ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Modulation of Luminescence Intensity of Lanthanide Complexes by Photoinduced Electron Transfer and Its Application to a Long-Lived Protease Probe

View Author Information
Contribution from the Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan, Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan, Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, and PRESTO, JST, 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
Cite this: J. Am. Chem. Soc. 2006, 128, 21, 6938–6946
Publication Date (Web):May 6, 2006
https://doi.org/10.1021/ja060729t
Copyright © 2006 American Chemical Society

    Article Views

    4239

    Altmetric

    -

    Citations

    145
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Luminescent lanthanide complexes (Tb3+, Eu3+, etc.) have excellent properties for biological applications, including extraordinarily long lifetimes and large Stokes shifts. However, there have been few reports of lanthanide-based functional probes, because of the difficulty in designing suitable complexes with a luminescent on/off switch. Here, we have synthesized a series of complexes which consist of three moieties:  a lanthanide chelate, an antenna, and a luminescence off/on switch. The antenna is an aromatic ring which absorbs light and transmits its energy to the metal, and the switch is a benzene derivative with a different HOMO level. If the HOMO level is higher than a certain threshold, the complex emits no luminescence at all, which indicates that the lanthanide luminescence can be modulated by photoinduced electron transfer (PeT) from the switch to the sensitizer. This approach to control lanthanide luminescence makes possible the rational design of functional lanthanide complexes, in which the luminescence property is altered by a biological reaction. To exemplify the utility of our approach to the design of lanthanide complexes with a switch, we have developed a novel protease probe, which undergoes a significant change in luminescence intensity upon enzymatic cleavage of the substrate peptide. This probe, combined with time-resolved measurements, was confirmed in model experiments to be useful for the screening of inhibitors, as well as for clinical diagnosis.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Graduate School of Pharmaceutical Sciences, The University of Tokyo.

     CREST, JST.

    §

     Osaka University.

     Graduate School of Medicine, The University of Tokyo.

     PRESTO, JST.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Synthetic procedures of [LnX] (Ln = Tb, Eu) (X = 113); photophysical properties of the complexes; comparison of kinetic parameters; inhibition constants of LAP inhibitors; emission spectra of [Eu8] and [Eu1]; comparison of luminescence intensity before and after the enzymatic reaction; spectral change of [Ln13] upon reaction with LAP; emission intensity of [LnX] after the addition of LAP or trypsin; HPLC chart of [LnX]; LAP reaction of [Tb13] on 96-well plate; limit of detection of LAP using two probes; correlation between LAP activity measured by the two methods; serum LAP assay in the presence of amastatin; list of authors of ref 19b. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 145 publications.

    1. Mick Hornum, Mads W. Mulberg, Maria Szomek, Peter Reinholdt, Jonathan R. Brewer, Daniel Wüstner, Jacob Kongsted, Poul Nielsen. Substituted 9-Diethylaminobenzo[a]phenoxazin-5-ones (Nile Red Analogues): Synthesis and Photophysical Properties. The Journal of Organic Chemistry 2021, 86 (2) , 1471-1488. https://doi.org/10.1021/acs.joc.0c02346
    2. G. Surendra Reddy, L. Mallikarjuna Reddy, A. Suresh Kumar, Dhevalapally B. Ramachary. Organocatalytic Selective [3 + 2] Cycloadditions: Synthesis of Functionalized 5-Arylthiomethyl-1,2,3-triazoles and 4-Arylthio-1,2,3-triazoles. The Journal of Organic Chemistry 2020, 85 (23) , 15488-15501. https://doi.org/10.1021/acs.joc.0c02247
    3. Jing Chen, Ziyu Xie, Lingyi Meng, Ziying Hu, Xiaofei Kuang, Yiming Xie, Can-Zhong Lu. Luminescence Tunable Europium and Samarium Complexes: Reversible On/Off Switching and White-Light Emission. Inorganic Chemistry 2020, 59 (10) , 6963-6977. https://doi.org/10.1021/acs.inorgchem.0c00392
    4. Hao-Hua Deng, Kai-Yuan Huang, Shao-Bin He, Li-Ping Xue, Hua-Ping Peng, Dai-Jun Zha, Wei-Ming Sun, Xing-Hua Xia, Wei Chen. Rational Design of High-Performance Donor–Linker–Acceptor Hybrids Using a Schiff Base for Enabling Photoinduced Electron Transfer. Analytical Chemistry 2020, 92 (2) , 2019-2026. https://doi.org/10.1021/acs.analchem.9b04434
    5. Daniel Kovacs, Salauat R. Kiraev, Dulcie Phipps, Andreas Orthaber, K. Eszter Borbas. Eu(III) and Tb(III) Complexes of Octa- and Nonadentate Macrocyclic Ligands Carrying Azide, Alkyne, and Ester Reactive Groups. Inorganic Chemistry 2020, 59 (1) , 106-117. https://doi.org/10.1021/acs.inorgchem.9b01576
    6. Qi Zhou, Xuelin Dong, Jianhui Yuan, Binbin Zhang, Shan Lu, Qin Wang, Yonggui Liao, Yajiang Yang, Hong Wang. Reversible Redox Switching of Concurrent Luminescence and Visual Color Change Based on Lanthanide Metallogel. Langmuir 2019, 35 (47) , 15344-15351. https://doi.org/10.1021/acs.langmuir.9b02828
    7. Guotao Sun, Jianguo Tang, Christopher D. Snow, Zhenhua Li, Yu Zhang, Yao Wang, Laurence A. Belfiore. Drug Sensing Protein Crystals Doped with Luminescent Lanthanide Complexes. Crystal Growth & Design 2019, 19 (10) , 5658-5664. https://doi.org/10.1021/acs.cgd.9b00642
    8. Tumpa Gorai and Uday Maitra . Supramolecular Approach to Enzyme Sensing on Paper Discs Using Lanthanide Photoluminescence. ACS Sensors 2016, 1 (7) , 934-940. https://doi.org/10.1021/acssensors.6b00341
    9. Kyu-Tae Lee, Jong-Hyun Park, S. Joon Kwon, Hyun-Keun Kwon, Jihoon Kyhm, Kyung-Won Kwak, Ho Seong Jang, Su Yeon Kim, Joon Soo Han, Sung-Hwan Lee, Dong-Hun Shin, Hyungduk Ko, Il-Ki Han, Byeong-Kwon Ju, Soong-Hong Kwon, and Doo-Hyun Ko . Simultaneous Enhancement of Upconversion and Downshifting Luminescence via Plasmonic Structure. Nano Letters 2015, 15 (4) , 2491-2497. https://doi.org/10.1021/nl5049803
    10. Marie C. Heffern, Lauren M. Matosziuk, and Thomas J. Meade . Lanthanide Probes for Bioresponsive Imaging. Chemical Reviews 2014, 114 (8) , 4496-4539. https://doi.org/10.1021/cr400477t
    11. M. Karbowiak, J. Cichos, and K. Buczko . Interaction of Lanthanide β-Diketonate Complexes with Polyvinylpyrrolidone: Proton-Controlled Switching of Tb3+ Luminescence. The Journal of Physical Chemistry B 2014, 118 (1) , 226-239. https://doi.org/10.1021/jp408328h
    12. Hisao Saneyoshi, Yoshihiro Ito, and Hiroshi Abe . Long-Lived Luminogenic Probe for Detection of RNA in a Crude Solution of Living Bacterial Cells. Journal of the American Chemical Society 2013, 135 (37) , 13632-13635. https://doi.org/10.1021/ja406724k
    13. Amin Li, Yabo Ouyang, Ziyun Wang, Yuanyuan Cao, Xiangyi Liu, Li Ran, Chao Li, Li Li, Liang Zhang, Kang Qiao, Weisi Xu, Yang Huang, Zhili Zhang, Chao Tian, Zhenming Liu, Shibo Jiang, Yiming Shao, Yansheng Du, Liying Ma, Xiaowei Wang, and Junyi Liu . Novel Pyridinone Derivatives As Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) with High Potency against NNRTI-Resistant HIV-1 Strains. Journal of Medicinal Chemistry 2013, 56 (9) , 3593-3608. https://doi.org/10.1021/jm400102x
    14. Brian K. McMahon and Thorfinnur Gunnlaugsson . Selective Detection of the Reduced Form of Glutathione (GSH) over the Oxidized (GSSG) Form Using a Combination of Glutathione Reductase and a Tb(III)-Cyclen Maleimide Based Lanthanide Luminescent ‘Switch On’ Assay. Journal of the American Chemical Society 2012, 134 (26) , 10725-10728. https://doi.org/10.1021/ja300887k
    15. Zhi-Jun Ding, Ying-Ming Zhang, Xue Teng, and Yu Liu . Controlled Photophysical Behaviors between Dibenzo-24-crown-8 Bearing Terpyridine Moiety and Fullerene-Containing Ammonium Salt. The Journal of Organic Chemistry 2011, 76 (6) , 1910-1913. https://doi.org/10.1021/jo102311m
    16. Jean-Claude G. Bünzli. Lanthanide Luminescence for Biomedical Analyses and Imaging. Chemical Reviews 2010, 110 (5) , 2729-2755. https://doi.org/10.1021/cr900362e
    17. Masataka Togashi, Yasuteru Urano, Hirotatsu Kojima, Takuya Terai, Kenjiro Hanaoka, Kazuei Igarashi, Yasunobu Hirata and Tetsuo Nagano. Sensitive Detection of Acrolein in Serum Using Time-Resolved Luminescence. Organic Letters 2010, 12 (8) , 1704-1707. https://doi.org/10.1021/ol1002219
    18. Jian Zhang, Yi Fu and Joseph R. Lakowicz. Luminescent Silica Core/Silver Shell Encapsulated with Eu(III) Complex. The Journal of Physical Chemistry C 2009, 113 (45) , 19404-19410. https://doi.org/10.1021/jp906742q
    19. Min Han, Heng-Yi Zhang, Li-Xu Yang, Qiao Jiang and Yu Liu. A Reversible Luminescent Lanthanide Switch Based on a Dibenzo[24]-Crown-8−Dipicolinic Acid Conjugate. Organic Letters 2008, 10 (24) , 5557-5560. https://doi.org/10.1021/ol802376k
    20. Shin Mizukami, Kazuhiro Tonai, Masahiro Kaneko and Kazuya Kikuchi. Lanthanide-Based Protease Activity Sensors for Time-Resolved Fluorescence Measurements. Journal of the American Chemical Society 2008, 130 (44) , 14376-14377. https://doi.org/10.1021/ja800322b
    21. John Cody, Subrata Mandal, Liuchun Yang and Christoph J. Fahrni. Differential Tuning of the Electron Transfer Parameters in 1,3,5-Triarylpyrazolines: A Rational Design Approach for Optimizing the Contrast Ratio of Fluorescent Probes. Journal of the American Chemical Society 2008, 130 (39) , 13023-13032. https://doi.org/10.1021/ja803074y
    22. Xiaofan Wen, Manyu Li, Yuan Wang, Jianping Zhang, Limin Fu, Rui Hao, Yan Ma and Xicheng Ai . Colloidal Nanoparticles of a Europium Complex with Enhanced Luminescent Properties. Langmuir 2008, 24 (13) , 6932-6936. https://doi.org/10.1021/la800903s
    23. Fang-Fang Chen, Zu-Qiang Bian, Zhi-Wei Liu, Dao-Bo Nie, Zhu-Qi Chen and Chun-Hui Huang. Highly Efficient Sensitized Red Emission from Europium (III) in Ir−Eu Bimetallic Complexes by 3MLCT Energy Transfer. Inorganic Chemistry 2008, 47 (7) , 2507-2513. https://doi.org/10.1021/ic701817n
    24. Christopher G. Gulgas and Theresa M. Reineke. Macrocyclic Eu3+ Chelates Show Selective Luminescence Responses to Anions. Inorganic Chemistry 2008, 47 (5) , 1548-1559. https://doi.org/10.1021/ic701916z
    25. Yuying Bian, Yuxin Han, Jicheng Ma, Guang Wang. β-Diketone functionalized covalent organic framework for detection of europium(III) and successive detection of tetracycline antibiotics. Microchemical Journal 2024, 197 , 109832. https://doi.org/10.1016/j.microc.2023.109832
    26. Myojeong Kim, Seonghyeok Hong, Jinwook Jeong, Sungwoo Hong. Visible‐Light‐Active Coumarin‐ and Quinolinone‐Based Photocatalysts and Their Applications in Chemical Transformations. The Chemical Record 2023, 23 (7) https://doi.org/10.1002/tcr.202200267
    27. Min Hyeong Son, Seok Won Park, Hee Yeon Sagong, Yun Kyung Jung. Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection. BioChip Journal 2023, 17 (1) , 44-67. https://doi.org/10.1007/s13206-022-00089-6
    28. Ga Zhang, Lefu Mei, Junjie Ding, Ke Su, Qingfeng Guo, Guocheng Lv, Libing Liao. Recent progress on lanthanide complexes/clay minerals hybrid luminescent materials. Journal of Rare Earths 2022, 40 (9) , 1360-1370. https://doi.org/10.1016/j.jre.2022.01.006
    29. Jiawei Wang, Yibiao Jin, Mingdang Li, Shujuan Liu, Kenneth Kam‐Wing Lo, Qiang Zhao. Time‐Resolved Luminescent Sensing and Imaging for Enzyme Catalytic Activity Based on Responsive Probes. Chemistry – An Asian Journal 2022, 17 (16) https://doi.org/10.1002/asia.202200429
    30. Yan-Cen Liu, Andreas Hennig. Nanosecond Time-Resolved Fluorescence Assays. 2022, 143-175. https://doi.org/10.1007/978-981-16-4550-1_7
    31. Meng Li, Bhaskar Gurram, Shan Lei, Nicholas T. Blum, Peng Huang, Jing Lin. Recent advances in fluorescence imaging of alkaline phosphatase. Chinese Chemical Letters 2021, 32 (4) , 1316-1330. https://doi.org/10.1016/j.cclet.2020.09.004
    32. Moorthy Maruthapandi, Poushali Das, Arumugam Saravanan, Michal Natan, Ehud Banin, Sriram Kannan, Shulamit Michaeli, John H.T. Luong, Aharon Gedanken. Biocompatible N-doped carbon dots for the eradication of methicillin-resistant S. aureus (MRSA) and sensitive analysis for europium (III). Nano-Structures & Nano-Objects 2021, 26 , 100724. https://doi.org/10.1016/j.nanoso.2021.100724
    33. K. Eszter Borbas. Analyte-Responsive Luminescent Dyes Based on Trivalent Lanthanide Coordination Compounds. 2021, 35-65. https://doi.org/10.1007/4243_2020_17
    34. Chao-Hui Jin, Ting-Ting Zhu, Zhen-Hua Xi, Jia-Lu Chai, Xiao-Wen Zhang, Jie Han, Xiao-Li Zhao, Xu-Dong Chen. Lanthanide complexes based on a C symmetric tripodal ligand and potential application as fluorescent probe of Fe3+. Journal of Molecular Structure 2020, 1222 , 128941. https://doi.org/10.1016/j.molstruc.2020.128941
    35. Papu Samanta, Sharmistha Dutta Choudhury, Haridas Pal. Lanthanide (III) ions as multichannel acceptors for bimolecular photoinduced electron transfer reactions with coumarin dyes. Journal of Photochemistry and Photobiology A: Chemistry 2020, 401 , 112774. https://doi.org/10.1016/j.jphotochem.2020.112774
    36. Andreas Hennig, Werner M. Nau. Interaction of Cucurbit[7]uril With Protease Substrates: Application to Nanosecond Time-Resolved Fluorescence Assays. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00806
    37. Patrizia Rossi, Eleonora Macedi, Mauro Formica, Luca Giorgi, Paola Paoli, Vieri Fusi. Hetero‐Tetranuclear Cu 2+ /Ca 2+ /Ca 2+ /Cu 2+ Architectures Based On Malten Ligand: Scaffold for Anion Binding. ChemPlusChem 2020, 85 (6) , 1179-1189. https://doi.org/10.1002/cplu.202000307
    38. Markus Räsänen, Harri Takalo, Jaana Rosenberg, Keijo Haapakka, Jukka Lukkari, Jouko Kankare. Energy transfer in ternary TbEDTA chelates with a series of dipicolinic acid derivatives. Journal of Luminescence 2020, 220 , 116967. https://doi.org/10.1016/j.jlumin.2019.116967
    39. Xiaohui Wang, Chengyuan Qian, Xiaoyong Wang, Tuanjie Li, Zijian Guo. Guanine-guided time-resolved luminescence recognition of DNA modification and i-motif formation by a terbium(III)-platinum(II) complex. Biosensors and Bioelectronics 2020, 150 , 111841. https://doi.org/10.1016/j.bios.2019.111841
    40. Alexander P. Demchenko. Small Luminescent Associates Based on Inorganic Atoms and Ions. 2020, 237-266. https://doi.org/10.1007/978-3-030-60155-3_6
    41. Weilei Zhou, Yong Chen, Lei Chen, Yu Liu. Construction and Application of Lanthanide Luminescent Materials Based on Macrocycles. 2020, 1369-1391. https://doi.org/10.1007/978-981-15-2686-2_56
    42. A. Roniboss, Milind Shrinivas Dangate, R. Nishanth Rao, M M Balamurali, Kaushik Chanda. Environment dependent photophysical and fluorescence turn-off sensing properties of Fe(III) by substituted phenyl isochromenopyrrol-5-ones. Photochemical & Photobiological Sciences 2019, 18 (12) , 2977-2988. https://doi.org/10.1039/c9pp00303g
    43. Takuma Imoto, Masayasu Muramatsu, Hiroshi Miyasaka, Shin Mizukami, Kazuya Kikuchi. Improvement in Photostability of Fluorescein by Lanthanide Ions Based on Energy Transfer-based Triplet State Quenching. Chemistry Letters 2019, 48 (10) , 1181-1184. https://doi.org/10.1246/cl.190469
    44. Sajjad Hussain, Xuenian Chen, William T. A. Harrison, Saeed Ahmad, Mark R. J. Elsegood, Islam Ullah Khan, Shabbir Muhammad. Synthesis, Thermal, Structural Analyses, and Photoluminescent Properties of a New Family of Malonate-Containing Lanthanide(III) Coordination Polymers. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00260
    45. Maria Paula Cabral Campello, Elisa Palma, Isabel Correia, Pedro M. R. Paulo, António Matos, José Rino, Joana Coimbra, João Costa Pessoa, Dinorah Gambino, António Paulo, Fernanda Marques. Lanthanide complexes with phenanthroline-based ligands: insights into cell death mechanisms obtained by microscopy techniques. Dalton Transactions 2019, 48 (14) , 4611-4624. https://doi.org/10.1039/C9DT00640K
    46. Bing-Hui Wang, Bing Yan. Tunable multi-color luminescence and white emission in lanthanide ion functionalized polyoxometalate-based metal–organic frameworks hybrids and fabricated thin films. Journal of Alloys and Compounds 2019, 777 , 415-422. https://doi.org/10.1016/j.jallcom.2018.10.406
    47. Weilei Zhou, Yong Chen, Lei Chen, Yu Liu. Construction and Application of Lanthanide Luminescent Materials Based on Macrocycles. 2019, 1-24. https://doi.org/10.1007/978-981-13-1744-6_56-1
    48. Yiwei Yang, Pingru Su, Yu Tang. Stimuli‐Responsive Lanthanide‐Based Smart Luminescent Materials for Optical Encoding and Bio‐applications. ChemNanoMat 2018, 4 (11) , 1097-1120. https://doi.org/10.1002/cnma.201800212
    49. Daniel Kovacs, K. Eszter Borbas. The role of photoinduced electron transfer in the quenching of sensitized Europium emission. Coordination Chemistry Reviews 2018, 364 , 1-9. https://doi.org/10.1016/j.ccr.2018.03.004
    50. Fan Yang, Peipei Ren, Guanhong Liu, Youtao Song, Naishun Bu, Jun Wang. A novel fluorescent probe (dtpa-bis(cytosine)) for detection of Eu(III) in rare earth metal ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 193 , 357-364. https://doi.org/10.1016/j.saa.2017.12.038
    51. X. H. Huang, L. Shi, S. M. Ying, G. Y. Yan, L. H. Liu, Y. Q. Sun, Y. P. Chen. Two lanthanide metal–organic frameworks as sensitive luminescent sensors for the detection of Cr 2+ and Cr 2 O 7 2− in aqueous solutions. CrystEngComm 2018, 20 (2) , 189-197. https://doi.org/10.1039/C7CE01781B
    52. Sarah H. Hewitt, Stephen J. Butler. Application of lanthanide luminescence in probing enzyme activity. Chemical Communications 2018, 54 (50) , 6635-6647. https://doi.org/10.1039/C8CC02824A
    53. Patrizia Rossi, Eleonora Macedi, Paola Paoli, Luca Giorgi, Mauro Formica, Vieri Fusi. Crystal structure of bis{μ 2 -2,2′-[(4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene)]bis(4-oxo-4 H -pyran-3-olato)}dicobaltcalcium bis(perchlorate) 1.36-hydrate. Acta Crystallographica Section E Crystallographic Communications 2017, 73 (12) , 1959-1965. https://doi.org/10.1107/S2056989017016693
    54. Weili Jiang, Chenming Hong, Huibo Wei, Zongkai Wu, Zuqiang Bian, Chunhui Huang. A green-emitting iridium complex used for sensitizing europium ion with high quantum yield. Inorganica Chimica Acta 2017, 459 , 124-130. https://doi.org/10.1016/j.ica.2017.01.019
    55. Shun Omagari, Takayuki Nakanishi, Yuichi Kitagawa, Tomohiro Seki, Koji Fushimi, Hajime Ito, Andries Meijerink, Yasuchika Hasegawa. Critical Role of Energy Transfer Between Terbium Ions for Suppression of Back Energy Transfer in Nonanuclear Terbium Clusters. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep37008
    56. Xiao-Long Liu, Ke-Wu Yang, Yue-Juan Zhang, Ying Ge, Yang Xiang, Ya-Nan Chang, Peter Oelschlaeger. Optimization of amino acid thioesters as inhibitors of metallo-β-lactamase L1. Bioorganic & Medicinal Chemistry Letters 2016, 26 (19) , 4698-4701. https://doi.org/10.1016/j.bmcl.2016.08.048
    57. Chuanqi Zhao, Yuhuan Sun, Jinsong Ren, Xiaogang Qu. Recent progress in lanthanide complexes for DNA sensing and targeting specific DNA structures. Inorganica Chimica Acta 2016, 452 , 50-61. https://doi.org/10.1016/j.ica.2016.04.014
    58. Jing-Lin Chen, Guo-Ping Gao, Bao-Sheng Di, Yan-Sheng Luo, Xue-Hua Zeng, Lu Qiu, Li-Hua He, Sui-Jun Liu, He-Rui Wen. Emissive mononuclear Eu(III) and Tb(III) complexes bearing deprotonated 2,2′-bipyridyl-1,2,4-triazole terdentate ligands. Journal of Coordination Chemistry 2016, 69 (19) , 2908-2919. https://doi.org/10.1080/00958972.2016.1226501
    59. Alsu R. Mukhametshina, Svetlana V. Fedorenko, Irina V. Zueva, Konstantin A. Petrov, Patrick Masson, Irek R. Nizameev, Asiya R. Mustafina, Oleg G. Sinyashin. Luminescent silica nanoparticles for sensing acetylcholinesterase-catalyzed hydrolysis of acetylcholine. Biosensors and Bioelectronics 2016, 77 , 871-878. https://doi.org/10.1016/j.bios.2015.10.059
    60. Qiuyu Gong, Wen Shi, Lihong Li, Huimin Ma. Leucine aminopeptidase may contribute to the intrinsic resistance of cancer cells toward cisplatin as revealed by an ultrasensitive fluorescent probe. Chemical Science 2016, 7 (1) , 788-792. https://doi.org/10.1039/C5SC03600C
    61. Bo Song, Zhiqing Ye, Yajie Yang, Hua Ma, Xianlin Zheng, Dayong Jin, Jingli Yuan. Background-free in-vivo Imaging of Vitamin C using Time-gateable Responsive Probe. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep14194
    62. Huabin Zhang, Ping Hu, Qikai Zhang, Mingdong Huang, Can‐Zhong Lu, Victor Malgras, Yusuke Yamauchi, Jian Zhang, Shao‐Wu Du. Interpreted Recognition Process: A Highly Sensitive and Selective Luminescence Chemosensor. Chemistry – A European Journal 2015, 21 (33) , 11767-11772. https://doi.org/10.1002/chem.201501225
    63. Jean-Claude G. Bünzli. On the design of highly luminescent lanthanide complexes. Coordination Chemistry Reviews 2015, 293-294 , 19-47. https://doi.org/10.1016/j.ccr.2014.10.013
    64. Toru Komatsu, Yasuteru Urano. Evaluation of Enzymatic Activities in Living Systems with Small-molecular Fluorescent Substrate Probes. Analytical Sciences 2015, 31 (4) , 257-265. https://doi.org/10.2116/analsci.31.257
    65. I. A. Savchenko, A. S. Berezhnytska, A. Mishchenko. New Nanosized Systems of Polymer Metal Complexes Based β-Diketones and Lanthanides for Electroluminescent Devices. 2015, 433-443. https://doi.org/10.1007/978-3-319-18543-9_30
    66. Alexander P. Demchenko. Molecular-Size Fluorescence Emitters. 2015, 133-202. https://doi.org/10.1007/978-3-319-20780-3_4
    67. Hiroki Ito, Takuya Terai, Kenjiro Hanaoka, Tasuku Ueno, Toru Komatsu, Tetsuo Nagano, Yasuteru Urano. Detection of NAD(P)H-dependent enzyme activity with dynamic luminescence quenching of terbium complexes. Chemical Communications 2015, 51 (39) , 8319-8322. https://doi.org/10.1039/C5CC01613D
    68. Samuel J. Bradberry, Joseph P. Byrne, Colin P. McCoy, Thorfinnur Gunnlaugsson. Lanthanide luminescent logic gate mimics in soft matter: [H + ] and [F − ] dual-input device in a polymer gel with potential for selective component release. Chemical Communications 2015, 51 (92) , 16565-16568. https://doi.org/10.1039/C5CC05009J
    69. Poonam Verma, Ramesh M. Sawant, Haridas Pal. Intriguing multichannel photoinduced electron transfer in lanthanide( iii )–diphenylamine systems. Physical Chemistry Chemical Physics 2015, 17 (35) , 23214-23225. https://doi.org/10.1039/C5CP02891D
    70. Chanjiao Ma, Hongliang Tan, Lili Chen, Yonghai Song, Fugang Xu, Shouhui Chen, Li Wang. A terbium chelate based fluorescent assay for alkaline phosphatase in biological fluid. Sensors and Actuators B: Chemical 2014, 202 , 683-689. https://doi.org/10.1016/j.snb.2014.06.007
    71. Julia Elistratova, Vladimir Burilov, Asiya Mustafina, Alexander Konovalov. Response of Tb(III) and Eu(III) centered luminescence on phase transitions in aqueous solutions of triblock copolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 457 , 402-407. https://doi.org/10.1016/j.colsurfa.2014.06.023
    72. Wen-Xian Li, Feng Guo, Yu-Shan Zheng, Xiao-Fang Cao, Shu-Yan Feng, Juan Bai, Xiao-Dong Xin. Synthesis and luminescence properties of two novel europium (III) perchlorate complexes with bis(benzylsulfinyl)methane and 1,10-phenanthroline. Journal of Luminescence 2014, 153 , 421-429. https://doi.org/10.1016/j.jlumin.2014.03.038
    73. S. Hussain, I. U. Khan, M. Akkurt, S. Ahmad, M. N. Tahir. Synthesis and structural characterization of binuclear ytterbium(III) complexes with 2-amino and 3-amino benzoic acid. Russian Journal of Coordination Chemistry 2014, 40 (9) , 686-694. https://doi.org/10.1134/S107032841409005X
    74. Elias Pershagen, K. Eszter Borbas. Designing reactivity-based responsive lanthanide probes for multicolor detection in biological systems. Coordination Chemistry Reviews 2014, 273-274 , 30-46. https://doi.org/10.1016/j.ccr.2013.10.012
    75. Wei Zhang, Zhao Ma, Lupei Du, Minyong Li. Design strategy for photoinduced electron transfer-based small-molecule fluorescent probes of biomacromolecules. The Analyst 2014, 139 (11) , 2641-2649. https://doi.org/10.1039/C3AN02379F
    76. Chi-Fai Chan, Ming-Kiu Tsang, Hongguang Li, Rongfeng Lan, Frances L. Chadbourne, Wai-Lun Chan, Ga-Lai Law, Steven L. Cobb, Jianhua Hao, Wing-Tak Wong, Ka-Leung Wong. Bifunctional up-converting lanthanide nanoparticles for selective in vitro imaging and inhibition of cyclin D as anti-cancer agents. J. Mater. Chem. B 2014, 2 (1) , 84-91. https://doi.org/10.1039/C3TB21034K
    77. Tetsuo Nagano. Molecular Design of Fluorescent Probes and Development of Novel Fluorescent Mother Compounds. YAKUGAKU ZASSHI 2014, 134 (1) , 89-103. https://doi.org/10.1248/yakushi.13-00237
    78. Hitoshi Ishida. Recent Trend in the Measurements of Luminescence Spectra and Quantum Yields of Metal Complexes. Bulletin of Japan Society of Coordination Chemistry 2014, 64 (0) , 14-24. https://doi.org/10.4019/bjscc.64.14
    79. , Irina Savchenko, Aleksandra Berezhnytska, , Yaroslav Fedorov, , Nataliya Rusakova, , Vladimir Syromyatnikov, , Sergey Smola, . Structural Organization of Polymer Metal Complexes with Water or Phenanthroline and their Influence on Luminescence Properties. Chemistry & Chemical Technology 2013, 7 (4) , 423-428. https://doi.org/10.23939/chcht07.04.423
    80. Gang Yu, Yadong Xing, Fangfang Chen, Ruimin Han, Jianqiang Wang, Zuqiang Bian, Limin Fu, Zhiwei Liu, Xicheng Ai, Jianping Zhang, Chunhui Huang. Energy‐Transfer Mechanisms in Ir III –Eu III Bimetallic Complexes. ChemPlusChem 2013, 78 (8) , 852-859. https://doi.org/10.1002/cplu.201300107
    81. Xue Ma, Jing Tian, Hong-Y. Yang, Kai Zhao, Xia Li. 3D Rare earth porous coordination frameworks with formamide generated in situ syntheses: Crystal structure and down- and up-conversion luminescence. Journal of Solid State Chemistry 2013, 201 , 172-177. https://doi.org/10.1016/j.jssc.2013.02.015
    82. Csongor Szíjjártó, Elias Pershagen, Nadia O. Ilchenko, K. Eszter Borbas. A Versatile Long‐Wavelength‐Absorbing Scaffold for Eu‐Based Responsive Probes. Chemistry – A European Journal 2013, 19 (9) , 3099-3109. https://doi.org/10.1002/chem.201203957
    83. Jun-Ru Zheng, Ning Ren, Jian-Jun Zhang, Da-Hai Zhang, Li-Zhen Yan, Shu-Ping Wang. Crystal structures, luminescence, and thermodynamic properties of lanthanide complexes with 3,5-dimethoxybenzoic acid and 1,10-phenanthroline. The Journal of Chemical Thermodynamics 2013, 57 , 169-177. https://doi.org/10.1016/j.jct.2012.08.015
    84. J.-C.G. Bünzli, S.V. Eliseeva. Photophysics of Lanthanoid Coordination Compounds. 2013, 339-398. https://doi.org/10.1016/B978-0-08-097774-4.00803-2
    85. Cristiano Benelli, Elisa Borgogelli, Mauro Formica, Vieri Fusi, Luca Giorgi, Eleonora Macedi, Mauro Micheloni, Paola Paoli, Patrizia Rossi. Di-maltol-polyamine ligands to form heterotrinuclear metal complexes: solid state, aqueous solution and magnetic characterization. Dalton Transactions 2013, 42 (16) , 5848. https://doi.org/10.1039/c3dt32130d
    86. Gaoyun Chen, Nicholas J. Wardle, Jason Sarris, Nicholas P. Chatterton, S. W. Annie Bligh. Sensitized terbium(iii) macrocyclic-phthalimide complexes as luminescent pH switches. Dalton Transactions 2013, 42 (39) , 14115. https://doi.org/10.1039/c3dt51236c
    87. Xiaohui Wang, Xiaoyong Wang, Shanshan Cui, Yan Wang, Guangju Chen, Zijian Guo. Specific recognition of DNA depurination by a luminescent terbium(iii) complex. Chemical Science 2013, 4 (9) , 3748. https://doi.org/10.1039/c3sc51781k
    88. V. V. Zherdeva, A. P. Savitsky. Using lanthanide-based resonance energy transfer for in vitro and in vivo studies of biological processes. Biochemistry (Moscow) 2012, 77 (13) , 1553-1574. https://doi.org/10.1134/S0006297912130111
    89. . Single Input–Single Output Systems. 2012, 50-108. https://doi.org/10.1039/9781849733021-00050
    90. Yongming Sun, Wei Zhou, Dengshan Zhao, Jin Chen, Xiangqian Li, Liangdong Feng. Electrochemical Synthesis for Carambolalike and Multilayered Flowerlike Holmium Hexacyanoferrate(II) and Its Fluorescent Properties. International Journal of Electrochemical Science 2012, 7 (8) , 7555-7566. https://doi.org/10.1016/S1452-3981(23)15804-4
    91. J. Q. Gao, T. Wu, J. Wang, Y. Bai, S. J. Wang, Y. N. Xu, Y. Li, X. D. Zhang. Syntheses, spectroscopic analysis, and structural determination of two novel nine-coordinate mononuclear Na4[EuIII(Dtpa)(H2O)]2 · 11.5H2O and binuclear (NH4)4[EuIII(Dtpa)]2 · 10H2O complexes. Russian Journal of Coordination Chemistry 2012, 38 (7) , 491-500. https://doi.org/10.1134/S1070328412060048
    92. Takuya Terai, Hiroki Ito, Kazuya Kikuchi, Tetsuo Nagano. Salicylic‐Acid Derivatives as Antennae for Ratiometric Luminescent Probes Based on Lanthanide Complexes. Chemistry – A European Journal 2012, 18 (24) , 7377-7381. https://doi.org/10.1002/chem.201200610
    93. Lijuan Wang, Xin Wang, Tongxin Wang, Zhijia Hu, Gang Zou, Qijin Zhang. Effect of compatibility between europium complexes and styrene monomer on preparation of europium-encapsulated microspheres by dispersion polymerization. Journal of Materials Science 2012, 47 (6) , 2600-2606. https://doi.org/10.1007/s10853-011-6084-5
    94. Suming Chen, Wei Chen, Wen Shi, Huimin Ma. Spectroscopic Response of Ferrocene Derivatives Bearing a BODIPY Moiety to Water: A New Dissociation Reaction. Chemistry – A European Journal 2012, 18 (3) , 925-930. https://doi.org/10.1002/chem.201101764
    95. Zhan-Guo Jiang, Yao-Kang Lv, Jian-Wen Cheng, Yun-Long Feng. Two types of rare earth–organic frameworks constructed by racemic tartaric acid. Journal of Solid State Chemistry 2012, 185 , 253-263. https://doi.org/10.1016/j.jssc.2011.11.012
    96. Takuya Terai, Yasuteru Urano, Saki Izumi, Hirotatsu Kojima, Tetsuo Nagano. A practical strategy to create near-infrared luminescent probes: conversion from fluorescein-based sensors. Chemical Communications 2012, 48 (23) , 2840. https://doi.org/10.1039/c2cc16553h
    97. Takuya Terai, Kazuya Kikuchi, Yasuteru Urano, Hirotatsu Kojima, Tetsuo Nagano. A long-lived luminescent probe to sensitively detect arylamine N-acetyltransferase (NAT) activity of cells. Chemical Communications 2012, 48 (16) , 2234. https://doi.org/10.1039/c2cc17622j
    98. Toshihiro IHARA, Yusuke KITAMURA. DNA Recognition and Analysis Through Cooperative Metal-ion Complex Formation of Split Probes. BUNSEKI KAGAKU 2012, 61 (3) , 193-206. https://doi.org/10.2116/bunsekikagaku.61.193
    99. Fumihiro ITO, Tomoko NAKAMURA, Kentaro YAMAGUCHI. CSI-MS Measurement of Lanthanide-Series Ionic Probes for Ionic Probe Attachment Ionization. Journal of the Mass Spectrometry Society of Japan 2012, 60 (2) , 33-36. https://doi.org/10.5702/massspec.12-35
    100. Shin Mizukami, Taku Yamamoto, Akimasa Yoshimura, Shuji Watanabe, Kazuya Kikuchi. Covalent Protein Labeling with a Lanthanide Complex and Its Application to Photoluminescence Lifetime‐Based Multicolor Bioimaging. Angewandte Chemie 2011, 123 (37) , 8909-8911. https://doi.org/10.1002/ange.201103775
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect