Supporting Information

Nitrodopamine Modified MnO₂ NS-MoS₂ QDs Hybrid Nanocomposite for Extra- and Intracellular Detection of Glutathione

Gomathi Sivakumar,^a Ajay Gupta,^b Anashwara Babu,^a Pijus K. Sasmal,^{*b} Samarendra Maji^{*a} ^aDepartment of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu-603203, India. Corresponding author E-mail: <u>samarenr@srmist.edu.in</u> ^bSchool of Physical Sciences, Jawaharlal Nehru University, New Delhi-110-067, India. Corresponding author Email: <u>pijus@mail.jnu.ac.in</u>

S. No	(hkl)	MnO ₂ NS			ND@MnO₂ NS			DA@MnO₂ NS		
		2θ (°)	FWHM	Crystallite	2θ (°)	FWHM	Crystallite	2θ (°)	FWHM	Crystallite
			(β)	Size (nm)		(β)	Size (nm)		(β)	Size (nm)
1	(001)	12.29°	4.5933	1.82	14.22°	9.5439	0.88	14.8°	4.3958	1.90
2	(002)	18.54°	7.0156	1.2	18.74°	12.8279	0.66	18.97°	9.111	0.92
3	(110)	36.39°	21.2331	0.41	37.25°	15.2853	0.57	37.01°	28.1328	0.31
4	(020)	65.66°	431.352	0.02	65.87°	258.092	0.04	65.55°	233.04	0.04
			Average	0.86		Average	0.54		Average	0.79

Table S1. The crystallite size of the designed pure MnO_2 NS and surface-modified ND@MnO₂ NS and DA@MnO₂ NS.

Figure S1. Raman spectrum of a) $MnO_2 NS$, and b) $ND@MnO_2 NS$.

Figure S2. a) EDX data of $MnO_2 NS$, and b) quantitative weight percentage data of elements present in the $MnO_2 NS$.

Element	Net	Weight %	Atom %	Formula	
	Counts				
С	2513	8.747	19.305	С	
N	532	3.153	5.968	N	
0	9722	27.436	45.457	0	
Mn	25298	60.663	29.271	Mn	

Figure S3. a) EDX data of ND@MnO₂ NS, and b) quantitative weight percentage data of elements present in the ND@MnO₂ NS.

Figure S4. a) EDX data of DA@MnO₂ NS, and b) quantitative weight percentage data of elements present in the DA@MnO₂ NS.

Figure S5. XPS spectra recorded from the MnO_2 NS; XPS spectra of a) Mn2p, b) Mn2P binding energy, and c) O1s orbital d) Mn3s orbital.

Figure S6. XPS spectra recorded from the ND@MnO₂ NS; XPS spectra of a) Mn2p, b) O1s, c) N1s, d) C1s, and e) Mn3s deconvolution spectra.

Figure S7. XPS spectra recorded from the DA@ MnO_2 NS; XPS spectra of a) Mn2p, b) O1s, c) N1s, d) C1s, and e) Mn3s deconvolution spectra.

Figure S8. a) EDX data of MoS_2 QDs, and b) quantitative weight percentage data of elements present in the MoS_2 QDs.

Figure S9. a) Fluorescence spectra of MoS₂ QDs (100 µg/mL) in 1:10 DMF/PBS (1X, pH 7.4) with different concentrations of MnO₂ NS (0-132 µg/mL). The emission spectra of MoS₂ QDs (λ_{ex} = 275 nm and λ_{em} = 435 nm) were recorded just after each addition of MnO₂ NS. b) The kinetic curve at λ_{em} 435 nm for the change in fluorescence intensity ratio with different MnO₂ NS concentrations. c) Relationship between quenching efficiency and the concentrations of MnO₂ NS. F° and F₀ are fluorescence intensities of MoS₂ QDs in the presence and absence of MnO₂ NS, respectively.

Figure S10. a) Fluorescence spectra of MoS₂ QDs (100 µg/mL) in 1:10 DMF/PBS (1X, pH 7.4) with different concentrations of DA@MnO₂ NS (0-295 µg/mL). The emission spectra of MoS₂ QDs (λ_{ex} = 275 nm and λ_{em} = 435 nm) were recorded just after each addition of DA@MnO₂ NS. b) Kinetic curve at λ_{em} 435 nm for the change in fluorescence intensity ratio with different DA@MnO₂ NS concentrations. c) Relationship between quenching efficiency and the concentrations of DA@MnO₂ NS. F° and F₀ are fluorescence intensities of MoS₂ QDs in the presence and absence of DA@MnO₂ NS, respectively.

Figure S11. a) Fluorescence spectra of MnO₂ NS@MoS₂ QDs composite in 1:10 DMF/PBS (1X, pH 7.4) with different concentrations of GSH (0-0.5 μ M). The emission spectra of MnO₂ NS@MoS₂ QDs (λ_{ex} = 275 nm and λ_{em} = 435 nm) were recorded just after each addition of GSH. b) Kinetic curve at λ_{em} 435 nm for the change in fluorescence intensity ratio with different GSH concentrations. c) Relationship between fluorescence intensity ratio and the concentrations of GSH. F_R and F_{R0} are fluorescence intensities of MnO₂ NS@MoS₂ QDs sensing probe in the presence and absence of GSH, respectively.

Figure S12. a) Fluorescence spectra of DA@MnO₂ NS@MoS₂ QDs composite in 1:10 DMF/PBS (1X, pH 7.4) with different concentrations of GSH (0-1.2 μ M). The emission spectra of DA@MnO₂ NS@MoS₂ QDs (λ_{ex} = 275 nm and λ_{em} = 435 nm) were recorded just after each addition of GSH. b) Kinetic curve at λ_{em} 435 nm for the change in fluorescence intensity ratio with different GSH concentrations. c) Relationship between fluorescence intensity ratio and the concentrations of GSH. F_R and F_{R0} are fluorescence intensities of DA@MnO₂ NS@MoS₂ QDs sensing probe in the presence and absence of GSH, respectively.

Figure S13. Fluorescence spectra of probe composite (DA@MnO₂ NS@MoS₂ QDs) in 1:10 DMF/PBS (1X, pH 7.4) with different concentrations of Cys (0-5 μ M). The emission spectra of probe (λ_{ex} = 275 nm and λ_{em} = 435 nm) were recorded just after each addition of Cys.

Figure S14. Confocal microscopy images of A549 cells incubated with ND@MnO₂ NS (50 μ g/mL) for different time points. Top panels: under bright-field and bottom panels: under fluorescence modes. Scale bar = 10 μ m.

Figure S15. Confocal microscopy images of A549 cells incubated with MoS_2 QDs (50 µg/mL) for different time points. Top panels: under bright-field and bottom panels: under fluorescence modes. Scale bar = 10 µm.

Figure S16. Confocal microscopy images of HEK293 and A549 cells incubated with probe $(ND@MnO_2 NS@MoS_2 QDs)$ (50 µg/mL) for different time points under bright-field and fluorescence modes. Scale bar = 10 µm.