Advertisement

Structured Abstract

INTRODUCTION

Vocal learning, the ability to imitate sounds, is a trait that has undergone convergent evolution in several lineages of birds and mammals, including song-learning birds and humans. This behavior requires cortical and striatal vocal brain regions, which form unique connections in vocal-learning species. These regions have been found to have specialized gene expression within some species, but the patterns of specialization across vocal-learning bird and mammal species have not been systematically explored.

RATIONALE

The sequencing of genomes representing all major vocal-learning and vocal-nonlearning avian lineages has allowed us to develop the genomic tools to measure anatomical gene expression across species. Here, we asked whether behavioral and anatomical convergence is associated with gene expression convergence in the brains of vocal-learning birds and humans.

RESULTS

We developed a computational approach that discovers homologous and convergent specialized anatomical gene expression profiles. This includes generating hierarchically organized gene expression specialization trees for each species and a dynamic programming algorithm that finds the optimal alignment between species brain trees. We applied this approach to brain region gene expression databases of thousands of samples and genes that we and others generated from multiple species, including humans and song-learning birds (songbird, parrot, and hummingbird) as well as vocal-nonlearning nonhuman primates (macaque) and birds (dove and quail). Our results confirmed the recently revised understanding of the relationships between avian and mammalian brains. We further found that songbird Area X, a striatal region necessary for vocal learning, was most similar to a part of the human striatum activated during speech production. The RA (robust nucleus of the arcopallium) analog of song-learning birds, necessary for song production, was most similar to laryngeal motor cortex regions in humans that control speech production. More than 50 genes contributed to their convergent specialization and were enriched in motor control and neural connectivity functions. These patterns were not found in vocal nonlearners, but songbird RA was similar to layer 5 of primate motor cortex for another set of genes, supporting previous hypotheses about the similarity of these cell types between bird and mammal brains.

CONCLUSION

Our approach can accurately and quantitatively identify functionally and molecularly analogous brain regions between species separated by as much as 310 million years from a common ancestor. We were able to identify analogous brain regions for song and speech between birds and humans, and broader homologous brain regions in which these specialized song and speech regions are located, for tens to hundreds of genes. These genes now serve as candidates involved in developing and maintaining the unique connectivity and functional properties of vocal-learning brain circuits shared across species. The finding that convergent neural circuits for vocal learning are accompanied by convergent molecular changes of multiple genes in species separated by millions of years from a common ancestor indicates that brain circuits for complex traits may have limited ways in which they could have evolved from that ancestor.

Abstract

Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S19
Tables S1 to S8
References (86115)

Resources

File (pfenning-tables-s1-to-s8.zip)
File (pfenning.sm.pdf)

References and Notes

1
Petkov C. I., Jarvis E. D., Birds, primates, and spoken language origins: Behavioral phenotypes and neurobiological substrates. Front. Evol. Neurosci. 4, 12 (2012).
2
Jürgens U., The neural control of vocalization in mammals: A review. J. Voice 23, 1–10 (2009).
3
Egnor S. E., Hauser M. D., A paradox in the evolution of primate vocal learning. Trends Neurosci. 27, 649–654 (2004).
4
Doupe A. J., Kuhl P. K., Birdsong and human speech: Common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999).
5
Bolhuis J. J., Okanoya K., Scharff C., Twitter evolution: Converging mechanisms in birdsong and human speech. Nat. Rev. Neurosci. 11, 747–759 (2010).
6
Arriaga G., Jarvis E. D., Mouse vocal communication system: Are ultrasounds learned or innate? Brain Lang. 124, 96–116 (2013).
7
Oakley T. H., Rivera A. S., Genomics and the evolutionary origins of nervous system complexity. Curr. Opin. Genet. Dev. 18, 479–492 (2008).
8
Barrett H. C., A hierarchical model of the evolution of human brain specializations. Proc. Natl. Acad. Sci. U.S.A. 109 (suppl. 1), 10733–10740 (2012).
9
Feenders G., Liedvogel M., Rivas M., Zapka M., Horita H., Hara E., Wada K., Mouritsen H., Jarvis E. D., Molecular mapping of movement-associated areas in the avian brain: A motor theory for vocal learning origin. PLOS ONE 3, e1768 (2008).
10
Margoliash D., Fortune E. S., Sutter M. L., Yu A. C., Wren-Hardin B. D., Dave A., Distributed representation in the song system of oscines: Evolutionary implications and functional consequences. Brain Behav. Evol. 44, 247–264 (1994).
11
Mello C. V., Vates G. E., Okuhata S., Nottebohm F., Descending auditory pathways in the adult male zebra finch (Taeniopygia guttata). J. Comp. Neurol. 395, 137–160 (1998).
12
Lovell P. V., Clayton D. F., Replogle K. L., Mello C. V., Birdsong “transcriptomics”: Neurochemical specializations of the oscine song system. PLOS ONE 3, e3440 (2008).
13
Lovell P. V., Carleton J. B., Mello C. V., Genomics analysis of potassium channel genes in songbirds reveals molecular specializations of brain circuits for the maintenance and production of learned vocalizations. BMC Genomics 14, 470 (2013).
14
Matsunaga E., Suzuki K., Kobayashi T., Okanoya K., Comparative analysis of mineralocorticoid receptor expression among vocal learners (Bengalese finch and budgerigar) and non-vocal learners (quail and ring dove) has implications for the evolution of avian vocal learning. Dev. Growth Differ. 53, 961–970 (2011).
15
Hilliard A. T., Miller J. E., Horvath S., White S. A., Distinct neurogenomic states in basal ganglia subregions relate differently to singing behavior in songbirds. PLOS Comput. Biol. 8, e1002773 (2012).
16
Hara E., Rivas M. V., Ward J. M., Okanoya K., Jarvis E. D., Convergent differential regulation of parvalbumin in the brains of vocal learners. PLOS ONE 7, e29457 (2012).
17
Horita H., Kobayashi M., Liu W. C., Oka K., Jarvis E. D., Wada K., Specialized motor-driven dusp1 expression in the song systems of multiple lineages of vocal learning birds. PLOS ONE 7, e42173 (2012).
18
Amunts K., Lenzen M., Friederici A. D., Schleicher A., Morosan P., Palomero-Gallagher N., Zilles K., Broca’s region: Novel organizational principles and multiple receptor mapping. PLOS Biol. 8, e1000489 (2010).
19
Wada K., Sakaguchi H., Jarvis E. D., Hagiwara M., Differential expression of glutamate receptors in avian neural pathways for learned vocalization. J. Comp. Neurol. 476, 44–64 (2004).
20
Lai C. S., Fisher S. E., Hurst J. A., Vargha-Khadem F., Monaco A. P., A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413, 519– 523 (2001).
21
Haesler S., Wada K., Nshdejan A., Morrisey E. E., Lints T., Jarvis E. D., Scharff C., FoxP2 expression in avian vocal learners and non-learners. J. Neurosci. 24, 3164–3175 (2004).
22
Haesler S., Rochefort C., Georgi B., Licznerski P., Osten P., Scharff C., Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLOS Biol. 5, e321 (2007).
23
Scharff C., Petri J., Evo-devo, deep homology and FoxP2: Implications for the evolution of speech and language. Philos. Trans. R. Soc. London Ser. B 366, 2124–2140 (2011).
24
Teramitsu I., Kudo L. C., London S. E., Geschwind D. H., White S. A., Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. J. Neurosci. 24, 3152–3163 (2004).
25
Yokoyama S., Radlwimmer F. B., The molecular genetics and evolution of red and green color vision in vertebrates. Genetics 158, 1697–1710 (2001).
26
Arendt J., Reznick D., Convergence and parallelism reconsidered: What have we learned about the genetics of adaptation? Trends Ecol. Evol. 23, 26–32 (2008).
27
Wittkopp P. J., Williams B. L., Selegue J. E., Carroll S. B., Drosophila pigmentation evolution: Divergent genotypes underlying convergent phenotypes. Proc. Natl. Acad. Sci. U.S.A. 100, 1808–1813 (2003).
28
Shapiro M. D., Marks M. E., Peichel C. L., Blackman B. K., Nereng K. S., Jónsson B., Schluter D., Kingsley D. M., Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428, 717–723 (2004).
29
Zakon H. H., Lu Y., Zwickl D. J., Hillis D. M., Sodium channel genes and the evolution of diversity in communication signals of electric fishes: Convergent molecular evolution. Proc. Natl. Acad. Sci. U.S.A. 103, 3675–3680 (2006).
30
Liu Y., Cotton J. A., Shen B., Han X., Rossiter S. J., Zhang S., Convergent sequence evolution between echolocating bats and dolphins. Curr. Biol. 20, R53–R54 (2010).
31
Parker J., Tsagkogeorga G., Cotton J. A., Liu Y., Provero P., Stupka E., Rossiter S. J., Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502, 228–231 (2013).
33
Zhang G., Li C., Li Q., Li B., Larkin D. M., Lee C., Storz J. F., Antunes A., Greenwold M. J., Meredith R. W., Ödeen A., Cui J., Zhou Q., Xu L., Pan H., Wang Z., Jin L., Zhang P., Hu H., Yang W., Hu J., Xiao J., Yang Z., Liu Y., Xie Q., Yu H., Lian J., Wen P., Zhang F., Li H., Zeng Y., Xiong Z., Liu S., Zhou L., Huang Z., An N., Wang J., Zheng Q., Xiong Y., Wang G., Wang B., Wang J., Fan Y., da Fonseca R. R., Alfaro-Núñez A., Schubert M., Orlando L., Mourier T., Howard J. T., Ganapathy G., Pfenning A., Whitney O., Rivas M. V., Hara E., Smith J., Farré M., Narayan J., Slavov G., Romanov M. N., Borges R., Machado J. P., Khan I., Springer M. S., Gatesy J., Hoffmann F. G., Opazo J. C., Håstad O., Sawyer R. H., Kim H., Kim K.-W., Kim H. J., Cho S., Li N., Huang Y., Bruford M. W., Zhan X., Dixon A., Bertelsen M. F., Derryberry E., Warren W., Wilson R. K., Li S., Ray D. A., Green R. E., O’Brien S. J., Griffin D., Johnson W. E., Haussler D., Ryder O. A., Willerslev E., Graves G. R., Alström P., Fjeldså J., Mindell D. P., Edwards S. V., Braun E. L., Rahbek C., Burt D. W., Houde P., Zhang Y., Yang H., Wang J.Avian Genome Consortium, Jarvis E. D., Gilbert M. T. P., Wang J., Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320 (2014).
34
Jarvis E. D., Güntürkün O., Bruce L., Csillag A., Karten H., Kuenzel W., Medina L., Paxinos G., Perkel D. J., Shimizu T., Striedter G., Wild J. M., Ball G. F., Dugas-Ford J., Durand S. E., Hough G. E., Husband S., Kubikova L., Lee D. W., Mello C. V., Powers A., Siang C., Smulders T. V., Wada K., White S. A., Yamamoto K., Yu J., Reiner A., Butler A. B., Avian brains and a new understanding of vertebrate brain evolution. Nat. Rev. Neurosci. 6, 151–159 (2005).
35
Kumar S., Hedges S. B., A molecular timescale for vertebrate evolution. Nature 392, 917–920 (1998).
36
Jarvis E. D., Mirarab S., Aberer A. J., Li B., Houde P., Li C., Ho S. Y. W., Faircloth B. C., Nabholz B., Howard J. T., Suh A., Weber C. C., da Fonseca R. R., Li J., Zhang F., Li H., Zhou L., Narula N., Liu L., Ganapathy G., Boussau B., Bayzid Md. S., Zavidovych V., Subramanian S., Gabaldón T., Capella-Gutiérrez S., Huerta-Cepas J., Rekepalli B., Munch K., Schierup M., Lindow B., Warren W. C., Ray D., Green R. E., Bruford M., Zhan X., Dixon A., Li S., Li N., Huang Y., Derryberry E. P., Bertelsen M. F., Sheldon F.H., Brumfield R. T., Mello C. V., Lovell P. V., Wirthlin M., Cruz Schneider M. P., Prosdocimi F., Samaniego J. A., Vargas Velazquez A. M., Alfaro-Núñez A., Campos P. F., Petersen B., Sicheritz-Ponten T., Pas A., Bailey T., Scofield P., Bunce M., Lambert D. M., Zhou Q., Perelman P., Driskell A. C., Shapiro B., Xiong Z., Zeng Y., Liu S., Li Z., Liu B., Wu K., Xiao J., Yinqi X., Zheng Q., Zhang Y., Yang H., Wang J., Smeds L., Rheindt F. E., Braun M., Fjeldsa J., Orlando L., Barker K., Jønsson K. A., Johnson W., Koepfli K.-P., O’Brien S., Haussler D., Ryder O. A., Rahbek C., Willerslev E., Graves G. R., Glenn T. C., McCormack J., Burt D., Ellegren H., Alström P., Edwards S. V., Stamatakis A., Mindell D. P., Cracraft J., Braun E. L., Warnow T., Jun W., Gilbert M. T. P., Zhang G., Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).
37
O. Whitney, A. R. Pfenning, J. T. Howard, C. A. Blatti, F. Liu, J. M. Ward, R. Wang, M. Kellis, S. Mukherjee, S. Sinha, A. J. Hartemink, A. E. West, E. D. Jarvis, Core and region enriched networks of behaviorally regulated genes and the singing genome. Science 346, 1256780 (2014).
38
Hawrylycz M. J., Lein E. S., Guillozet-Bongaarts A. L., Shen E. H., Ng L., Miller J. A., van de Lagemaat L. N., Smith K. A., Ebbert A., Riley Z. L., Abajian C., Beckmann C. F., Bernard A., Bertagnolli D., Boe A. F., Cartagena P. M., Chakravarty M. M., Chapin M., Chong J., Dalley R. A., Daly B. D., Dang C., Datta S., Dee N., Dolbeare T. A., Faber V., Feng D., Fowler D. R., Goldy J., Gregor B. W., Haradon Z., Haynor D. R., Hohmann J. G., Horvath S., Howard R. E., Jeromin A., Jochim J. M., Kinnunen M., Lau C., Lazarz E. T., Lee C., Lemon T. A., Li L., Li Y., Morris J. A., Overly C. C., Parker P. D., Parry S. E., Reding M., Royall J. J., Schulkin J., Sequeira P. A., Slaughterbeck C. R., Smith S. C., Sodt A. J., Sunkin S. M., Swanson B. E., Vawter M. P., Williams D., Wohnoutka P., Zielke H. R., Geschwind D. H., Hof P. R., Smith S. M., Koch C., Grant S. G., Jones A. R., An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).
39
Bernard A., Lubbers L. S., Tanis K. Q., Luo R., Podtelezhnikov A. A., Finney E. M., McWhorter M. M., Serikawa K., Lemon T., Morgan R., Copeland C., Smith K., Cullen V., Davis-Turak J., Lee C. K., Sunkin S. M., Loboda A. P., Levine D. M., Stone D. J., Hawrylycz M. J., Roberts C. J., Jones A. R., Geschwind D. H., Lein E. S., Transcriptional architecture of the primate neocortex. Neuron 73, 1083–1099 (2012).
40
Brainard M. S., Doupe A. J., Translating birdsong: Songbirds as a model for basic and applied medical research. Annu. Rev. Neurosci. 36, 489–517 (2013).
41
Jarvis E. D., Learned birdsong and the neurobiology of human language. Ann. N.Y. Acad. Sci. 1016, 749–777 (2004).
42
Jarvis E. D., Nottebohm F., Motor-driven gene expression. Proc. Natl. Acad. Sci. U.S.A. 94, 4097–4102 (1997).
43
Jarvis E. D., Yu J., Rivas M. V., Horita H., Feenders G., Whitney O., Jarvis S. C., Jarvis E. R., Kubikova L., Puck A. E., Siang-Bakshi C., Martin S., McElroy M., Hara E., Howard J., Pfenning A., Mouritsen H., Chen C. C., Wada K., Global view of the functional molecular organization of the avian cerebrum: Mirror images and functional columns. J. Comp. Neurol. 521, 3614–3665 (2013).
44
Reiner A., Perkel D. J., Bruce L. L., Butler A. B., Csillag A., Kuenzel W., Medina L., Paxinos G., Shimizu T., Striedter G., Wild M., Ball G. F., Durand S., Gütürkün O., Lee D. W., Mello C. V., Powers A., White S. A., Hough G., Kubikova L., Smulders T. V., Wada K., Dugas-Ford J., Husband S., Yamamoto K., Yu J., Siang C., Jarvis E. D., The Avian Brain Nomenclature Forum: Terminology for a new century in comparative neuroanatomy. J. Comp. Neurol. 473, E1–E6 (2004).
45
Puelles L., Kuwana E., Puelles E., Bulfone A., Shimamura K., Keleher J., Smiga S., Rubenstein J. L., Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J. Comp. Neurol. 424, 409–438 (2000).
46
Carrillo G. D., Doupe A. J., Is the songbird Area X striatal, pallidal, or both? An anatomical study. J. Comp. Neurol. 473, 415–437 (2004).
47
Reiner A., Laverghetta A. V., Meade C. A., Cuthbertson S. L., Bottjer S. W., An immunohistochemical and pathway tracing study of the striatopallidal organization of area X in the male zebra finch. J. Comp. Neurol. 469, 239–261 (2004).
48
Farries M. A., Perkel D. J., A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. J. Neurosci. 22, 3776–3787 (2002).
49
Nottebohm F., Stokes T. M., Leonard C. M., Central control of song in the canary, Serinus canarius. J. Comp. Neurol. 165, 457–486 (1976).
50
Rathelot J. A., Strick P. L., Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc. Natl. Acad. Sci. U.S.A. 106, 918–923 (2009).
51
Mandelblat-Cerf Y., Las L., Denisenko N., Fee M. S., A role for descending auditory cortical projections in songbird vocal learning. eLife 3, e04371 (2014).
52
Dubbeldam J. L., The neural substrate for ‘learned’ and ‘nonlearned’ activities in birds: A discussion of the organization of bulbar reticular premotor systems with side-lights on the mammalian situation. Acta Anat. 163, 157–172 (1998).
53
Bottjer S. W., Brady J. D., Cribbs B., Connections of a motor cortical region in zebra finches: Relation to pathways for vocal learning. J. Comp. Neurol. 420, 244–260 (2000).
54
Wild J. M., Li D., Eagleton C., Projections of the dorsomedial nucleus of the intercollicular complex (DM) in relation to respiratory-vocal nuclei in the brainstem of pigeon (Columba livia) and zebra finch (Taeniopygia guttata). J. Comp. Neurol. 377, 392–413 (1997).
55
Nii Y., Uematsu S., Lesser R. P., Gordon B., Does the central sulcus divide motor and sensory functions? Cortical mapping of human hand areas as revealed by electrical stimulation through subdural grid electrodes. Neurology 46, 360–367 (1996).
56
Sörös P., Sokoloff L. G., Bose A., McIntosh A. R., Graham S. J., Stuss D. T., Clustered functional MRI of overt speech production. Neuroimage 32, 376–387 (2006).
57
Brown S., Laird A. R., Pfordresher P. Q., Thelen S. M., Turkeltaub P., Liotti M., The somatotopy of speech: Phonation and articulation in the human motor cortex. Brain Cognit. 70, 31–41 (2009).
58
Bohland J. W., Guenther F. H., An fMRI investigation of syllable sequence production. Neuroimage 32, 821–841 (2006).
59
Grabski K., Lamalle L., Vilain C., Schwartz J. L., Vallée N., Tropres I., Baciu M., Le Bas J. F., Sato M., Functional MRI assessment of orofacial articulators: Neural correlates of lip, jaw, larynx, and tongue movements. Hum. Brain Mapp. 33, 2306–2321 (2012).
60
Simonyan K., Ostuni J., Ludlow C. L., Horwitz B., Functional but not structural networks of the human laryngeal motor cortex show left hemispheric lateralization during syllable but not breathing production. J. Neurosci. 29, 14912–14923 (2009).
61
Simonyan K., Horwitz B., Laryngeal motor cortex and control of speech in humans. Neuroscientist 17, 197–208 (2011).
62
Simonyan K., The laryngeal motor cortex: Its organization and connectivity. Curr. Opin. Neurobiol. 28, 15–21 (2014).
63
Brown S., Ngan E., Liotti M., A larynx area in the human motor cortex. Cereb. Cortex 18, 837–845 (2008).
64
Nottebohm F., Nottebohm M. E., Vocalizations and breeding behaviour of surgically deafened ring doves (Streptopelia risoria). Anim. Behav. 19, 313–327 (1971).
65
Derégnaucourt S., Saar S., Gahr M., Dynamics of crowing development in the domestic Japanese quail (Coturnix coturnix japonica). Proc. Biol. Sci. 276, 2153–2162 (2009).
66
Jarvis E. D., Smith V. A., Wada K., Rivas M. V., McElroy M., Smulders T. V., Carninci P., Hayashizaki Y., Dietrich F., Wu X., McConnell P., Yu J., Wang P. P., Hartemink A. J., Lin S., A framework for integrating the songbird brain. J. Comp. Physiol. A 188, 961–980 (2002).
67
Karten H. J., Homology and evolutionary origins of the ‘neocortex’. Brain Behav. Evol. 38, 264–272 (1991).
68
Belgard T. G., Montiel J. F., Wang W. Z., García-Moreno F., Margulies E. H., Ponting C. P., Molnár Z., Adult pallium transcriptomes surprise in not reflecting predicted homologies across diverse chicken and mouse pallial sectors. Proc. Natl. Acad. Sci. U.S.A. 110, 13150–13155 (2013).
69
Sasaki T., Komatsu Y., Watakabe A., Sawada K., Yamamori T., Prefrontal-enriched SLIT1 expression in Old World monkey cortex established during the postnatal development. Cereb. Cortex 20, 2496–2510 (2010).
70
Wang R., et al., Convergent differential regulation of ROBO-SLIT axon guidance pathway genes in the brains of vocal learners. J. Comp. Neurol. 10.1002/cne.23719 (2014).
71
Konopka G., Bomar J. M., Winden K., Coppola G., Jonsson Z. O., Gao F., Peng S., Preuss T. M., Wohlschlegel J. A., Geschwind D. H., Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 462, 213–217 (2009).
72
Arriaga G., Zhou E. P., Jarvis E. D., Of mice, birds, and men: The mouse ultrasonic song system has some features similar to humans and song-learning birds. PLOS ONE 7, e46610 (2012).
73
Hisaoka T., Nakamura Y., Senba E., Morikawa Y., The forkhead transcription factors, Foxp1 and Foxp2, identify different subpopulations of projection neurons in the mouse cerebral cortex. Neuroscience 166, 551–563 (2010).
74
P. L. Roulhac, J. M. Ward, J. W. Thompson, E. J. Soderblom, M. Silva, M. A. Mosely III, E. D. Jarvis, Cold Spring Harb. Protoc. pdb.prot5573 (2011).
75
Lemon R. N., Descending pathways in motor control. Annu. Rev. Neurosci. 31, 195–218 (2008).
76
Fisher S. E., Francks C., Genes, cognition and dyslexia: Learning to read the genome. Trends Cognit. Sci. 10, 250–257 (2006).
77
Johnson M. B., Kawasawa Y. I., Mason C. E., Krsnik Z., Coppola G., Bogdanović D., Geschwind D. H., Mane S. M., State M. W., Sestan N., Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62, 494–509 (2009).
78
Cornide-Petronio M. E., Barreiro-Iglesias A., Role of Slit and Robo proteins in the development of dopaminergic neurons. Dev. Neurosci. 35, 285–292 (2013).
79
Wild J. M., Williams M. N., Suthers R. A., Parvalbumin-positive projection neurons characterise the vocal premotor pathway in male, but not female, zebra finches. Brain Res. 917, 235–252 (2001).
80
Sherwood C. C., Holloway R. L., Erwin J. M., Hof P. R., Cortical orofacial motor representation in Old World monkeys, great apes, and humans. II. Stereologic analysis of chemoarchitecture. Brain Behav. Evol. 63, 82–106 (2004).
81
Adret P., Margoliash D., Metabolic and neural activity in the song system nucleus robustus archistriatalis: Effect of age and gender. J. Comp. Neurol. 454, 409–423 (2002).
82
Doupe A. J., Perkel D. J., Reiner A., Stern E. A., Birdbrains could teach basal ganglia research a new song. Trends Neurosci. 28, 353–363 (2005).
83
Simonyan K., Horwitz B., Jarvis E. D., Dopamine regulation of human speech and bird song: A critical review. Brain Lang. 122, 142–150 (2012).
84
K. Okanoya, B. Merker, in Emergence of Communication and Language, C. Lyon, C. L. Nehaniv, A. Cangelosi, Eds. (Springer, London, 2007), pp. 421–434.
85
Karten H. J., Shimizu T., The origins of neocortex: Connections and lamination as distinct events in evolution. J. Cognit. Neurosci. 1, 291–301 (1989).
86
Jarvis E. D., Mello C. V., Nottebohm F., Associative learning and stimulus novelty influence the song-induced expression of an immediate early gene in the canary forebrain. Learn. Mem. 2, 62–80 (1995).
87
Replogle K., Arnold A. P., Ball G. F., Band M., Bensch S., Brenowitz E. A., Dong S., Drnevich J., Ferris M., George J. M., Gong G., Hasselquist D., Hernandez A. G., Kim R., Lewin H. A., Liu L., Lovell P. V., Mello C. V., Naurin S., Rodriguez-Zas S., Thimmapuram J., Wade J., Clayton D. F., The Songbird Neurogenomics (SoNG) Initiative: Community-based tools and strategies for study of brain gene function and evolution. BMC Genomics 9, 131 (2008).
88
Wada K., Howard J. T., McConnell P., Whitney O., Lints T., Rivas M. V., Horita H., Patterson M. A., White S. A., Scharff C., Haesler S., Zhao S., Sakaguchi H., Hagiwara M., Shiraki T., Hirozane-Kishikawa T., Skene P., Hayashizaki Y., Carninci P., Jarvis E. D., A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. Proc. Natl. Acad. Sci. U.S.A. 103, 15212–15217 (2006).
89
Li X., Wang X. J., Tannenhauser J., Podell S., Mukherjee P., Hertel M., Biane J., Masuda S., Nottebohm F., Gaasterland T., Genomic resources for songbird research and their use in characterizing gene expression during brain development. Proc. Natl. Acad. Sci. U.S.A. 104, 6834–6839 (2007).
90
Haas B. J., Salzberg S. L., Zhu W., Pertea M., Allen J. E., Orvis J., White O., Buell C. R., Wortman J. R., Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).
91
Warren W. C., Clayton D. F., Ellegren H., Arnold A. P., Hillier L. W., Künstner A., Searle S., White S., Vilella A. J., Fairley S., Heger A., Kong L., Ponting C. P., Jarvis E. D., Mello C. V., Minx P., Lovell P., Velho T. A., Ferris M., Balakrishnan C. N., Sinha S., Blatti C., London S. E., Li Y., Lin Y. C., George J., Sweedler J., Southey B., Gunaratne P., Watson M., Nam K., Backström N., Smeds L., Nabholz B., Itoh Y., Whitney O., Pfenning A. R., Howard J., Völker M., Skinner B. M., Griffin D. K., Ye L., McLaren W. M., Flicek P., Quesada V., Velasco G., Lopez-Otin C., Puente X. S., Olender T., Lancet D., Smit A. F., Hubley R., Konkel M. K., Walker J. A., Batzer M. A., Gu W., Pollock D. D., Chen L., Cheng Z., Eichler E. E., Stapley J., Slate J., Ekblom R., Birkhead T., Burke T., Burt D., Scharff C., Adam I., Richard H., Sultan M., Soldatov A., Lehrach H., Edwards S. V., Yang S. P., Li X., Graves T., Fulton L., Nelson J., Chinwalla A., Hou S., Mardis E. R., Wilson R. K., The genome of a songbird. Nature 464, 757–762 (2010).
92
Quinlan A. R., Hall I. M., BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
93
Ganapathy G., Howard J. T., Ward J. M., Li J., Li B., Li Y., Xiong Y., Zhang Y., Zhou S., Schwartz D. C., Schatz M., Aboukhalil R., Fedrigo O., Bukovnik L., Wang T., Wray G., Rasolonjatovo I., Winer R., Knight J. R., Koren S., Warren W. C., Zhang G., Phillippy A. M., Jarvis E. D., High-coverage sequencing and annotated assemblies of the budgerigar genome. GigaScience 3, 11 (2014).
94
Hillier J. C., Shaw P., Miller R. F., Cartledge J. D., Nelson M., Bower M., Francis N., Padley S. P., Imaging features of multicentric Castleman’s disease in HIV infection. Clin. Radiol. 59, 596–601 (2004).
95
Kauffmann A., Gentleman R., Huber W., arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics 25, 415–416 (2009).
96
Stacklies W., Redestig H., Scholz M., Walther D., Selbig J., pcaMethods—a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167 (2007).
97
Oldham M. C., Horvath S., Geschwind D. H., Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc. Natl. Acad. Sci. U.S.A. 103, 17973–17978 (2006).
98
Chen C. C., Winkler C. M., Pfenning A. R., Jarvis E. D., Molecular profiling of the developing avian telencephalon: Regional timing and brain subdivision continuities. J. Comp. Neurol. 521, 3666–3701 (2013).
99
Langfelder P., Horvath S., WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
100
Grange P., Bohland J. W., Okaty B. W., Sugino K., Bokil H., Nelson S. B., Ng L., Hawrylycz M., Mitra P. P., Cell-type-based model explaining coexpression patterns of genes in the brain. Proc. Natl. Acad. Sci. U.S.A. 111, 5397–5402 (2014).
101
Rakic P., Evolution of the neocortex: A perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).
102
Albert F. W., Somel M., Carneiro M., Aximu-Petri A., Halbwax M., Thalmann O., Blanco-Aguiar J. A., Plyusnina I. Z., Trut L., Villafuerte R., Ferrand N., Kaiser S., Jensen P., Pääbo S., A comparison of brain gene expression levels in domesticated and wild animals. PLOS Genet. 8, e1002962 (2012).
103
Ge Y., Dudoit S., Speed T., Resampling-based multiple testing for microarray data analysis. Test 12, 1–77 (2003).
104
Smyth G. K., Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).
105
Chen C. C., Wada K., Jarvis E. D., Radioactive in situ hybridization for detecting diverse gene expression patterns in tissue. J. Vis. Exp. 10.3791/3764 (2012).
106
J. B. Carleton, P. V. Lovell, A. McHugh, T. Marzulla, K. L. Horback, C. V. Mello, An optimized protocol for high-throughput in situ hybridization of zebra finch brain. Cold Spring Harb Protoc. 10.1101/pdb.prot084582 (2014).
107
Kato M., Okanoya K., Koike T., Sasaki E., Okano H., Watanabe S., Iriki A., Human speech- and reading-related genes display partially overlapping expression patterns in the marmoset brain. Brain Lang. 133, 26–38 (2014).
108
Meredith R. W., Janečka J. E., Gatesy J., Ryder O. A., Fisher C. A., Teeling E. C., Goodbla A., Eizirik E., Simão T. L., Stadler T., Rabosky D. L., Honeycutt R. L., Flynn J. J., Ingram C. M., Steiner C., Williams T. L., Robinson T. J., Burk-Herrick A., Westerman M., Ayoub N. A., Springer M. S., Murphy W. J., Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).
109
Wang B., Lufkin T., Rubenstein J. L., Dlx6 regulates molecular properties of the striatum and central nucleus of the amygdala. J. Comp. Neurol. 519, 2320–2334 (2011).
110
Kubikova L., Wada K., Jarvis E. D., Dopamine receptors in a songbird brain. J. Comp. Neurol. 518, 741–769 (2010).
111
Bang S., Steenstra C., Kim S. F., Striatum specific protein, Rhes regulates AKT pathway. Neurosci. Lett. 521, 142–147 (2012).
112
Kato M., Okanoya K., Molecular characterization of the song control nucleus HVC in Bengalese finch brain. Brain Res. 1360, 56–76 (2010).
113
Desplats P. A., Kass K. E., Gilmartin T., Stanwood G. D., Woodward E. L., Head S. R., Sutcliffe J. G., Thomas E. A., Selective deficits in the expression of striatal-enriched mRNAs in Huntington’s disease. J. Neurochem. 96, 743–757 (2006).
114
Clayton D. F., George J. M., Mello C. V., Siepka S. M., Conservation and expression of IQ-domain-containing calpacitin gene products (neuromodulin/GAP-43, neurogranin/RC3) in the adult and developing oscine song control system. Dev. Neurobiol. 69, 124–140 (2009).
115
George J. M., Jin H., Woods W. S., Clayton D. F., Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15, 361–372 (1995).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 346 | Issue 6215
12 December 2014

Submission history

Received: 2 June 2014
Accepted: 11 November 2014
Published in print: 12 December 2014

Permissions

Request permissions for this article.

Acknowledgments

We thank H. Dressman and L.-L. Rowlette for microarray hybridizations, the Allen Institute for Brain Science for early access to human microarray data and human brain in situ hybridizations (and the Allen Institute founders, P. G. Allen and J. Allen, for their encouragement of that project), K. Simonyan for her coordinates of meta-analyses for speech regions, and S. Jarvis for help with imaging. Supported by NIH Directors Pioneer Award DP1 OD000448, National Institute on Deafness and Other Communication Disorders grant R01DC007218, and the Howard Hughes Medical Institute (E.D.J.). The brain gene expression atlas (ZEBrA) is supported by National Institute of General Medical Sciences grant R24GM092842 (C.V.M.). Marmoset experiments were supported by the Funding Program for World-leading Innovative R&D on Science and Technology (A.I.). Microarray data are available in the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo) under accession numbers GSE33365 and GSE34819 (for songbird Area X), GSE28395 (for avian arcopallium regions), GSE33667 (for avian brainstem regions), and GSE31613 (for macaque brain regions); human microarray data are available from the Allen Human Brain Atlas site (http://human.brain-map.org/static/download). E.D.J., A.R.P., E.H., M.R., and P.R. conceived and designed the project; E.D.J., A.R.P., and A.J.H. wrote the paper; E.D.J., A.J.H., M.A.M., A.I., E.L., and C.V.M. co-supervised parts of the project; A.R.P. conducted most computational analyses; G.G., T.B., E.J.S., and A.J.H. conducted other computational analyses and supervision; E.H., M.R., O.W., and J.T.H. collected avian samples and performed microarray experiments; J.M., M.W., P.V.L., E.H., R.W., M.K., A.Bo., A.Be., C.V.M., and E.D.J. performed in situ hybridizations and analyses across species; G.Z., M.T.P.G., and E.D.J. provided genomes; and P.R., M.A.M., J.W.T., and E.J.S. performed proteomic experiments.

Authors

Affiliations

Andreas R. Pfenning* [email protected]
Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
Erina Hara
Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
Osceola Whitney
Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
Miriam V. Rivas
Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
Rui Wang
Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
Petra L. Roulhac
Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
Jason T. Howard
Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
Morgan Wirthlin
Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
Peter V. Lovell
Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
Ganeshkumar Ganapathy
Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
Jacquelyn Mountcastle
Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
M. Arthur Moseley
Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA.
J. Will Thompson
Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA.
Erik J. Soderblom
Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA.
Atsushi Iriki
Laboratory for Symbolic Cognitive Development, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Masaki Kato
Laboratory for Symbolic Cognitive Development, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
M. Thomas P. Gilbert
Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark.
Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia.
Guojie Zhang
China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China.
Centre for Social Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark.
Trygve Bakken
Allen Institute for Brain Science, Seattle, WA 98103, USA.
Angie Bongaarts
Allen Institute for Brain Science, Seattle, WA 98103, USA.
Amy Bernard
Allen Institute for Brain Science, Seattle, WA 98103, USA.
Ed Lein
Allen Institute for Brain Science, Seattle, WA 98103, USA.
Claudio V. Mello
Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
Alexander J. Hartemink* [email protected]
Department of Computer Science, Duke University, Durham, NC 27708, USA.
Erich D. Jarvis* [email protected]
Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.

Notes

*
Corresponding author. E-mail: [email protected] (A.R.P.); [email protected] (A.J.H.); [email protected] (E.D.J.)

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Vocal learning–associated convergent evolution in mammalian proteins and regulatory elements, Science, 383, 6690, (2024)./doi/10.1126/science.abn3263
    Abstract
  2. Analogies of human speech and bird song: From vocal learning behavior to its neural basis, Frontiers in Psychology, 14, (2023).https://doi.org/10.3389/fpsyg.2023.1100969
    Crossref
  3. Sensogenomics of music and Alzheimer’s disease: An interdisciplinary view from neuroscience, transcriptomics, and epigenomics, Frontiers in Aging Neuroscience, 15, (2023).https://doi.org/10.3389/fnagi.2023.1063536
    Crossref
  4. Exploring mysteries of life and their great values in biomedicine through evolutionary genomics, National Science Open, 2, 2, (20220054), (2023).https://doi.org/10.1360/nso/20220054
    Crossref
  5. Evolutionary constraint and innovation across hundreds of placental mammals, Science, 380, 6643, (2023)./doi/10.1126/science.abn3943
    Abstract
  6. Relating enhancer genetic variation across mammals to complex phenotypes using machine learning, Science, 380, 6643, (2023)./doi/10.1126/science.abm7993
    Abstract
  7. RoboFinch: A versatile audio‐visual synchronised robotic bird model for laboratory and field research on songbirds, Methods in Ecology and Evolution, (2023).https://doi.org/10.1111/2041-210X.14063
    Crossref
  8. Molecular and network-level mechanisms explaining individual differences in autism spectrum disorder, Nature Neuroscience, 26, 4, (650-663), (2023).https://doi.org/10.1038/s41593-023-01259-x
    Crossref
  9. Birdsong neuroscience and the evolutionary substrates of learned vocalization, Trends in Neurosciences, 46, 2, (97-99), (2023).https://doi.org/10.1016/j.tins.2022.11.005
    Crossref
  10. Comparative genomics and the roots of human behavior, Trends in Cognitive Sciences, 27, 3, (230-232), (2023).https://doi.org/10.1016/j.tics.2022.12.012
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media