Skip to main content
Log in

Potential of anthocyanin as an anti-inflammatory agent: a human clinical trial on type 2 diabetic, diabetic at-risk and healthy adults

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The present research aimed to investigate the anti-inflammatory potential of dietary anthocyanin (ACN) in type 2 diabetic (T2D), T2D-at-risk and healthy individuals. Furthermore, dietary inflammatory index (DII) was used to study the association of diet with biomarkers of inflammation.

Research methods

An open-label clinical trial was conducted at Griffith University investigating the efficacy of 320 mg ACN supplementation per day over the course of 4 weeks. Diabetes-associated inflammatory biomarkers and relevant biochemical and physical parameters were tested pre-and post-intervention, and participants’ dietary inflammatory potential was estimated.

Results

A significant reduction in the pro-inflammatory biomarkers’ interleukin-6, interleukin-18, and tumour necrosis factor-α was observed in the T2D group. In addition, some, but not all, biochemical parameters including fasting blood glucose, low-density lipoprotein cholesterol and uric acid were significantly improved in T2D-at-risk group. Moreover, a significant difference was detected between the DII scores of the healthy and T2D groups. DII score for the T2D group was consistent with an anti-inflammatory diet.

Conclusion

Anti-inflammatory potential of dietary ACN in T2D participants was evidenced in the present study. Although, anti-inflammatory dietary patterns of T2D participants may have accelerated the anti-inflammatory effect of the ACN capsules supplemented in this trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hameed I, et al. Type 2 diabetes mellitus: from a metabolic disorder to an inflammatory condition. World J Diabetes. 2015;6(4):598.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Robertson RP, et al. β-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes. 2004;53(suppl 1):S119–24.

    Article  CAS  PubMed  Google Scholar 

  3. Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol. 2008;8(12):923–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ferrante A. Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J Intern Med. 2007;262(4):408–14.

    Article  CAS  PubMed  Google Scholar 

  5. Ferrero-Miliani L, et al. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol. 2007;147(2):227–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.

    Article  CAS  PubMed  Google Scholar 

  7. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107.

    Article  CAS  PubMed  Google Scholar 

  8. Ashcroft FM, Rorsman P. Diabetes mellitus and the β cell: the last ten years. Cell. 2012;148(6):1160–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shi Y, Hu FB. The global implications of diabetes and cancer. Lancet (London, England). 2014;383(9933):1947.

    Article  Google Scholar 

  10. World Health Organization, Global report on diabetes. 2016.

  11. Burch E, et al. Dietary intake by food group of individuals with type 2 diabetes mellitus: A systematic review. Diabetes Res Clin Pract. 2018;137:160–72.

    Article  PubMed  Google Scholar 

  12. Donath MY, et al. Islet inflammation impairs the pancreatic β-cell in type 2 diabetes. Physiology. 2009;24(6):325–31.

    Article  CAS  PubMed  Google Scholar 

  13. Maki KC. Dietary factors in the prevention of diabetes mellitus and coronary artery disease associated with the metabolic syndrome. Am J Cardiol. 2004;93(11):12–7.

    Article  Google Scholar 

  14. Fujioka K, et al. The effects of grapefruit on weight and insulin resistance: relationship to the metabolic syndrome. J Med Food. 2006;9(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  15. Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52(4):673–751.

    CAS  PubMed  Google Scholar 

  16. Anhê FF, et al. Polyphenols and type 2 diabetes: A prospective review. PharmaNutrition. 2013;1(4):105–14.

    Article  Google Scholar 

  17. Jayaprakasam B, et al. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J Agricul Food Chem. 2005;53(1):28–31.

    Article  CAS  Google Scholar 

  18. Wedick NM, et al. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr. 2012;95(4):925–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dohadwala MM, et al. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am J Clin Nutr. 2011;93(5):934–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stull AJ, et al. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J Nutr. 2010;140(10):1764–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dunstan DW, et al. The rising prevalence of diabetes and impaired glucose tolerance: the Australian Diabetes Obesity and Lifestyle Study. Diabetes Care. 2002;25(5):829–34.

    Article  PubMed  Google Scholar 

  22. Grundy SM. Pre-diabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol. 2012;59(7):635–43.

    Article  CAS  PubMed  Google Scholar 

  23. Charan J, Biswas T. How to calculate sample size for different study designs in medical research? Indian J Psychol Med. 2013;35(2):121.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Qin Y, et al. Anthocyanin supplementation improves serum LDL-and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr. 2009;90(3):485–92.

    Article  CAS  PubMed  Google Scholar 

  25. Karlsen A, et al. Anthocyanins inhibit nuclear factor-κ B activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J Nutr. 2007;137(8):1951–4.

    Article  CAS  PubMed  Google Scholar 

  26. Kelley DS, et al. Consumption of Bing sweet cherries lowers circulating concentrations of inflammation markers in healthy men and women. J Nutr. 2006;136(4):981–6.

    Article  CAS  PubMed  Google Scholar 

  27. Cavicchia PP, et al. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J Nutr. 2009;139(12):2365–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shivappa N, et al. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96.

    Article  PubMed  Google Scholar 

  29. World Health Organisation. Waist circumference and waist-hip ratio: report of a WHO expert consultation. Geneva. 2008;8–11:2011.

    Google Scholar 

  30. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.

    Article  CAS  PubMed  Google Scholar 

  31. Dacie JV, Lewis SM, Practical haematology. 2002.

  32. de Onis M, Habicht J-P. Anthropometric reference data for international use: recommendations from a World Health Organization Expert Committee. Am J Clin Nutr. 1996;64(4):650–8.

    Article  PubMed  Google Scholar 

  33. Whelton PK, et al. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;2017:24430.

    Google Scholar 

  34. Bastard JP, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17(1):4–12.

    CAS  PubMed  Google Scholar 

  35. Wu T, et al. Blackberry and Blueberry Anthocyanin Supplementation Counteract High-Fat-Diet-Induced Obesity by Alleviating Oxidative Stress and Inflammation and Accelerating Energy Expenditure. Oxid Med Cell Longev. 2018;2018:4051232.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tsalamandris S, et al. The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol Rev. 2019;14(1):50.

    Article  Google Scholar 

  37. Zhu Y, et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: a randomized controlled trial. Nutr Metabol Cardiovascular Dis. 2013;23(9):843–9.

    Article  CAS  Google Scholar 

  38. Chen L, et al. Protective effects of raspberry on the oxidative damage in HepG2 cells through Keap1/Nrf2-dependent signaling pathway. Food Chem Toxicol. 2019;133:110781.

    Article  CAS  PubMed  Google Scholar 

  39. Shivappa N, et al. Associations between dietary inflammatory index and inflammatory markers in the Asklepios Study. Br J Nutr. 2015;113(4):665–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. King DE, Egan BM, Geesey ME. Relation of dietary fat and fiber to elevation of C-reactive protein. Am J Cardiol. 2003;92(11):1335–9.

    Article  CAS  PubMed  Google Scholar 

  41. Estruch R, et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med. 2006;145(1):1–11.

    Article  PubMed  Google Scholar 

  42. Papamichou D, Panagiotakos D, Itsiopoulos C. Dietary patterns and management of type 2 diabetes: A systematic review of randomised clinical trials. Nutr Metabol Cardiovascular Dis. 2019;29(6):531–43.

    Article  CAS  Google Scholar 

  43. Kitabchi AE, et al. Effects of high-protein versus high-carbohydrate diets on markers of β-cell function, oxidative stress, lipid peroxidation, proinflammatory cytokines, and adipokines in obese, premenopausal women without diabetes: a randomized controlled trial. Diabetes Care. 2013;36(7):1919–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ferrucci L, et al. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metabol . 2006;91(2):439–46.

    Article  CAS  Google Scholar 

  45. Wannamethee SG, et al. Associations of vitamin C status, fruit and vegetable intakes, and markers of inflammation and hemostasis. Am J Clin Nutr. 2006;83(3):567–74.

    Article  CAS  PubMed  Google Scholar 

  46. Bertran N, et al. Diet and lifestyle are associated with serum C-reactive protein concentrations in a population-based study. J Labor Clin Med. 2005;145(1):41–6.

    Article  CAS  Google Scholar 

  47. Erlinger TP, et al. Relationship between systemic markers of inflammation and serum β-carotene levels. Arch Intern Med. 2001;161(15):1903–8.

    Article  CAS  PubMed  Google Scholar 

  48. King DE, et al. Dietary magnesium and C-reactive protein levels. J Am Coll Nutr. 2005;24(3):166–71.

    Article  CAS  PubMed  Google Scholar 

  49. Ma Y, et al. Association between dietary fiber and serum C-reactive protein. Am J Clin Nutr. 2006;83(4):760–6.

    Article  CAS  PubMed  Google Scholar 

  50. Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2006;29(1):S43.

    Article  Google Scholar 

  51. Hashem Dabaghian F, et al. Effects of Rosa canina Lfruit on glycemia and lipid profile in type 2 diabetic patients: A randomized, double-blind, placebo-controlled clinical trial. J Med Plants. 2015;14(55):95–104.

    Google Scholar 

  52. Li D, et al. Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. J Nutr. 2015;145(4):742–8.

    Article  CAS  PubMed  Google Scholar 

  53. American Diabetes. A Peripheral arterial disease in people with diabetes. Diabetes Care, 2003; 26(12)

  54. Dehghan A, et al. High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care. 2008;31(2):361–2.

    Article  CAS  PubMed  Google Scholar 

  55. Jacob RA, et al. Consumption of cherries lowers plasma urate in healthy women. J Nutr. 2003;133(6):1826–9.

    Article  CAS  PubMed  Google Scholar 

  56. Zhu JX, et al. Effects of Biota orientalis extract and its flavonoid constituents, quercetin and rutin on serum uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver. J Ethnopharmacol. 2004;93(1):133–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Griffith University, School of Medical Science. The authors would like to gratefully acknowledge the cooperation of the trial participants and the assistance of Dr. Anahita Aboonabi (School of Medical Science, Griffith University) with biochemistry assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie Colson.

Ethics declarations

Conflict of interest

None of the authors have any conflicts of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 239 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikbakht, E., Singh, I., Vider, J. et al. Potential of anthocyanin as an anti-inflammatory agent: a human clinical trial on type 2 diabetic, diabetic at-risk and healthy adults. Inflamm. Res. 70, 275–284 (2021). https://doi.org/10.1007/s00011-021-01438-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01438-1

Keywords

Navigation