules more explicit, and facilitating future usage of the
database.12, 13

ORIGIN AND CURRENT STATUS

CDL was originally designed and implemented (in the C programming language) by one
of the authors, and is an integral part of Wenlin Software for Learning Chinese, published by
Wenlin Institute, Inc. Its original application was Wenlin’s Stroking Box, which illustrates for
learners how to write a character stroke-by-stroke in slow motion. It turned out to be fast
enough for use as a general-purpose scalable font. It also provides stroke-count and stroke-
type information, and is even applied to handwriting recognition. However, the CDL language
itself is hidden from the user, and only the resulting stroked characters are visible. Wenlin
actually uses a compressed binary format, which is equivalent to the XML format, but very
compact and fast for machine processing. Wenlin’s CDL was used to create printed radical and
stroke-order indexes for 9,638 characters in the ABC Chinese-English Comprehensive Dictionary,
published in 2003 by University of Hawaii Press (ISBN 0-8248-2766-X).

Currently (October 2003) over 40,000 characters have CDL descriptions, including all
the Han characters in Unicode 3.0 (with Extension A) and many more that are in Unicode
4.0 (Extension B). These descriptions were made by the authors.

CONCLUSION

Experience has shown CDL to be a useful language for systematic treatment of Han
characters. While it undoubtedly still has room for improvement, the authors have become
convinced (with the encouragement of several members of the Unicode Technical Committee)
that it should be made public for the benefit of the international community, especially standards
organizations. Comments, questions, and suggestions are welcome.

REFERENCES

The latest revision of this article, and other information about CDL (including the list
of stroke types and a DTD14), may be found at http://www.wenlin.com/cdl.

6

The Unicode Consortium website is http://www.unicode.org. The International Standards
Organization (ISO) website is http://www.iso.org. The Ideographic Rapporteur Group (IRG)
website is http://www.cse.cuhk.edu.hk/~irg.

XML (Extensible Mark-up Language) is described at http://www.xml.org and http://
www.w3.org/XML.

NOTES

1. The concept of a “meta-font” originated with the METAFONT language (documented
in The METAFONTbook by Donald Knuth, 1986, ISBN 0-201-13445-4). Although CDL is
not closely related to METAFONT, there is a procedure for converting CDL into METAFONT,
but currently only at a low-level in which the glyph outline is exactly specified. A similar
procedure exists for converting CDL into the PostScript language (PostScript is a trademark
of Adobe; see http://www.adobe.com).

2. All coordinates are decimal integers in the range 0 through 128. CDL could easily
be extended to allow floating-point numbers and/or different ranges of coordinates. However,
the use of small integers and a power of two like 128 leads to compact storage and fast rendering
even on slow machines, and has been found to give plenty of precision. More sophisticated
versions of the language should allow symbolic variable names, and even algebraic expressions,
to stand for coordinates. It should be possible to convert automatically from such “higher level”
versions of CDL into the basic “low-level” version of CDL that uses only numerical coordinates.
For some purposes, it is likely to be convenient to describe component and stroke positions
with less precision, with rough indications such as top, left, top-left, middle, etc.; there should
be utilities to support conversion back and forth between such rough indications and precise
coordinates.

3. A clarification is needed regarding coordinates and bounding rectangles. In general,
the reference points for a stroke are inside the stroke, roughly at the center of the tip of an
imaginary brush. For a thick stroke, the fat tip of the brush may extend the radius of “ink”
a considerable distance in all directions from the reference point. The precise flow of ink depends
on the particular font style, and the same CDL description could be displayed differently by
different interpreters (or by the same interpreter, given a different set of preferences). What
we mean by the bounding rectangle of a component is based only on the reference points; “extra
ink” might extend about half the thickness of a stroke in any direction beyond that rectangle.

4. The description for has been simplified slightly to make it easier to understand.
A better description might use the optional points attribute of the cdl tag. Rather than simply
<cdl char=" ">, the opening tag might be <cdl char=" " points="24,0
104,128">. This means that when is displayed by itself, it does not take up the entire
square, but instead has some space on both sides, making it relatively tall and narrow. When

 (or any character) is used as a component, however, this points attribute is ignored, since
the comp tag has its own points attribute. The stroke points should always make a component
touch all four edges of its grid, so that its bounding rectangle is 0,0 128,128 before any
scaling is applied. The points attribute is even more important for (“mouth”), which has

7

a large amount of space on all four sides; characters like look best with a smaller amount
of space on all four sides. In general, any character with a stroke running along an outside edge
tends to look better (especially in juxtaposition with other characters) with some space on that
edge; so, might have points="0,0 124,128".

5. Instead of, or in addition to, the char attribute, CDL supports a uni attribute, whose
value is a hexadecimal Unicode scalar value (USV). For example, uni="592A" has the same
meaning as char=" ". Simultaneous use of char and uni attributes is redundant but
sometimes convenient. If both are used, they should be consistent. An optional variant
attribute can be used in addition to either char or uni, to associate identification strings for
distinguishing multiple descriptions for the same USV.

6. There is a widely-used system, commonly known as the zhá system, which puts
all strokes into only five stroke categories: héng, shù, piê, diân, and zhé.
Each of the less than fifty CDL stroke types belongs to one of the five zhá stroke categories.
Thus, zhá classification can easily be obtained from a CDL description.

7. There are head and tail attributes for stroke elements, which describe minor changes
to beginning and end points of strokes, respectively. Such changes are important for some
typeface styles, especially where strokes join; however, they can be ignored for some simple
styles, and for many applications of CDL. They are documented in another article, along with
the list of stroke types.

8. A more explicit form of recursion could be supported, with one cdl tag allowed to
occur inside of another, acting as an anonymous component. This would be one solution to
the problem of unencoded components. Another solution is to assign private-use codes to
unencoded components, give them separate descriptions in the same database, and use comp
tags. The latter solution has the advantage that the same component can be used in more than
one character without duplicating its description. Ideally, however, there should be standard
(not private-use) codes for many components that are useful in CDL.

9. There are a few more optional attributes (such as a radical attribute for specifying
which strokes in a character are considered to be its radical), which are beyond the scope of
this article.

10. Actually, Unicode includes two compatibility characters, related to U+8005 , namely
U+FA5B and U+2F97A. The difference between them seems to involve a slight difference in
the position of the extra dot.

11. In this context, we only distinguish “variants” if they have nontrivial differences in
their CDL descriptions. (Slight coordinate differences can be regarded as trivial.) If there are
two or more distinct CDL descriptions of a unified character, we call them all “variants” of
each other, without any implication about relative correctness or deviance, since in general those
qualities depend on the locale, the context, and/or the eye of the beholder.

12. While CDL can’t solve all the difficulties of Han unification and variation, it can go
a long way toward making the principles and procedures more rational. Just the ability to

8

produce self-consistent radical and stroke-count indexes of the currently encoded Han characters
will be an advance. It would be a mistake to assume that stroke count will always be fuzzy and
ill-defined, and that when looking up a character, people will always have to be prepared to
add or subtract one or two from the stroke count when their first guess fails. On the contrary,
within particular locales, such as the PRC, a tremendous amount of careful work has been done,
and official publications such as (ISBN 7-80126-201-8)
have standardized not only the stroke counts but also the stroke orders and stroke categories
for thousands of characters. The stroke count of one character is generally related to the stroke
counts of other characters. Most characters are built from components, and as long as the stroke
counts of those components are defined, there is rarely any difficulty in adding them together
to obtain the combined stroke count. Therefore, if a standard defines the strokes of a few
thousand characters, it implicitly defines the strokes of many thousands of additional characters.

13. There are conflicting conventions (in different countries, or even in the same country)
for the strokes of some characters that are nevertheless unified in Unicode. Using a variant
attribute in addition to a char (or uni) attribute, a standard CDL database can include several
variants of a unified character, possibly with different strokes or components. Some kind of
“variant selectors” could in this way be given very precise meanings. Whether to associate certain
variants with certain locales is another question, perhaps best decided separately by implemen-
tations for particular locales; an international standard would simply specify which variant
selectors correspond to which CDL descriptions.

14. Here is a minimal DTD (Document Type Definition); it omits a few optional or
experimental attributes that were not mentioned in this document:

<?xml encoding="UTF-8"?>
<!ELEMENT cdl-list (cdl)+>
<!ELEMENT cdl (comp|stroke)+>
<!ELEMENT comp EMPTY>
<!ELEMENT stroke EMPTY>
<!ATTLIST cdl

char CDATA #IMPLIED
uni CDATA #IMPLIED
variant CDATA #IMPLIED
points CDATA #IMPLIED

>
<!ATTLIST comp

char CDATA #IMPLIED
uni CDATA #IMPLIED
variant CDATA #IMPLIED
points CDATA #IMPLIED

>
<!ATTLIST stroke

type CDATA #IMPLIED
points CDATA #IMPLIED
head (cut|long|corner|vertical)#IMPLIED
tail (cut|long) #IMPLIED

>

9

