ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter

Cite this: ACS Nano 2019, 13, 1, 215–228
Publication Date (Web):December 17, 2018
https://doi.org/10.1021/acsnano.8b05340
Copyright © 2018 American Chemical Society

    Article Views

    4212

    Altmetric

    -

    Citations

    129
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Using coarse-grained molecular dynamics simulations, we systematically investigate the receptor-mediated endocytosis of elastic nanoparticles (NPs) with different sizes, ranging from 25 to 100 nm, and shapes, including sphere-like, oblate-like, and prolate-like. Simulation results provide clear evidence that the membrane wrapping efficiency of NPs during endocytosis is a result of competition between receptor diffusion kinetics and thermodynamic driving force. The receptor diffusion kinetics refer to the kinetics of receptor recruitment that are affected by the contact edge length between the NP and membrane. The thermodynamic driving force represents the amount of required free energy to drive NPs into a cell. Under the volume constraint of elastic NPs, the soft spherical NPs are found to have similar contact edge lengths to rigid ones and to less efficiently be fully wrapped due to their elastic deformation. Moreover, the difference in wrapping efficiency between soft and rigid spherical NPs increases with their sizes, due to the increment of their elastic energy change. Furthermore, because of its prominent large contact edge length, the oblate ellipsoid is found to be the least sensitive geometry to the variation in NP’s elasticity among the spherical, prolate, and oblate shapes during the membrane wrapping. In addition, simulation results indicate that conflicting experimental observations on the efficiency of cellular uptake of elastic NPs could be caused by their different mechanical properties. Our simulations provide a detailed mechanistic understanding about the influence of NPs’ size, shape, and elasticity on their membrane wrapping efficiency, which serves as a rational guidance for the design of NP-based drug carriers.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.8b05340.

    • Details of the computational models for lipid membrane and elastic NPs, computational methods, and additional simulation results (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 129 publications.

    1. Xiangrui Wang, Wen-Xiong Wang. Tracking the Cellular Degradation of Silver Nanoparticles: Development of a Generic Kinetic Model. ACS Nano 2024, 18 (20) , 13308-13321. https://doi.org/10.1021/acsnano.4c03032
    2. Yusuke Sakamoto, Shota Fujii, Shin Takano, Jokichi Fukushima, Mitsuru Ando, Noriyuki Kodera, Tomoki Nishimura. Manipulation of Macrophage Uptake by Controlling the Aspect Ratio of Graft Copolymer Micelles. Nano Letters 2024, 24 (19) , 5838-5846. https://doi.org/10.1021/acs.nanolett.4c01054
    3. Reeddhi Ray, Santu Ghosh, Anupam Maity, Nikhil R. Jana. Arginine Surface Density of Nanoparticles Controls Nonendocytic Cell Uptake and Autophagy Induction. ACS Applied Materials & Interfaces 2024, 16 (5) , 5451-5461. https://doi.org/10.1021/acsami.3c14472
    4. David S. Moreno-Gutierrez, Ximena del Toro-Ríos, Natalia J. Martinez-Sulvaran, Mayra B. Perez-Altamirano, Armando Hernandez-Garcia. Programming the Cellular Uptake of Protein-Based Viromimetic Nanoparticles for Enhanced Delivery. Biomacromolecules 2023, 24 (4) , 1563-1573. https://doi.org/10.1021/acs.biomac.2c01295
    5. Zhoumeng Lin, Santosh Aryal, Yi-Hsien Cheng, Andre J. Gesquiere. Integration of In Vitro and In Vivo Models to Predict Cellular and Tissue Dosimetry of Nanomaterials Using Physiologically Based Pharmacokinetic Modeling. ACS Nano 2022, 16 (12) , 19722-19754. https://doi.org/10.1021/acsnano.2c07312
    6. Brian Youden, Runqing Jiang, Andrew J. Carrier, Mark R. Servos, Xu Zhang. A Nanomedicine Structure–Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano 2022, 16 (11) , 17497-17551. https://doi.org/10.1021/acsnano.2c06337
    7. Andrea Scotti, M. Friederike Schulte, Carlos G. Lopez, Jérôme J. Crassous, Steffen Bochenek, Walter Richtering. How Softness Matters in Soft Nanogels and Nanogel Assemblies. Chemical Reviews 2022, 122 (13) , 11675-11700. https://doi.org/10.1021/acs.chemrev.2c00035
    8. Feng Ge, Yi Du, Yan He. Direct Observation of Endocytosis Dynamics of Anti-ErbB Modified Single Nanocargoes. ACS Nano 2022, 16 (4) , 5325-5334. https://doi.org/10.1021/acsnano.2c00184
    9. Yushuang Wei, Haibo Chen, Yue-Xuan Li, Kejie He, Kai Yang, Hong-Bo Pang. Synergistic Entry of Individual Nanoparticles into Mammalian Cells Driven by Free Energy Decline and Regulated by Their Sizes. ACS Nano 2022, 16 (4) , 5885-5897. https://doi.org/10.1021/acsnano.1c11068
    10. Jacopo Cardellini, Lucrezia Caselli, Enrico Lavagna, Sebastian Salassi, Heinz Amenitsch, Martino Calamai, Costanza Montis, Giulia Rossi, Debora Berti. Membrane Phase Drives the Assembly of Gold Nanoparticles on Biomimetic Lipid Bilayers. The Journal of Physical Chemistry C 2022, 126 (9) , 4483-4494. https://doi.org/10.1021/acs.jpcc.1c08914
    11. Kazuki Fukushima, Kodai Matsuzaki, Masashi Oji, Yuji Higuchi, Go Watanabe, Yuki Suzuki, Moriya Kikuchi, Nozomi Fujimura, Naofumi Shimokawa, Hiroaki Ito, Takashi Kato, Seigou Kawaguchi, Masaru Tanaka. Anisotropic, Degradable Polymer Assemblies Driven by a Rigid Hydrogen-Bonding Motif That Induce Shape-Specific Cell Responses. Macromolecules 2022, 55 (1) , 15-25. https://doi.org/10.1021/acs.macromol.1c01894
    12. Liying Xiao, Zhaozhao Ding, Xiaoyi Zhang, Xue Wang, Qiang Lu, David L. Kaplan. Silk Nanocarrier Size Optimization for Enhanced Tumor Cell Penetration and Cytotoxicity In Vitro. ACS Biomaterials Science & Engineering 2022, 8 (1) , 140-150. https://doi.org/10.1021/acsbiomaterials.1c01122
    13. Tongwei Chen, Yunhan Zhang, Xuejin Li, Chengxu Li, Teng Lu, Shiyan Xiao, Haojun Liang. Curvature-Mediated Pair Interactions of Soft Nanoparticles Adhered to a Cell Membrane. Journal of Chemical Theory and Computation 2021, 17 (12) , 7850-7861. https://doi.org/10.1021/acs.jctc.1c00897
    14. Fangsheng Wu, Xiao Jin, Zhou Guan, Jiaping Lin, Chunhua Cai, Liquan Wang, Yongsheng Li, Shaoliang Lin, Pengfei Xu, Liang Gao. Membrane Nanopores Induced by Nanotoroids via an Insertion and Pore-Forming Pathway. Nano Letters 2021, 21 (20) , 8545-8553. https://doi.org/10.1021/acs.nanolett.1c01331
    15. Xuebin Ma, Xuncheng Yang, Mengqi Li, Jiwei Cui, Peiyu Zhang, Qun Yu, Jingcheng Hao. Effect of Elasticity of Silica Capsules on Cellular Uptake. Langmuir 2021, 37 (40) , 11688-11694. https://doi.org/10.1021/acs.langmuir.1c01607
    16. Ziying Li, Yilin Zheng, Huifang Shi, Huanzhang Xie, Ya Yang, Fangyin Zhu, Lingjie Ke, Haijun Chen, Yu Gao. Convenient Tuning of the Elasticity of Self-Assembled Nano-Sized Triterpenoids to Regulate Their Biological Activities. ACS Applied Materials & Interfaces 2021, 13 (37) , 44065-44078. https://doi.org/10.1021/acsami.1c12418
    17. Ramya Kumar, Cristiam F. Santa Chalarca, Matthew R. Bockman, Craig Van Bruggen, Christian J. Grimme, Rishad J. Dalal, Mckenna G. Hanson, Joseph K. Hexum, Theresa M. Reineke. Polymeric Delivery of Therapeutic Nucleic Acids. Chemical Reviews 2021, 121 (18) , 11527-11652. https://doi.org/10.1021/acs.chemrev.0c00997
    18. Fengrui Xu, Zhaozhao Ding, Liying Xiao, Xiaoyi Zhang, Qiang Lu, David L. Kaplan. Short Silk Nanoribbons Decorated by Au Nanoparticles as Substrates for Sensitive and Uniform Surface-Enhanced Raman Spectroscopy Detection. ACS Applied Nano Materials 2021, 4 (6) , 6376-6385. https://doi.org/10.1021/acsanm.1c01317
    19. Marek Bekir, Anja Hörmann, Christoph Brückner, Ingo Hoffmann, Sylvain Prévost, Michael Gradzielski. Adsorption Kinetics of Oppositely Charged Hard and Soft Nanoparticles with Phospholipid Membranes. Langmuir 2021, 37 (8) , 2800-2809. https://doi.org/10.1021/acs.langmuir.0c03553
    20. Bhanu C. Bejgum, Maureen D. Donovan. Uptake and Transport of Ultrafine Nanoparticles (Quantum Dots) in the Nasal Mucosa. Molecular Pharmaceutics 2021, 18 (1) , 429-440. https://doi.org/10.1021/acs.molpharmaceut.0c01074
    21. Ning Liu, Matthew Becton, Liuyang Zhang, Xianqiao Wang. Mechanism of Coupling Nanoparticle Stiffness with Shape for Endocytosis: From Rodlike Penetration to Wormlike Wriggling. The Journal of Physical Chemistry B 2020, 124 (49) , 11145-11156. https://doi.org/10.1021/acs.jpcb.0c08089
    22. Chandan Kumar Choudhury, Vaibhav Palkar, Olga Kuksenok. Computational Design of Nanostructured Soft Interfaces: Focus on Shape Changes and Spreading of Cubic Nanogels. Langmuir 2020, 36 (25) , 7109-7123. https://doi.org/10.1021/acs.langmuir.9b03486
    23. Prasanta Panja, Nikhil R. Jana. Lipid-Raft-Mediated Direct Cytosolic Delivery of Polymer-Coated Soft Nanoparticles. The Journal of Physical Chemistry B 2020, 124 (25) , 5323-5333. https://doi.org/10.1021/acs.jpcb.0c03444
    24. Luping Ou, Valentina Corradi, D. Peter Tieleman, Qing Liang. Atomistic Simulations on Interactions between Amphiphilic Janus Nanoparticles and Lipid Bilayers: Effects of Lipid Ordering and Leaflet Asymmetry. The Journal of Physical Chemistry B 2020, 124 (22) , 4466-4475. https://doi.org/10.1021/acs.jpcb.9b11989
    25. Prasanta Panja, Nikhil R. Jana. Arginine-Terminated Nanoparticles of <10 nm Size for Direct Membrane Penetration and Protein Delivery for Straight Access to Cytosol and Nucleus. The Journal of Physical Chemistry Letters 2020, 11 (6) , 2363-2368. https://doi.org/10.1021/acs.jpclett.0c00176
    26. Liuyang Zhang, Hongmin Chen, Jin Xie, Matthew Becton, Xianqiao Wang. Interplay of Nanoparticle Rigidity and Its Translocation Ability through Cell Membrane. The Journal of Physical Chemistry B 2019, 123 (42) , 8923-8930. https://doi.org/10.1021/acs.jpcb.9b07452
    27. Xianyu Song, Chongzhi Qiao, Teng Zhao, Bo Bao, Shuangliang Zhao, Jing Xu, Honglai Liu. Membrane Wrapping Pathway of Injectable Hydrogels: From Vertical Capillary Adhesion to Lateral Compressed Wrapping. Langmuir 2019, 35 (32) , 10631-10639. https://doi.org/10.1021/acs.langmuir.9b01395
    28. Yue Hui, Xin Yi, Fei Hou, David Wibowo, Fan Zhang, Dongyuan Zhao, Huajian Gao, Chun-Xia Zhao. Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery. ACS Nano 2019, 13 (7) , 7410-7424. https://doi.org/10.1021/acsnano.9b03924
    29. Yuchi Liu, Shixin Li, Xuejuan Liu, Hainan Sun, Tongtao Yue, Xianren Zhang, Bing Yan, Dapeng Cao. Design of Small Nanoparticles Decorated with Amphiphilic Ligands: Self-Preservation Effect and Translocation into a Plasma Membrane. ACS Applied Materials & Interfaces 2019, 11 (27) , 23822-23831. https://doi.org/10.1021/acsami.9b03638
    30. Na An, Xiaoyuan Yan, Qiujing Qiu, Zeying Zhang, Xiyue Zhang, Bowen Zheng, Zhenjin Zhao, Jiajie Guo, Yi Liu. Human periodontal ligament stem cell sheets activated by graphene oxide quantum dots repair periodontal bone defects by promoting mitochondrial dynamics dependent osteogenic differentiation. Journal of Nanobiotechnology 2024, 22 (1) https://doi.org/10.1186/s12951-024-02422-7
    31. Fuqiang Chang, Gemma-Louise Davies. From 0D to 2D: Synthesis and bio-application of anisotropic magnetic iron oxide nanomaterials. Progress in Materials Science 2024, 144 , 101267. https://doi.org/10.1016/j.pmatsci.2024.101267
    32. Xiandi Meng, Ge Zhu, Yong-Guang Yang, Tianmeng Sun. Targeted delivery strategies: The interactions and applications of nanoparticles in liver diseases. Biomedicine & Pharmacotherapy 2024, 175 , 116702. https://doi.org/10.1016/j.biopha.2024.116702
    33. Ke Xiao, Jing Li, Rui Ma, Chen-Xu Wu. Cellular uptake of active nonspherical nanoparticles. Journal of Applied Physics 2024, 135 (18) https://doi.org/10.1063/5.0208749
    34. Xiao Lin, Hua Yang, Yi Xia, Kang Wu, Fengcheng Chu, Huan Zhou, Huajian Gao, Lei Yang. Mechanobiomaterials: Harnessing mechanobiology principles for tissue repair and regeneration. Mechanobiology in Medicine 2024, 305 , 100079. https://doi.org/10.1016/j.mbm.2024.100079
    35. Yunxia Ji, Yunqing Wang, Xiaoyan Wang, Changjun Lv, Qunfang Zhou, Guibin Jiang, Bing Yan, Lingxin Chen. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. Journal of Hazardous Materials 2024, 468 , 133800. https://doi.org/10.1016/j.jhazmat.2024.133800
    36. Qiaoxia Zhou, Qiongliang Liu, Yan Wang, Jie Chen, Otmar Schmid, Markus Rehberg, Lin Yang. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. Advanced Science 2024, 11 (14) https://doi.org/10.1002/advs.202308659
    37. Lin Wang, Skyler Quine, Alex N. Frickenstein, Michael Lee, Wen Yang, Vinit M. Sheth, Margaret D. Bourlon, Yuxin He, Shanxin Lyu, Lucila Garcia‐Contreras, Yan D. Zhao, Stefan Wilhelm. Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles. Advanced Functional Materials 2024, 34 (8) https://doi.org/10.1002/adfm.202308446
    38. Li-Hang Chen, Jiang-Ning Hu. Development of nano-delivery systems for loaded bioactive compounds: using molecular dynamics simulations. Critical Reviews in Food Science and Nutrition 2024, 69 , 1-22. https://doi.org/10.1080/10408398.2023.2301427
    39. Yi Chen, Yingjie Fan, Yu Huang, Xiaoling Liao, Wenfeng Xu, Tao Zhang. A comprehensive review of toxicity of coal fly ash and its leachate in the ecosystem. Ecotoxicology and Environmental Safety 2024, 269 , 115905. https://doi.org/10.1016/j.ecoenv.2023.115905
    40. Esra Oktay, Farhang Alem, Keziah Hernandez, Michael Girgis, Christopher Green, Divita Mathur, Igor L. Medintz, Aarthi Narayanan, Remi Veneziano. DNA origami presenting the receptor binding domain of SARS-CoV-2 elicit robust protective immune response. Communications Biology 2023, 6 (1) https://doi.org/10.1038/s42003-023-04689-2
    41. Xiangrui Wang, Wen‐Xiong Wang. Cellular journey of nanomaterials: Theories, trafficking, and kinetics. Aggregate 2023, 4 (6) https://doi.org/10.1002/agt2.372
    42. Xiaowen Cao, Changrong Wang, Zhennv Deng, Yiming Zhong, Hao Chen. Efficient ocular delivery of siRNA via pH-sensitive vehicles for corneal neovascularization inhibition. International Journal of Pharmaceutics: X 2023, 5 , 100183. https://doi.org/10.1016/j.ijpx.2023.100183
    43. Qiuhui Hu, Bo Zhang, Huiming Ren, Xiaoxuan Zhou, Chengbin He, Youqing Shen, Zhuxian Zhou, Hongjie Hu. Supramolecular metal-organic frameworks as host-guest nanoplatforms for versatile and customizable biomedical applications. Acta Biomaterialia 2023, 168 , 617-627. https://doi.org/10.1016/j.actbio.2023.07.026
    44. Daphne Montizaan, Catherine Saunders, Keni Yang, Sajitha Sasidharan, Sourav Maity, Catharina Reker‐Smit, Marc C. A. Stuart, Costanza Montis, Debora Berti, Wouter H. Roos, Anna Salvati. Role of Curvature‐Sensing Proteins in the Uptake of Nanoparticles with Different Mechanical Properties. Small 2023, 19 (39) https://doi.org/10.1002/smll.202303267
    45. Md Muhtasim Billah, Hua Deng, Prashanta Dutta, Jin Liu. Effects of receptor properties on particle internalization through receptor-mediated endocytosis. Soft Matter 2023, 19 (31) , 5907-5915. https://doi.org/10.1039/D3SM00149K
    46. Haibo Chen, Xuewei Dong, Luping Ou, Chiyun Ma, Bing Yuan, Kai Yang. Thermal-controlled cellular uptake of “hot” nanoparticles. Nanoscale 2023, 15 (30) , 12718-12727. https://doi.org/10.1039/D3NR02449K
    47. Zhaocui Sun, Yong Hou, Xudong Xu, Zongyang Li, Xiaomei Gong, Deli Chen, Haifeng Wu, Junshan Yang, Ping Cui, Guoxu Ma. A novel nonreversible heat-induced low-molecular-weight gel based on naturally-occurring self-assembled fupenzic acid for tumor therapy. Colloids and Surfaces B: Biointerfaces 2023, 228 , 113392. https://doi.org/10.1016/j.colsurfb.2023.113392
    48. Younghoon Oh, Qiang Cui. Non-equilibrium transport of nanoparticles across the lipid membrane. Nanoscale 2023, 15 (29) , 12307-12318. https://doi.org/10.1039/D3NR00930K
    49. Xiaoyan Liu, Thorsten Auth, Nabanita Hazra, Morten Frendø Ebbesen, Jonathan Brewer, Gerhard Gompper, Jérôme J. Crassous, Emma Sparr. Wrapping anisotropic microgel particles in lipid membranes: Effects of particle shape and membrane rigidity. Proceedings of the National Academy of Sciences 2023, 120 (30) https://doi.org/10.1073/pnas.2217534120
    50. Ye Li, Man Zhang, Yezhuo Zhang, Xinhui Niu, Zhendan Liu, Tongtao Yue, Wen Zhang. A computational study of the influence of nanoparticle shape on clathrin-mediated endocytosis. Journal of Materials Chemistry B 2023, 11 (27) , 6319-6334. https://doi.org/10.1039/D3TB00322A
    51. Ke Xiao, Rui Ma, Chen-Xu Wu. Wrapping dynamics and critical conditions for active nonspherical nanoparticle uptake. Physical Review E 2023, 107 (5) https://doi.org/10.1103/PhysRevE.107.054401
    52. Veronica LaMastro, Kayla M. Campbell, Peter Gonzalez, Tobias Meng‐Saccoccio, Anita Shukla. Antifungal liposomes: Lipid saturation and cholesterol concentration impact interaction with fungal and mammalian cells. Journal of Biomedical Materials Research Part A 2023, 111 (5) , 644-659. https://doi.org/10.1002/jbm.a.37501
    53. Anna Griego, Edoardo Scarpa, Valeria De Matteis, Loris Rizzello. Nanoparticle delivery through the BBB in central nervous system tuberculosis. Ibrain 2023, 9 (1) , 43-62. https://doi.org/10.1002/ibra.12087
    54. Da Zou, Zeming Wu, Xin Yi, Yue Hui, Guangze Yang, Yun Liu, Tengjisi, Haofei Wang, Anastasia Brooks, Haolu Wang, Xin Liu, Zhi Ping Xu, Michael S. Roberts, Huajian Gao, Chun-Xia Zhao. Nanoparticle elasticity regulates the formation of cell membrane-coated nanoparticles and their nano-bio interactions. Proceedings of the National Academy of Sciences 2023, 120 (1) https://doi.org/10.1073/pnas.2214757120
    55. Wuhao Wei, Yuansheng Zhang, Zhizhe Lin, Xin Wu, Wei Fan, Jianming Chen. Advances, challenge and prospects in cell-mediated nanodrug delivery for cancer therapy: a review. Journal of Drug Targeting 2023, 31 (1) , 1-13. https://doi.org/10.1080/1061186X.2022.2104299
    56. Luis Fernando Mercier Franco, Pedro de Alcântara Pessoa Filho. Thermodynamics of nanoparticle–cell interaction. 2023, 65-93. https://doi.org/10.1016/B978-0-323-90471-1.00019-0
    57. Lei Xu, Quan Zhou, Shiqun Shao, Youqing Shen. Transcytosis-inducing biomaterials for actively translocating nanomedicines. 2023, 543-554. https://doi.org/10.1016/B978-0-12-822425-0.00021-X
    58. Guowang Cheng, Yujing Liu, Rui Ma, Guopan Cheng, Yucheng Guan, Xiaojia Chen, Zhenfeng Wu, Tongkai Chen. Anti-Parkinsonian Therapy: Strategies for Crossing the Blood–Brain Barrier and Nano-Biological Effects of Nanomaterials. Nano-Micro Letters 2022, 14 (1) https://doi.org/10.1007/s40820-022-00847-z
    59. Di Nie, Chang Liu, Miaorong Yu, Xiaohe Jiang, Ning Wang, Yong Gan. Elasticity regulates nanomaterial transport as delivery vehicles: Design, characterization, mechanisms and state of the art. Biomaterials 2022, 291 , 121879. https://doi.org/10.1016/j.biomaterials.2022.121879
    60. Jared T. Wiemann, Danh Nguyen, Ying Li, Yan Yu. Domain-selective disruption and compression of phase-separated lipid vesicles by amphiphilic Janus nanoparticles. iScience 2022, 25 (12) , 105525. https://doi.org/10.1016/j.isci.2022.105525
    61. Wu Xu, Xiaohu Liu. Computational study on the uptake of soft nanoparticles and nanoparticle cluster by cells. Journal of Applied Physics 2022, 132 (17) https://doi.org/10.1063/5.0111797
    62. Ke Xiao, Rui Ma, Chen-Xu Wu. Force-induced wrapping phase transition in activated cellular uptake. Physical Review E 2022, 106 (4) https://doi.org/10.1103/PhysRevE.106.044411
    63. Danielle Campiol Arruda, Anne-Marie Lachagès, Hélène Demory, Guillaume Escriou, René Lai-Kuen, Pierre-Yves Dugas, Céline Hoffmann, Stéphanie Bessoles, Guillaume Sarrabayrouse, Angelo Malachias, Stéphanie Finet, Pedro Lana Gastelois, Waldemar Augusto de Almeida Macedo, Armando da Silva Cunha, Pascal Bigey, Virginie Escriou. Spheroplexes: Hybrid PLGA-cationic lipid nanoparticles, for in vitro and oral delivery of siRNA. Journal of Controlled Release 2022, 350 , 228-243. https://doi.org/10.1016/j.jconrel.2022.08.030
    64. Jamie L.Y. Wu, Benjamin P. Stordy, Luan N.M. Nguyen, Christopher P. Deutschman, Warren C.W. Chan. A proposed mathematical description of in vivo nanoparticle delivery. Advanced Drug Delivery Reviews 2022, 189 , 114520. https://doi.org/10.1016/j.addr.2022.114520
    65. Xiangyu Chen, Shuwei Zhang, Jinming Li, Xiaobin Huang, Haochen Ye, Xuezhi Qiao, Zhenjie Xue, Wensheng Yang, Tie Wang. Influence of Elasticity of Hydrogel Nanoparticles on Their Tumor Delivery. Advanced Science 2022, 9 (29) https://doi.org/10.1002/advs.202202644
    66. Yudie Zhang, Long Li, Jizeng Wang. Wrapping of a vesicle nanoparticle with variable bending stiffness by membrane. Journal of the Mechanics and Physics of Solids 2022, 167 , 104991. https://doi.org/10.1016/j.jmps.2022.104991
    67. Han Zhang, Jiafei Zhu, Tianxu Fang, Meng Li, Guojun Chen, Qian Chen. Supramolecular biomaterials for enhanced cancer immunotherapy. Journal of Materials Chemistry B 2022, 10 (37) , 7183-7193. https://doi.org/10.1039/D2TB00048B
    68. Pratik Gurnani, Carlos Sanchez‐Cano, Helena Xandri‐Monje, Junliang Zhang, Sean H. Ellacott, Edward D. H. Mansfield, Matthias Hartlieb, Robert Dallmann, Sébastien Perrier. Probing the Effect of Rigidity on the Cellular Uptake of Core‐Shell Nanoparticles: Stiffness Effects are Size Dependent. Small 2022, 18 (38) https://doi.org/10.1002/smll.202203070
    69. Vu Thanh Cong, Jacinta L. Houng, Maria Kavallaris, Xin Chen, Richard D. Tilley, J. Justin Gooding. How can we use the endocytosis pathways to design nanoparticle drug-delivery vehicles to target cancer cells over healthy cells?. Chemical Society Reviews 2022, 51 (17) , 7531-7559. https://doi.org/10.1039/D1CS00707F
    70. Akkaranunt Supakijsilp, Jing He, Xubo Lin, Jian Ye. Molecular dynamics simulation insights into the cellular uptake of elastic nanoparticles through human pulmonary surfactant. RSC Advances 2022, 12 (37) , 24222-24231. https://doi.org/10.1039/D2RA03670C
    71. Zhaoxu Tu, Yiling Zhong, Hanze Hu, Dan Shao, Rainer Haag, Michael Schirner, Jaewoo Lee, Bruce Sullenger, Kam W. Leong. Design of therapeutic biomaterials to control inflammation. Nature Reviews Materials 2022, 7 (7) , 557-574. https://doi.org/10.1038/s41578-022-00426-z
    72. Camille Ayad, Altan Yavuz, Jean-Paul Salvi, Pierre Libeau, Jean-Yves Exposito, Valentine Ginet, Claire Monge, Bernard Verrier, Danielle Campiol Arruda. Comparison of Physicochemical Properties of LipoParticles as mRNA Carrier Prepared by Automated Microfluidic System and Bulk Method. Pharmaceutics 2022, 14 (6) , 1297. https://doi.org/10.3390/pharmaceutics14061297
    73. Ye Li, Man Zhang, Xinhui Niu, Tongtao Yue. Selective membrane wrapping on differently sized nanoparticles regulated by clathrin assembly: A computational model. Colloids and Surfaces B: Biointerfaces 2022, 214 , 112467. https://doi.org/10.1016/j.colsurfb.2022.112467
    74. Sarah Iaquinta, Shahram Khazaie, Éléna Ishow, Christophe Blanquart, Sylvain Fréour, Frédéric Jacquemin. Influence of the mechanical and geometrical parameters on the cellular uptake of nanoparticles: A stochastic approach. International Journal for Numerical Methods in Biomedical Engineering 2022, 38 (6) https://doi.org/10.1002/cnm.3598
    75. Daniele Agostinelli, Gwynn J. Elfring, Mattia Bacca. The morphological role of ligand inhibitors in blocking receptor- and clathrin-mediated endocytosis. Soft Matter 2022, 18 (18) , 3531-3545. https://doi.org/10.1039/D1SM01710A
    76. Prachi Desai, Rahul Rimal, Alexandru Florea, Rustam A. Gumerov, Marta Santi, Anastasia S. Sorokina, Sabri E. M. Sahnoun, Thorsten Fischer, Felix M. Mottaghy, Agnieszka Morgenroth, Ahmed Mourran, Igor I. Potemkin, Martin Möller, Smriti Singh. Tuning the Elasticity of Nanogels Improves Their Circulation Time by Evading Immune Cells. Angewandte Chemie 2022, 134 (20) https://doi.org/10.1002/ange.202116653
    77. Prachi Desai, Rahul Rimal, Alexandru Florea, Rustam A. Gumerov, Marta Santi, Anastasia S. Sorokina, Sabri E. M. Sahnoun, Thorsten Fischer, Felix M. Mottaghy, Agnieszka Morgenroth, Ahmed Mourran, Igor I. Potemkin, Martin Möller, Smriti Singh. Tuning the Elasticity of Nanogels Improves Their Circulation Time by Evading Immune Cells. Angewandte Chemie International Edition 2022, 61 (20) https://doi.org/10.1002/anie.202116653
    78. Sameer Varma, Smita Dey, Dhanabal Palanisamy. Cellular Uptake Pathways of Nanoparticles: Process of Endocytosis and Factors Affecting their Fate. Current Pharmaceutical Biotechnology 2022, 23 (5) , 679-706. https://doi.org/10.2174/1389201022666210714145356
    79. Bo‐Wei Chen, Shadie Hatamie, Hsin‐Cheng Chiu, Zung‐Hang Wei, Shang‐Hsiu Hu, Da‐Jeng Yao. Shape‐Mediated Magnetocrystalline Anisotropy and Relaxation Controls by Cobalt Ferrite Core–Shell Heterostructures for Magnetothermal Penetration Delivery. Advanced Materials Interfaces 2022, 9 (12) https://doi.org/10.1002/admi.202200022
    80. Migara Kavishka Jayasinghe, Chang Yu Lee, Trinh T. T. Tran, Rachel Tan, Sarah Min Chew, Brendon Zhi Jie Yeo, Wen Xiu Loh, Marco Pirisinu, Minh T. N. Le. The Role of in silico Research in Developing Nanoparticle-Based Therapeutics. Frontiers in Digital Health 2022, 4 https://doi.org/10.3389/fdgth.2022.838590
    81. Lijie Li, Qi Zhan, Kaikai Yi, Ning Chen, Xueping Li, Shixue Yang, Xin Hou, Jin Zhao, Xubo Yuan, Chunsheng Kang. Engineering Lipusu with lysophosphatidylcholine for improved tumor cellular uptake and anticancer efficacy. Journal of Materials Chemistry B 2022, 10 (11) , 1833-1842. https://doi.org/10.1039/D1TB02823E
    82. Ge Zhu, Yong-Guang Yang, Tianmeng Sun. Engineering optimal vaccination strategies: effects of physical properties of the delivery system on functions. Biomaterials Science 2022, 10 (6) , 1408-1422. https://doi.org/10.1039/D2BM00011C
    83. Mauro Sousa de Almeida, Patricia Taladriz-Blanco, Barbara Drasler, Sandor Balog, Phattadon Yajan, Alke Petri-Fink, Barbara Rothen-Rutishauser. Cellular Uptake of Silica and Gold Nanoparticles Induces Early Activation of Nuclear Receptor NR4A1. Nanomaterials 2022, 12 (4) , 690. https://doi.org/10.3390/nano12040690
    84. Neila Machado, Bart M. H. Bruininks, Priyanka Singh, Laurita dos Santos, Carine Dal Pizzol, Gustavo de C. Dieamant, Odivania Kruger, Airton A. Martin, Siewert J. Marrink, Paulo C. T. Souza, Priscila P. Favero. Complex nanoemulsion for vitamin delivery: droplet organization and interaction with skin membranes. Nanoscale 2022, 14 (2) , 506-514. https://doi.org/10.1039/D1NR04610A
    85. Yinglan Yu, LiYun Xing, Lian Li, Jiawei Wu, Jinhan He, Yuan Huang. Coordination of rigidity modulation and targeting ligand modification on orally-delivered nanoparticles for the treatment of liver fibrosis. Journal of Controlled Release 2022, 341 , 215-226. https://doi.org/10.1016/j.jconrel.2021.11.026
    86. Laís Ribovski, Naomi M. Hamelmann, Jos M. J. Paulusse. Polymeric Nanoparticles Properties and Brain Delivery. Pharmaceutics 2021, 13 (12) , 2045. https://doi.org/10.3390/pharmaceutics13122045
    87. Xiao Zhang, Guanghui Ma, Wei Wei. Simulation of nanoparticles interacting with a cell membrane: probing the structural basis and potential biomedical application. NPG Asia Materials 2021, 13 (1) https://doi.org/10.1038/s41427-021-00320-0
    88. Kumar Ganesan, Yan Wang, Fei Gao, Qingqing Liu, Chen Zhang, Peng Li, Jinming Zhang, Jianping Chen. Targeting Engineered Nanoparticles for Breast Cancer Therapy. Pharmaceutics 2021, 13 (11) , 1829. https://doi.org/10.3390/pharmaceutics13111829
    89. Abraham J. P. Teunissen, Marianne E. Burnett, Geoffrey Prévot, Emma D. Klein, Daniel Bivona, Willem J. M. Mulder. Embracing nanomaterials' interactions with the innate immune system. WIREs Nanomedicine and Nanobiotechnology 2021, 13 (6) https://doi.org/10.1002/wnan.1719
    90. Zhengmao Li, Kunke Xie, Shuang Yang, Ting Yu, Yin Xiao, Yinghong Zhou. Multifunctional Ca–Zn–Si-based micro-nano spheres with anti-infective, anti-inflammatory, and dentin regenerative properties for pulp capping application. Journal of Materials Chemistry B 2021, 9 (39) , 8289-8299. https://doi.org/10.1039/D1TB01517F
    91. Bingqing Lu, A. Jan. Hendriks, Tom M. Nolte. A Generic Model Based on the Properties of Nanoparticles and Cells for Predicting Cellular Uptake. Colloids and Surfaces B: Biointerfaces 2021, 20 , 112155. https://doi.org/10.1016/j.colsurfb.2021.112155
    92. Neha Kapate, John R. Clegg, Samir Mitragotri. Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years. Advanced Drug Delivery Reviews 2021, 177 , 113807. https://doi.org/10.1016/j.addr.2021.05.017
    93. Junli Zhou, Yite Li, Lei Wang, Zhigang Xie. Structural diversity of nanoscale zirconium porphyrin MOFs and their photoactivities and biological performances. Journal of Materials Chemistry B 2021, 9 (37) , 7760-7770. https://doi.org/10.1039/D1TB01311D
    94. Sihua Wu, Yufei Xia, Yuning Hu, Guanghui Ma. Bio-mimic particles for the enhanced vaccinations: Lessons learnt from the natural traits and pathogenic invasion. Advanced Drug Delivery Reviews 2021, 176 , 113871. https://doi.org/10.1016/j.addr.2021.113871
    95. Zengshuai Yan, Lingzhi Li, Shixin Li, Yan Xu, Tongtao Yue. Extracellular interactions between graphene nanosheets and E-cadherin. Environmental Science: Nano 2021, 8 (8) , 2152-2164. https://doi.org/10.1039/D1EN00443C
    96. Qi Zhan, Kaikai Yi, Xueping Li, Xiaoteng Cui, Eryan Yang, Ning Chen, Xubo Yuan, Jin Zhao, Xin Hou, Chunsheng Kang. Phosphatidylcholine‐Engineered Exosomes for Enhanced Tumor Cell Uptake and Intracellular Antitumor Drug Delivery. Macromolecular Bioscience 2021, 21 (8) https://doi.org/10.1002/mabi.202100042
    97. Xiaohuan Wang, Long Li, Fan Song. Interplay of Nanoparticle Properties during Endocytosis. Crystals 2021, 11 (7) , 728. https://doi.org/10.3390/cryst11070728
    98. Zemimg Wu, Xin Yi. Mechanics of cell interaction with intercellular nanoparticles: Shape-dependent competition between two-membrane trapping and single-membrane wrapping. Extreme Mechanics Letters 2021, 46 , 101296. https://doi.org/10.1016/j.eml.2021.101296
    99. Timothy Leong, Chandhana Voleti, Zhangli Peng. Coarse-Grained Modeling of Coronavirus Spike Proteins and ACE2 Receptors. Frontiers in Physics 2021, 9 https://doi.org/10.3389/fphy.2021.680983
    100. Laís Ribovski, Edwin de Jong, Olga Mergel, Guangyue Zu, Damla Keskin, Patrick van Rijn, Inge S. Zuhorn. Low nanogel stiffness favors nanogel transcytosis across an in vitro blood–brain barrier. Nanomedicine: Nanotechnology, Biology and Medicine 2021, 34 , 102377. https://doi.org/10.1016/j.nano.2021.102377
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect