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REVIEW

Cancer chemoprevention 
through dietary flavonoids: what’s limiting?
Haneen Amawi1, Charles R. Ashby Jr.2 and Amit K. Tiwari1,3*

Abstract 

Flavonoids are polyphenols that are found in numerous edible plant species. Data obtained from preclinical and clini-
cal studies suggest that specific flavonoids are chemo-preventive and cytotoxic against various cancers via a multi-
tude of mechanisms. However, the clinical use of flavonoids is limited due to challenges associated with their effective 
use, including (1) the isolation and purification of flavonoids from their natural resources; (2) demonstration of the 
effects of flavonoids in reducing the risk of certain cancer, in tandem with the cost and time needed for epidemiologi-
cal studies, and (3) numerous pharmacokinetic challenges (e.g., bioavailability, drug–drug interactions, and metabolic 
instability). Currently, numerous approaches are being used to surmount some of these challenges, thereby increas-
ing the likelihood of flavonoids being used as chemo-preventive drugs in the clinic. In this review, we summarize the 
most important challenges and efforts that are being made to surmount these challenges.
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Background
Dietary flavonoids are the most common polyphenols 
found in fruits, vegetables, flowers, chocolate, tea, wine, 
and other plant sources [1–3]. With more than 9000 
members in this family, flavonoids can be divided into 
several subfamilies, including flavones, flavanols, isofla-
vones, flavonols, flavanones, and flavanonols that differ 
in their ring substituents and extent of saturation [4, 5]. 
However, all compounds in this family share the basic 
chemical structure consisting of two benzene rings con-
nected by a 3-carbon bridge, forming a heterocycle 
(C6-C3-C6) [6] (Fig. 1). Flavonoids have been reported to 
have an excellent safety profile (no toxicity at up to 140 g/
day), with no known significant adverse effects [7]. The 
pharmacological effects of flavonoids include antioxidant, 
anti-inflammatory, cardioprotective, hepatoprotective, 
antimicrobial, and anticancer [8, 9]. However, there are 
significant challenges associated with flavonoids related 
to their isolation, purification, and pharmacokinetic/

pharmacodynamic (PK/PD) properties, which have lim-
ited their development into efficacious clinical drugs. 
Here, we discuss the challenges associated with the 
development of flavonoids for cancer chemoprevention 
and efforts to surmount these challenges.

Flavonoids in cancer chemoprevention
Increasing evidence from both epidemiological and 
laboratory studies suggests that the dietary intake of 
flavonoids reduces the risk of developing certain types 
of cancers [10]. Several types of flavonoids have been 
identified as having antiproliferative  efficacy in various 
cancers, including silymarin, genistein, quercetin, daid-
zein, luteolin, kaempferol, apigenin, and epigallocatechin 
3-gallate [11, 12]. These aforementioned compounds 
have been reported to have anticancer and preventive 
effects against prostate [13], colorectal [14], breast [15], 
thyroid [16], lung [17], and ovarian [18] cancers, among 
others [19–21]. Their chemopreventive efficacy is medi-
ated by (1) inhibiting the development of new cancer 
cells; (2) preventing carcinogens from reaching their 
activation sites; and (3) decreasing the toxicity of cer-
tain compounds by inhibiting their metabolism [22–24]. 
The molecular mechanisms by which flavonoids produce 
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their anticancer and preventive effects include (1) induc-
tion of apoptosis [14, 25, 26]; (2) cell cycle arrest at G1 or 
G2/M phase by inhibiting key cell cycle regulators such 
as cyclin-dependent kinases (CDKs) [27, 28]; (3) inhi-
bition of metabolizing enzymes (notably cytochromes 
P450 [CYPs]), which inhibits the activation of numer-
ous carcinogenic compounds [29]; (4) inhibition of reac-
tive oxygen species formation primarily by activation 
of phase II metabolizing enzymes [26, 30, 31]; and (5) 
inhibition of vascular endothelial growth factor (VEGF)- 
and basic fibroblast growth factor (bFGF)-mediated 
angiogenesis [32–34]. In addition, some flavonoids have 
been shown to significantly inhibit multidrug resist-
ance, which is responsible for cancer relapse and chemo-
therapy failure [35, 36]. However, some flavonoids have 
specific mechanisms of action that are not characteris-
tic of the flavonoid family. For example, the isoflavones 
genistein and diadzein have been shown to significantly 
inhibit cancer growth and proliferation [37–39]. Due to 

their structural similarity with estrogen, genistein and 
diadzein have been reported to have significant pre-
ventive  efficacy against breast cancer [40, 41]. Another 
interesting flavonoid is silybin, which has antioxidant 
and hepatoprotective efficacy [42–44]. However, in vitro 
and in  vivo preclinical studies in the last decade indi-
cate that silybin also has antiproliferative efficacy and, as 
a result, subsequent phase I and II clinical studies have 
been conducted [45–47]. Silybin has a number of phar-
macological properties that may explain its anticancer 
efficacy, such as inhibition of (1) tumor necrosis factor 
(TNF)-induced activation of nuclear factor kappa B (NF-
κB) where it inhibits the phosphorylation and proteolytic 
degradation of nuclear factor of kappa light polypeptide 
gene enhancer in B cell inhibitor, alpha (IκBα) to NF-κB 
(active form) [48]; (2) tyrosine kinases [49]; (3) androgen 
receptors [50]; and (4) the epithelial-to-mesenchymal 
transition embryonic pathways [51–54]. Another flavo-
noid, quercetin, is a potent antioxidant that is present in 

Fig. 1  Subfamilies of flavonoids. Flavonoids include the following subfamilies: flavones, flavanols, isoflavones, flavonols, flavanones, and flavanonols, 
which differ in their ring substituents and extent of saturation
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natural sources such as berries, onions, apples, and red 
wine [3, 55]. Quercetin’s anticancer efficacy in colon can-
cer and neurogliomas results from activating the novel 
cell death pathway, autophagy (type II programmed cell 
death), and mitogen-activated protein kinases (MAPK or 
extracellular signal-related kinase [ERK]) signaling path-
ways [56–58]. Accordingly, several studies on flavonoids 
support the potential role of flavonoids in both cancer 
treatment and prevention [1]. Currently, a variety of fla-
vonoid formulations are present in dietary supplements 
such as milk thistle and red clover extracts [59]. How-
ever, none of the above mentioned flavonoids have been 
approved for clinical use.

Challenges in flavonoids in cancer 
chemoprevention development
Despite preclinical evidence suggesting that flavonoids 
have anticancer and preventive efficacy, there are numer-
ous problems that have impeded the development of die-
tary flavonoids as approved drugs for clinical use. There 
are challenges associated with demonstrating the effect 
of flavonoids in reducing the risk of certain cancer, e.g., 
the cost and time needed for epidemiological studies, the 
isolation and purification of flavonoids from their natural 
sources, and PK issues, among others. These challenges 
are  discussed below, and a summary of these issues  is 
also presented in Fig. 2.

Isolation and purification challenges
One of the major challenges in the extraction of flavo-
noids from their original plant sources resides in the 
fact that these compounds are present at very low levels 
(from micrograms to milligrams per kg of plant masses). 
Indeed, the continuous extraction of these compounds 
could result in the extinction of the plant source (assum-
ing extraction is faster than replenishing new plants), dis-
rupting whole plant communities [60, 61].

As with other plant products, flavonoids are usually 
present in plants as a complex with other compounds 
that produce their effects in concert. In addition, other 
secondary metabolites, minerals, vitamins, and fibers are 
also complexed with flavonoids from the same source 
[59]. Therefore, the sum of the constituents in the plant 
may be responsible for the observed anticancer efficacy, 
as opposed to more than one flavonoid alone [62]. This 
complexation of flavonoids makes it difficult to isolate 
and identify the exact molecule that is producing specific 
pharmacological effects. Also, following the identification 
of the active flavonoid, its subsequent isolation and purifi-
cation from other compounds, using analytical methods, 
is a multistage procedure. A combination of several tech-
nologies can be used for isolation of specific compounds, 
including solvent extraction, column chromatography, 

medium-pressure liquid chromatography, vacuum col-
umn chromatography, and preparative high performance 
liquid chromatography (HPLC) [63, 64]. The application 
of such procedures is a time-consuming process that can 
be associated with high costs [65]. Additionally, even with 
the application of such complex techniques, the yield 
of extracted compounds is typically very low as several 
kilograms of the plant produce less than 1  g of the iso-
lated compounds in some cases [66]. An important fac-
tor that limits the extraction yield is the complex nature 
of biosynthetic pathways for flavonoids in plants. These 
pathways are considered to be one of the most complex 
biosynthetic pathways and result in variable flavonoid 
composition at different growth stages of the plant and 
under different environmental conditions [67, 68]. The 
variation in flavonoid composition decreases the predict-
ability of flavonoid yields during extraction and results in 
inconsistent data after each extraction [69]. Another lim-
itation in the extraction of flavonoids is that these com-
pounds are usually labile, subjecting them to a high level 
of degradation or alteration in their chemical structures 
and subsequent loss of activity during purification [70]. 
Therefore, harvesting flavonoids from their plant natural 
sources, using the current applied methodologies, can be 
time-consuming, highly expensive, associated with very 
low yields and wasteful.

Epidemiological challenges
The potential therapeutic effects (as chemopreventive 
compounds) of natural products such as flavonoids can 
be ascertained to some extent from epidemiological 
studies, including retrospective meta-analysis [71], pro-
spective observational studies [72], and/or prospective 
interventional studies [73, 74]. The data from epidemio-
logical studies depend on the population of individu-
als that have ingested the specific compound. Thus, for 
this review, the population of interest would consist of 
those individuals that have taken dietary flavonoids to 
prevent cancer. It is time-consuming to collect the data 
and have it categorized, analyzed, and associated with 
the presence or absence of flavonoids. The data is often 
skewed due to lack of adherence data in the population 
using specific flavonoids. Also, the length of exposure is 
very long, where some changes in the amount and type 
of exposure can occur rapidly in the population, making 
the conclusions of the study invalid. Another important 
limitation is that the population is usually exposed to 
many heterogeneous factors that can significantly affect 
health outcomes, including the development of cancer. 
Such factors can result in conflicting data and decrease 
the certainty of conclusions about the effect of flavonoids 
in cancer chemoprevention. For example, the data from 
epidemiological studies that were used to determine 
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the correlation between the intake of dietary flavonoids 
and the risk of developing colorectal cancer (CRC) were 
controversial and inconsistent [75, 76]. Some studies 
suggested that flavonoid consumption was significantly 
correlated with a low CRC risk [77–79], whereas other 
studies did not report a significant correlation between 
the intake of flavonoids and CRC risk [80–82]. There-
fore, the type of dietary flavonoid that is ingested, the size 
and heterogeneity of population, and the design of the 
study can affect the interpretation of results from stud-
ies assessing the effectiveness of flavonoids in preventing 

cancer. The validation of the conclusions derived from 
appropriately designed epidemiological studies requires 
conducting expensive studies using large populations, 
which further limits the development of flavonoids as 
drugs.

PK challenges
Flavonoids typically have an unsuitable PK profile [83, 
84] (i.e., absorption, distribution, metabolism, excretion, 
and toxicity [ADMET]), characterized by low solubility, 
poor oral absorption, and extensive hepatic metabolism 

Fig. 2  Challenges associated with flavonoid development and possible approaches to overcome their use as chemopreventive agents. ABC: ATP-
binding cassette transporters, CYP: cytochrome P450. HSCCC: high-speed counter-current chromatography, UAE: ultrasound-assisted extraction
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by phase I and II enzymes [85–87]. Flavonoids are usu-
ally ingested with other foods components, resulting 
in the complexation or precipitation of flavonoid com-
pounds, thus limiting their absorption and bioavailability 
[88, 89]. Furthermore, flavonoids can undergo significant 
metabolism via de-glycosylation prior to their absorption 
in the small intestine epithelial cells [90, 91]. In vivo, fla-
vonoids are substrates for glucuronidation, sulfation, and 
O-methylation [92], resulting in inert, polar complexes 
that are rapidly excreted in urine [85]. Furthermore, 
the unabsorbed form can reach the colon and undergo 
degradation by the intestinal microflora by ring fission 
[93–95], reduction [96], or hydrolysis [97]. For example, 
only 20%–30% of an oral dose of quercetin is bioavailable 
[98]. The incubation of quercetin under normal physio-
logical conditions (Hanks’ Balanced Salt solution, pH 7.4) 
results in its degradation within 6 h [99]. The anticancer 
effect of the flavonoid silybin is limited by its extensive 
metabolism and low oral absorption [100, 101]. Flavan-
3-ols have been shown to be completely degraded after 
8 h of exposure to simulated intestinal secretions [102]. 
These aforementioned PK liabilities represent significant 
barriers for the clinical development of flavonoids, as 
the required in vivo levels cannot be achieved even with 
high oral doses [103, 104]. In addition, the ingestion of 
higher doses of flavonoids for more effective antiprolif-
erative effect may produce proliferative and inflamma-
tory responses [105, 106]. Finally, flavonoids are known 
to affect the bioavailability and efficacy of many drugs 
due to their multiple in  vivo interactions. For example, 
certain flavonoids can affect CYPs [107] and conjuga-
tion enzymes [108], other enzymes (α-amylase [109] and 
α-glucosidases [110]), bovine hemoglobin [111], multi-
drug resistance transporters [112], colonic microflora 
[113], and plasma proteins [114, 115].

ATP‑binding cassette drug transporter interactions
The ATP-binding cassette (ABC) transporter superfam-
ily consists of important members that mediate not only 
PK alterations (i.e., ADMET), but also multidrug resist-
ance (MDR) to numerous antineoplastic drugs, includ-
ing flavonoids, that are substrates for these transporters, 
resulting in chemotherapeutic failure [116–119]. Impor-
tant members include P-glycoprotein (P-gp or multidrug 
resistance protein family 1 [MDR1]), breast cancer-resist-
ant protein (BCRP or ATP-binding cassette sub-family G 
member 2 [ABCG2]), and multidrug resistance protein 
family C member 1 (ABCC1 or multidrug resistance-
associated protein 1 [MRP1]) [120]. The transporters are 
located on the cell membrane with two transmembrane 
domains that can recognize different compounds and 
form channels within the membrane to efflux these com-
pounds [121]. The efflux of the compounds requires the 

hydrolysis of ATP which provides the energy required for 
efflux of substrates [122]. ABC transporters have a ubiq-
uitous distribution throughout the body, although they 
are present in high densities in tissues that have a barrier 
function, such as the gastrointestinal tract, reproductive 
organs, kidney, liver, and blood–brain barrier [123]. It is 
well established that ABC transporters play a critical role 
in regulating drug absorption, distribution, and excre-
tion, which can decrease their bioavailability and thus 
their efficacy [124, 125].

Several reports investigated the possible interaction 
of flavonoids with ABC transporters. Flavonoids, such 
as flavones (e.g., apigenin and chrysin), isoflavones (e.g., 
biochanin A and genistein), flavonols (kaempferol), and 
flavanones (naringenin) have been reported to inhibit 
the efflux function of ABC transporters, such as ATP-
binding cassette subfamily B member 1 (ABCB1) and 
ABCG2 [112, 126, 127]. The inhibition of ABC trans-
porters by certain flavonoids can have advantages and 
disadvantages. The inhibition of ABC transporters can 
increase the bioavailability of some poorly available 
drugs, thereby potentially augmenting the absorption, 
distribution, bioavailability, and efficacy of certain drugs, 
including antineoplastics. Such inhibition can be used to 
overcome multidrug resistance and chemotherapy fail-
ure [126]. For example, the isoflavinoids medicarpin and 
millepurpan significantly induce apoptosis in multidrug-
resistant P388 leukemia cells and overcome the resist-
ance mechanisms [128]. Epigallocatechin-3-gallate, at a 
dose of 10 mg/kg bodyweight by intragastric gavage as a 
suspension in 0.2% agar, once a day for 10 days, signifi-
cantly decreased the expression of P-gp, which increased 
the plasma levels of atorvastatin and verapamil in male 
Wistar rats, potentiating their pharmacological actions 
[129].

However, the inhibition of ABC transporters by spe-
cific flavonoids can potentiate the toxicity of certain ABC 
substrates and elicit unexpected adverse or toxic effects 
of these substrates such as antimicrobials [130, 131], 
immunosuppressants [132], cardiovascular [133–135], 
and chemotherapeutic drugs [136, 137]. A recent report 
indicated that some flavonoids (e.g., genistein and gly-
ceollin) also interact with other ABC transporters such 
as ABCC2 (MRP2) [138]. In addition, certain flavonoids 
are substrates for ABC transporters, thereby limiting 
their absorption from the gastrointestinal tract, distribu-
tion to body tissues and organs, and, ultimately, their bio-
availability [139]. Polymorphisms in the ABC transporter 
genes can directly affect the PK profile of flavonoids. For 
example, a recent study showed that the ABCB1 C3435T 
polymorphism significantly altered the bioavailability and 
plasma levels of silybin. Patients with CC or CT poly-
morphisms in the ABCB1 gene have twice the plasma 
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levels of silybin compared to patients with the TT poly-
morphism [140]. Detailed interactions of flavonoids with 
CYPs are reviewed elsewhere [108, 137].

CYP interactions
CYPs play a significant role in the biotransformation 
of xenobiotic and endogenous compounds [141]. It is 
well established that CYPs play a crucial role in phase I 
metabolism, typically bio-transforming molecules to 
more polar entities and increasing the likelihood they will 
be substrates for phase II metabolism. Flavonoids have 
been reported to significantly inhibit the activities of 
CYPs [109]. This inhibition is mediated by either a reduc-
tion in the level of CYPs or direct binding of flavonoids 
to their active sites [110]. CYP 3A4 is one of the most 
important CYP isoforms and is involved in the metabo-
lism of many clinically used drugs [142]. Several types of 
flavonoids, such as quercetin, kaempferol, naringenin, 
and apigenin have been shown to have inhibitory effects 
on the activities of CYPs, primarily CYP 3A4 (both 
in vivo and in vitro) [143, 144]. This inhibition increases 
the half-lives and the plasma concentrations of many 
drugs that are substrates for CYPs, which can potenti-
ate their adverse effects and/or toxicity. For example, 
the adverse effects of certain calcium channel blockers, 
statins, antihistamines, protease inhibitors, and immu-
nosuppressants can be significantly potentiated by spe-
cific flavonoids [145]. In addition to the inhibition of CYP 
3A4, flavonoids were reported to inhibit other CYP iso-
forms, such as CYP subfamily 1 isoforms (CYP 1A1, CYP 
1A2, and CYP 1B1), which are significantly involved in 
carcinogenesis [146]. The two isoflavones, formononetin 
and biochanin A, significantly inhibit CYP 1A2 in both 
human and rat liver microsomes in vitro. Formononetin 
also significantly inhibits CYP 2D6, and biochanin A also 
inhibits human CYP 2C9 [147]. CYP 1B1 is inhibited by 
flavone [148], chrysin [148], apigenin [148], genistein 
[148], luteolin [149], quercetein [149], galangin [149], 
myricetin [150], and many others. CYP 1A1 is irrevers-
ibly inhibited by the binding of two flavones (3-flavone 
propargyl etherE and 7-Hydroxy flavone) [151]. Finally, 
CYP gene expression was inhibited by the flavonoids, 
apigenin [152], tangeretin [153], diadzein [154], silybin 
[155], and others. Detailed interactions of flavonoids with 
CYPs are reviewed elsewhere [156].

Intestinal microflora interactions
Following the oral administration of flavonoids, it is pos-
sible that a significant percentage can reach the colon 
and be subjected to degradation by microflora, as well as 
enterohepatic circulation, depending on the compound 
[157]. The colonic microflora is the most abundant and 
diverse part of the microbiome in humans [158]. These 

microorganisms have been shown to biotransform cer-
tain drugs to metabolites, thereby altering their efficacies 
and toxicities [159–161]. They also act as a protection 
barrier involved in the defense against pathogens and 
toxic xenobiotics. The colonic microflora also reduces 
cholesterol absorption and increases mucus secretion 
in the gut [162, 163]. The role of the colonic microflora 
on the absorption, metabolism, and bioavailability of 
flavonoids remains to be delineated [164]. It has been 
reported that unabsorbed flavonoids can be biotrans-
formed to small phenolic compounds that have similar 
effects, but improved bioavailability, compared to the 
parent compound [165]. In contrast, the colonic micro-
flora can extensively metabolize (via cleaving the het-
erocycle break) flavonoids via the enzymes glucuronidase 
and sulphatase, producing metabolites that are primar-
ily inert polar compounds that are rapidly excreted [164, 
166–168]. Some flavonoids (e.g., apigenin, genistein, 
naringenin, and kaempferol) are more likely to undergo 
microflora degradation compared with others, resulting 
in lower bioavailability [169]. Recent reports indicated 
that certain flavonoids can inhibit intestinal microflora 
and their associated fermentation processes [170]. Both 
bacterial β-glucosidase and α,β-galactosidase were inhib-
ited by ellagitannins and flavan-3-ols from raspberry 
extracts [171].

Furthermore, the use of antibiotics should be moni-
tored when using along with flavonoids as they can alter 
the composition of the gut microflora, which ultimately 
affects the bioavailability of specific flavonoids [172]. 
Thus, the huge diversity in the structures of flavonoids, 
as well as the microbial composition of gastrointestinal 
tract, can lower the predictability of the types of interac-
tions that occur, as well as the effect of the resultant com-
pounds and their permeability.

Other PK challenges
The poor chemical stability of flavonoids has been 
shown to adversely affect PK and limit their utility. Sev-
eral factors, such as oxygen exposure, temperature, light, 
ultraviolet radiation, and pH, were shown to reduce fla-
vonoid stability and result in its subsequent degradation 
[173]. Indeed, increased oxidation due to the presence 
of oxygen significantly alters cranberry flavonoid stabil-
ity [174]. Temperature is another factor that needs to be 
optimized upon the extraction, purification, and storage 
of flavonoids. For example, the highest yield of phenolic 
flavonoids from the pericarp of litchi fruit extraction was 
achieved at 45  °C–60  °C, whereas other temperatures 
resulted in significantly lower yields and substantial deg-
radation of flavonoids [175]. Light exposure can also alter 
flavonoid biosynthesis and its biological activities. The 
optimum antioxidant activity of total flavonoids in the 



Page 7 of 13Amawi et al. Chin J Cancer  (2017) 36:50 

plant Halia bara was at a light wavelength of 310 μmol/
m2  s1. Other tested wavelengths reduced the biosynthe-
sis and antioxidant activity of the total flavonoids [176]. 
Additionally, different pH values can result in distinct 
yields and activities of flavonoids. A pH range of 3–4 
produced the highest yield and bioactivity in phenolics 
from litchi fruit pericarp [175]. The chemical structure 
itself and the type of substitution on the flavonoid rings 
can also alter the chemical stability. For example, the deg-
radation of flavonols when exposed to long wavelength 
ultraviolet A radiation was increased with more ring sub-
stitutions [177].

The interaction of dietary flavonoids with fiber is 
another issue, which may significantly affect the absorp-
tion and bioavailability of flavonoids [178, 179]. Fibers 
can delay the absorption of flavonoids from the intes-
tine by two major mechanisms. First, dietary fiber forms 
complexes with flavonoids, trapping flavonoids in their 
matrix; second, the fiber can significantly enhance gastric 
fluid viscosity, which restricts the gastric mixing process, 
thereby further decreasing the absorption of flavonoids 
[179, 180].

Approaches to surmount flavonoid PK/PD 
and other barriers
There are a number of approaches that are being investi-
gated to improve and surmount the challenges associated 
with clinical use of dietary flavonoids (Fig. 2).

Improving purification and isolation yields
As mentioned earlier, the current traditional isolation 
and purification techniques usually result in low extrac-
tion yield of flavonoids that does not justify the high 
extraction cost. However, optimization of the conditions 
in these traditional extraction methods may increase the 
extraction yield of flavonoids. Response surface method-
ology (RSM) was applied to optimize flavonoid extrac-
tion using ethanol from herbal medicines like Citrus 
aurantium L. var. amara Engl [181] and Chinese Huangqi 
[182]. RSM is a mathematical and statistical method for 
designing experiments [183]. RSM significantly increased 
the yield of flavonoids from Chinese Huangqi when the 
extraction parameters were optimized as follows: ethanol 
concentration, 52.98%; extraction time, 2.12  h; extrac-
tion temperature, 62.46  °C; and a liquid–solid ratio of 
35.23 [182]. However, such optimization is required for 
each plant source of flavonoids and can be time-con-
suming. Therefore, several novel technologies can be 
applied to reduce the cost and the loss of extracted fla-
vonoids from their natural sources. One of these is the 
use of high-speed, counter-current chromatography that 
has been reported to be of lower cost and produce higher 
yields compared with other technologies [63]. Another 

technology that has recently emerged is nano-harvesting, 
where nanoparticles are used to harvest flavonoids from 
their sources [184]. The nanoparticles enter the plant 
structures and are released to bind to the targeted com-
pounds and carry them outside the cells without harming 
the plants. This technique eliminates the use of organic 
solvents, allows for continuous production of flavonoids, 
and has opened a new era in natural product extraction 
methodologies [185]. The ultrasound-assisted extraction 
method has been purported to increase extraction effi-
ciency and reduce the required time for extraction [181, 
186, 187].

As mentioned in the challenges section, the extraction 
of certain compounds from the plant source can signifi-
cantly harm plant communities. Therefore, the microbial 
production of plant natural products, such as flavonoids, 
at an industrial scale, is currently an attractive alternative 
approach [61, 188]. This approach has the potential to 
preserve the environmental resources and use economi-
cal stocks associated with less energy use and waste emis-
sion. Currently used microorganisms include Escherichia 
coli [189, 190] and Saccharomyces cerevisiae [191, 192]. 
The engineering and synthetic biology of microorganisms 
encourage the return to natural compounds as promising 
anticancer agents [61, 193].

Overcoming PK challenges
There are a number of approaches or strategies that can 
be used to surmount factors that lower the bioavailability 
of flavonoids. For example, the formulation of flavonoids 
as certain types of glycosides can result in enhanced bio-
availability compared with the flavonoid alone or other 
types of glycosides [194]. These glycosidic derivatives are 
substrates for certain intestinal epithelial transporters, 
which would increase their absorption [195]. The admin-
istration of quercetin-4′-O-glucoside resulted in a plasma 
level that was 5 times higher than of quercetin-3-O-
rutinoside. Therefore, the conversion of quercetin glyco-
sides into glucosides can be considered an approach to 
improve flavonoid bioavailability [194]. Another strategy 
involves adding piperine to the flavonoid formulations. 
The use of bioenhancers, such as piperine, which is an 
amide alkaloid from the plants of the Piperaceae family, 
is another approach [196]. Piperine significantly inhibits 
the conjugation of various flavonoid compounds such as 
quecetin [197] and epigallocatechin-3-gallate [198] by 
certain UDP-glucuronosyltransferase phase II enzymes, 
decreasing their metabolism and increasing bioavail-
ability [197–199]. The use of more specific novel ABC 
transporter blockers such as lapatinib, nilotinib, or spe-
cific small interfering RNA is another option, provided 
that they do not produce intolerable adverse effects, for 
flavonoids whose bioavailability is limited by certain ABC 
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transporters [200]. In addition, the efficiency of modu-
lators of the intestinal microflora can be considered to 
improve the flavonoid bioavailability. Such modulation 
could be achieved by the use of antibiotics or other for-
mulation products that can bypass the gut microbiome 
[201].

One of the most important strategies to optimize the 
PK/PD parameters is the modification of the flavonoid 
structure to produce novel derivatives. These com-
pounds would contain the basic pharmacophore of the 
parent compound to retain their desired effects. Methyl- 
and hyro-sliybin derivatives have been reported to be 
10-fold more potent than the parent compound, sylibin 
[202–205]. The introduction of hydrophobic functional 
groups (e.g., ethyl substitution) on the hydroxyl (OH) 
groups in quercetin significantly enhances its stability by 
preventing oxidative degradation of the hydroxyl groups 
[206]. Furthermore, the hydrophobic substitutions 
increase lipophilicity (quercetin’s clogP =  2, hydropho-
bic derivatives clogP =  3–12), which increases penetra-
bility through biological membranes (bioavailability was 
increased from 10.7% for quercetin to 18.8% for one of its 
derivatives) [206]. It has also been shown that blocking 
some groups (e.g., C3 hydroxyl and C7 hydroxyl groups) 
in quercetin by the introduction of the lipophilic moiety 
pivaloxymethyl (POM) enhances its solubility, decreases 
its metabolism, enhances stability (half-life increased 
from 10 h for quercetin to >72 h for its quercetin-POM 
conjugates at pH 7.4), and increases its effectiveness by 
preventing chemical and metabolic hydrolysis [207]. An 
epoxypropoxy flavonoid derivative (MHY336), by inhib-
iting the enzyme topoisomerase II enzyme, exhibited 
significant potency against the prostate cancer cell lines 
LNCaP, PC-3, and DU145 [208].

An area that has shown significant growth is the devel-
opment and use of micro- and nanodelivery systems to 
maximize the bioavailability of flavonoids [209–212]. 
One of these approaches involves the use of kinetically 
stable nanoemulsion technology, where the lipophilic 
flavonoids can be prepared as emulsions consisting of 
extremely small particle size (<200  nm). The emulsified 
flavonoids are released slowly over time, allowing for a 
higher surface area for absorption, ultimately improving 
their absorption and bioavailability after oral administra-
tion [213]. Another approach is the advanced delivery 
system with nano-crystal, self-stabilized pickering emul-
sions that has been reported to increase the delivery of 
some flavonoids including silybin [214]. Formulating fla-
vonoids as a povidone-mixed, micelle-based microparti-
cle has been shown to significantly enhance their release 
and PK profile [215]. The encapsulation of the flavonoid 
quercetin in Zein nanoparticles increases effectiveness in 
a mouse model of endotoxemia [216].

Flavonoid complexing with protein has been shown 
to increase flavonoid stability in vitro [217, 218]. Several 
studies suggest that this characteristic of flavonoids can 
be used to enhance their  chemical stability [219–221]. 
The overall stability of the grape skin-derived antho-
cyanine extracts was enhanced when complexed with 
the proteins α- and β-casein [221]. Furthermore, studies 
indicate that other milk-derived proteins (e.g., whey pro-
teins and β-lactoglobulin), when used as carriers, also 
enhance the chemical stability of anthocyanin extracts 
and allow for their incorporation as food formulations 
[219]. The complexation of flavonoids with phospholip-
ids has been reported to enhance their bioavailability 
[222]. The amphiphilic nature of phospholipids helps in 
enhancing the passage of compounds across the mem-
branes [223]. Indeed, the complexing of the flavonoid 
quercetin with phospholipid (phosphatidylcholine) to 
form a quercetin-phospholipid complex significantly 
improved the PK parameters (maximum serum concen-
tration that a drug achieves and area under the curve) of 
quercetin in rats compared with quercetin alone [224].

Conclusions
The preclinical anticancer effect of certain flavonoids 
suggests that the flavonoids may prevent certain types of 
cancer. However, the development of flavonoids is lim-
ited by their poor extraction yield, complicated extrac-
tion methods, the cost and difficulties of epidemiological 
studies, and their unfavorable PK characteristics. Versa-
tile strategies are being applied to overcome such limita-
tions. Future studies are required to determine whether 
these strategies can be applied economically and safely. 
The modulation of phase II metabolism and intestinal 
microflora can affect the metabolism, bioavailability, and 
toxicity of other drugs. It also can modulate the avail-
ability of dietary minerals and vitamins, thereby having 
potential impacts on health. Consequently, it may be 
more preferable to conduct research directed towards 
new delivery systems, such as nano-emulsions and nano-
particles. These delivery systems should be expected to 
have enhanced target specificity and safety. However, the 
cost of developing natural products and applying these 
strategies should be considered in the light of the cost of 
currently available synthetic compounds.
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