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Abstract 

Pollutants are formed when oil, gas, chemical plants, etc. discharge their harmful waste materials into stream or other 

water bodies. In this paper, a mathematical model for water pollutants which are soluble and insoluble has been 

formulated as a system of non-linear ordinary differential equations. Control is applied on insoluble water pollutants to 

process them into soluble water pollutants. Numerical simulation has been carried out which suggest that soluble water 

pollutants are increasing as compared to insoluble water pollutants. 
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1. Introduction 
Water pollution is the burning issue for the environment. It is caused when water pollutants are 

discharged into water bodies like lakes, streams, oceans, etc. If they are discharged directly or 

indirectly without any treatment they become more harmful. Water pollution is also caused by oil 

refineries, construction sites, chemical wastes, some radioactive wastes, etc. They are harmful to 

all aquatic animals, environment and human. 

 

Water pollutants can be classified into two categories soluble water pollutants and insoluble water 

pollutants. The pollutants which can dissolve in water directly without any treatment are called 

soluble water pollutants. As for example soap, nitrates, chlorates, acetates, all hydroxides and 

many more. On other hand water pollutants which do not dissolve in water without treatment are 

called insoluble water pollutants. For example, oil, plastic, chemicals from industries, etc. Some 

chemicals which are insoluble in water can be made solute with proper treatment. 

 

The mathematical model helps to study the transmission of several issues not only in infectious 

diseases but also in medicine, biology, social science, also to study the spread of different kind of 

pollutants etc. which is cited by Ferguson et al. (2006). A model was formulated with three 

differential equations by Anderson (1991), Hethcote (1994) and Brauer (2008).  

 

In this paper, a mathematical model is formulated for transmission of water pollutants in section 

2. The stability analysis of the transmission model is derived in section 3. Sensitivity analysis is 

carried out in section 4. Optimal control for the water pollutants is discussed in section 5. In 

section 6, the model is validated with numerical simulation and analysis. 
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2. Mathematical Model 
Water is an essential part of the living body. Therefore, the proposed model is divided into three 

discrete compartments: the cubic volume of water pollutants  PW , the cubic volume of soluble 

water pollutants  S  and the cubic volume of insoluble water pollutants  I  are considered. Here, 

1u  is the control rate for the treatment of insoluble water pollutants. We formulate a mathematical 

model for the analysis of solubility and insolubility of water pollutants. The notations and 

parametric values for the mathematical model are exhibited in Table 1. 

 

 

 
Table 1. Notations and its parametric values 

 

Notations Description Parametric values 

B  Water pollutants rate 0.7 

1  The rate of water pollutants which are soluble 0.18 

2  The rate of water pollutants which are insoluble 0.02 

  The rate at which insoluble water pollutants becomes solute after treatment 0.3 

  The rate of insoluble water pollutants resulting water pollution 0.1 

  The removable rate of water pollutants of each compartment 0.4 

1u  Control rate for the treatment of insoluble water pollutants [0,1] 

 

 

 

Using notations given in Table 1 transmission of water pollutants can be described as shown 

in Fig. 1. 

 

 

 

 

 
 

Fig. 1. Transmission of water pollutants 
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The governing differential equations are 
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                                                                                                       (1) 

 

with 
PW S I V    and 0, , 0PW S I  . 

 

Adding all the above equations, we get 
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t
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Therefore, the feasible region for the system  1  is 
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. 

 

Next, the basic reproduction number 
0R  can be calculated using the next generation matrix 

method of Diekmann et al. (2009). 
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Now, the derivative of F and V of order 3 3 defined as 
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where, 
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Now, the basic reproduction number 
0R is the spectral radius of the matrix 1fv  where 
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In next section, equilibrium of the water pollutants transmission model is discussed. 

 

3. Stability of Equilibrium 
The equilibrium for the local and global stability of the water pollutants model is deliberated here. 

 

3.1 Local Stability 
The water pollution resources equilibrium is locally asymptotically stable if all the eigenvalues of 

the matrix have positive real values. The Jacobian matrix for the system at 0 ,0,0
B

E
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 is given 

by 
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Thus, trace  J < 0 provided 
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. 

 

Hence, the system (1) is locally stable. 

 

On solving the set of equation (1), we get the other two points namely, 
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 means insoluble water pollutants does not exist and 

 

 , ,PE W S I     when all kind of pollutants exists. 

 

https://dx.doi.org/


International Journal of Mathematical, Engineering and Management Sciences                              

Vol. 3, No. 4, 381–391, 2018 

https://dx.doi.org/10.33889/IJMEMS.2018.3.4-027 

385 

where, 
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3.2 Global Stability 
The water pollutants transmission model is globally stable (Shah et al., 2016, 2017) if 
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therefore, the system (1) is also globally stable. 

 

4. Sensitivity Analysis 
In this section, the sensitivity analysis for all parameters is discussed in Table 2. The normalised 

sensitivity index of the parameters is computed by using the following formula 0 0

0

R R

R








 


 

where   denotes the model parameter 

 
Table 2. Sensitivity analysis 

 

Parameter Value 

B  + 

1  + 

2  + 

  - 

  - 

  - 

 

 

The recruitment rate  B , the rate of water pollutants which are soluble  1 , the rate of water 

pollutants which are insoluble  2  have positive effect which means they are helping us to know 

water pollutants. Other parameters have negative impact on the model. 

 

5. Optimal Control Model 
The objective of the model is to minimize the number of insoluble water pollutants. The control 

function is united to achieve the objective. The objective function for the mathematical model of 

water pollutants in the system (1) along with the optimal control is given by 
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   2 2 2 2

1 2 3 1 1

0

,

T

i PJ u AW A S A I w u dt                                                                                          (3) 

 

where,   denotes set of all compartmental variables, 
1 2 3, ,A A A  denote non-negative weight 

constants for , ,PW S I  compartment respectively. As, the weight parameters 
1w  is constant for 

control rate on in solute water pollutants to give treatment  1u from which the optimal control 

condition is normalized. 
1u  is the control rate which minimizes the insoluble water pollutants. To 

complete the value of control variable 
1u from t = 0 to t = T such that 

 

     1 1min , /iJ u t J u u     

 

where,   is smooth function on the interval  0,1 . The optimal denoted by 
iu 

, 1i   are found by 

accumulation all the integrands of equation (3) using the lower bounds and upper bounds 

respectively with the results of Fleming and Rishel (2012). 

 

Now, using the Pontrygin’s (1986) to minimize the cost function in (3) by constructing 

Lagrangian function consisting of state equations and adjoint variables  1 2 3, ,iA   
 
as 
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The partial derivative of the Lagrangian function with respect to each variable of the 

compartment gives the adjoint equation variable  1 2 3, ,iA    corresponding to the system (1) 

which as follows: 
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The necessary condition for Lagrangian function L to be optimal for control is 
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u w u I
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To find the value u1of solving the equation (8) then 

 

 3 2

1

12

I
u

w

 
                                                                                                                                 (9) 

 

https://dx.doi.org/


International Journal of Mathematical, Engineering and Management Sciences                              

Vol. 3, No. 4, 381–391, 2018 

https://dx.doi.org/10.33889/IJMEMS.2018.3.4-027 

387 

Thus, the required optimal control condition is computed as 

 

 3 2

1 1 1

1

max ,min ,
2

I
u a b

w

 


  
    

  

                                                                                                 (10) 

 

In next section, the optimal control is calculated numerically to support the analytical result for 

insoluble water pollutants model. 

 

6. Numerical Simulation 
Using the data given in Table 1 and Table 2, the sensitivity on model parameters is carried out. 

 

 

 
 

Fig. 2. Effect for the rate of water pollutants which are soluble 

 

 

Fig. 2 indicates that if we increase the rate of water pollutants, which are soluble  1  from 8% to 

28%, the soluble water pollutants increase in beginning then after it decreases at a slower rate. 

 

 

 
 

Fig. 3. Effect for the rate of water pollutants which are insoluble 
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From Fig. 3, one can specify that if the rate of water pollutants, which are insoluble  2  is 

increased from 1% to 3%, then insoluble water pollutants increases approximately by 104 PPM to 

120 PPM. 

 

 

 

 
 

Fig. 4. Effect for the rate of insoluble water pollutants becomes solute after some treatment 

 

 

Fig. 4 shows that if one will increase the rate at which insoluble water pollutants becomes solute 

after some treatment   , then the soluble water pollutants decreases only by 2% with the time. 

But the reduction of solute is comparatively less which indicates that government should apply 

control on solute water pollutants. 

 

 

 

 
 

Fig. 5. Control variable verses time (in days) 
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From Fig. 5, one can observe that insoluble water pollutants should be controlled 62% in almost 3 

days and then it can be decreased it treatment is extended for 5 days more. 

 

 

  

Fig. 6(a). Soluble water pollutants 

with and without control 

Fig. 6(b). Insoluble water pollutants with 

and without control 

 

 

Fig. 6(a) and Fig. 6(b) indicates that on making use of chemical reaction soluble water pollutant 

decreases exponentially and insoluble chemicals are increasing with control at a lower rate as 

compared to when no control is applied. This suggests that control in terms of some treatment is 

beneficial to revive water pollution. 

 

The parametric values used for following three figures are: 

 

1 20.7, 0.15, 0.6, 0.1, 0.3, 0.29B            that defines the equilibrium point 
0 ,E  

1E  and E

numerically 

 

 

 
 

Fig. 7. Percentage of water pollutants at 
0E  
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Fig. 7 shows that water pollutants remain as it is, if soluble and insoluble water pollutants do not 

exist. 

 

 
 

Fig. 8. Percentage of water pollutants at 
1E  

 

Fig. 8 shows that if we do not observe the insoluble water pollutants then 20% water pollutants 

are soluble and 80% water pollutants still exist. 

 

 

 
 

Fig. 9. Percentage of water pollutants at E  

 

 

Fig. 9 shows that 45% water pollutants prevail in society, if 16% water pollutants are insoluble 

and 39% are soluble water pollutants. 

 

7. Conclusions 

Here, a non-linear mathematical model for transmission of water pollutants is formulated. An 

optimal control is applied to insoluble water pollutants which are converted into soluble water 

pollutants. The harmful chemicals that come from chemical industries pollute water bodies like 

streams, ocean, lake, etc. So, we should give proper treatment and try to make them pollution free 

at some extent. The stability for transmission of water pollutants model is discussed with 

numerical data. The basic reproduction number is computed as 0.8373, which shows that control 

on insoluble water pollutants will be beneficial to reduce the water pollutants by 83.73%. “Water 

is precious and so it is our responsibility to save”. 
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