Advertisement
No access
Reports

Molecular Coproscopy: Dung and Diet of the Extinct Ground Sloth Nothrotheriops shastensis

Science
17 Jul 1998
Vol 281, Issue 5375
pp. 402-406

Abstract

DNA from excrements can be amplified by means of the polymerase chain reaction. However, this has not been possible with ancient feces. Cross-links between reducing sugars and amino groups were shown to exist in a Pleistocene coprolite from Gypsum Cave, Nevada. A chemical agent, N-phenacylthiazolium bromide, that cleaves such cross-links made it possible to amplify DNA sequences. Analyses of these DNA sequences showed that the coprolite is derived from an extinct sloth, presumably the Shasta ground sloth Nothrotheriops shastensis. Plant DNA sequences from seven groups of plants were identified in the coprolite. The plant assemblage that formed part of the sloth's diet exists today at elevations about 800 meters higher than the cave.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (981503.xhtml)
File (981503-full.gif)
File (981503-thumb.gif)
File (981503.txt)

REFERENCES AND NOTES

1
S. Pääbo, Sci. Am. 269, 86 (Nov. 1993);
___, Higuchi R. G., Wilson A. C., J. Biol. Chem. 264, 9709 (1989).
2
Höss M., Kohn M., Knauer F., Schröder W., Pääbo S., Nature 359, 199 (1992);
Kohn M., Knauer F., Stoffella A., Schröder W., Pääbo S., Mol. Ecol. 4, 95 (1995);
; M. Kohn and R. K. Wayne, Trends Ecol. Evol. 12, 223 (1997).
3
Martin P., Sabels B., Shutler D., Am. J. Sci. 259, 102 (1961);
; R. Hansen, Paleobiology4, 302 (1978).
4
M. R. Harrington, Gypsum Cave, Nevada, Southwest Museum Papers (Southwest Museum, Los Angeles, CA, 1933), vol. 8; J. D. Laudermilk and P. A. Munz, Carnegie Inst. Washington Publ. 453, 31 (1934).
5
Long A., Martin P. S., Science 186, 638 (1974).
6
Höss M., Dilling A., Currant A., Pääbo S., Proc. Natl. Acad. Sci. U.S.A. 93, 181 (1996).
7
Stankiewicz B. A., Mastalerz M., Kruge M. A., van Bergen P. F., Sadowska A., New Phytol. 135, 375 (1997);
; M. M. Mulder, J. B. M. Pureveen, J. Boon, A. T. Martiniez, J. Anal. Appl. Pyrol. 19, 175 (1991);
Saiz-Jimenez C., de Leeuw J. W., Org. Geochem. 6, 417 (1984);
; P. F. van Bergen et al., Geochim. Cosmochim. Acta 58, 3823 (1994).
8
R. P. Evershed et al., Science 278, 432 (1997).
9
Mauron J., Prog. Food Nutr. Sci. 5, 5 (1981).
10
H. Weenen et al., Am. Chem. Soc. Symp. Ser.543, 142 (1994).
11
Bucala R., Model P., Cerami A., Proc. Natl. Acad. Sci. U.S.A. 81, 105 (1984).
12
Lee A., Cerami A., Mutat. Res. 179, 151 (1987);
Papoulis A., Al-Abed Y., Bucala R., Biochemistry 34, 648 (1995).
13
S. Pääbo, in PCR Protocols and Applications: A Laboratory Manual, M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. J. White, Eds. (Academic Press, San Diego, CA, 1990), pp. 159–166.
14
S. Vasan et al., Nature 382, 275 (1996).
15
PTB (C11H10NOSBr) was synthesized as described (14). The melting point of the product was 224° to 227°C (expected, 223° to 223.5°C) and its elemental composition was 4.88% N, 46.46% C, and 3.86% H (expected, 4.93% N, 46.49% C, and 3.55% S). The coprolite was teased apart and about 5 g was ground under liquid nitrogen in a freezer/mill 6700 bone grinder (Spex Industries, Edison, NJ). To samples of 0.1 g of powder, 1 ml of buffer [as in
Pääbo S., Proc. Natl. Acad. Sci. U.S.A. 86, 1939 (1989);
], and 20 ml of proteinase K (10 mg/ml) was added and the sample was incubated under agitation for 48 hours at 37°C. Two samples received 10 and 100 μl of a 0.1 M PTB solution in 10 mM sodium phosphate buffer (pH 7.4) before (Fig. 2, lanes 3 and 4) and another two after (lanes 5 and 6) the organic extraction, whereas two received only the phosphate buffer (lanes 7 and 8). Samples were phenol extracted as described (20) and concentrated to about 200 ml with Centricon-30 microconcentrators (Amicon, Beverly, MA). All but one extraction (Fig. 2, lane 7) were purified [as in
Höss M., Pääbo S., Nucleic Acids Res. 21, 3913 (1993);
] except that only one L2 wash was performed and the silica pellet was washed twice with ice-cold New Wash (Bio 101, La Jolla, CA). Mock extractions with and without PTB (Fig. 2, lanes 9 and 10) were performed alongside all extractions. It may be noteworthy that eight extractions from Pleistocene bone samples and one 2300-year-old Egyptian animal mummy using PTB have to date failed to yield amplification products. It may be that Maillard products are particularly prevalent in coprolites.
16
PCR amplifications were performed [as in
Höss M., Pääbo S., Nucleic Acids Res. 21, 3913 (1993);
] using the following primers for the 12S rRNA gene and the chloroplast rbcL gene: 12ss, 5'-AATTTCGTGCCAGCCACCGCGGTCA-3'; 12st, 5'-AAGCTGTTGCTAGTAGTACTCTGGC-3'; 12sa, 5'-CTGGGATTAGATACCCCACTAT-3'; 12so, 5'-GTCGATTATAGGACAGGTTCCTCTA- 3'; 12sd, 5'-TAAAGGACTTGGCGGTGCTTCAC-3'; 12sn, 5'-CCATTTCATAGGCTACACCTTGACC-3'; 12shp, 5'-GCACAATTATTACTCATAAGC-3'; 12sb, 5'-TGACTGCAGAGGGTGACGGGCGGTGTGT-3'; rbcL Z1, 5'-ATGTCACCACAAACAGAGACTAAAGCAAGT-3'; rbcL19, 5'-AGATTCCGCAGCCACTGCAGCCCCTGCTTC-3'; rbcL h1aR, 5'-GAGGAGTTACTCGGAATGCTGCC-3'; rbcL h1aF, 5'-GGCAGCATTCCGAGTAACTCCTC-3'; rbcL h2aR, 5'-CGTCCTTTGTAACGATCAAG- 3'.
17
M. Höss, thesis, Ludwig-Maximilians University, Munich, Germany (1995).
18
O. Handt, M. Höss, M. Krings, S. Pääbo, Experientia 50, 524 (1994).
19
DNA sequences for 12S rRNA are available at.
20
Determination of DNA sequences from two or more amplifications is necessary to detect polymerase errors in the first cycles of the PCR because the amplification may start from a single or a few DNA molecules [M. Krings et al., Cell 90, 19 (1997)]. We consider reproduction of results in a second laboratory in order to exclude laboratory-specific contaminations to be necessary for human remains [O. Handt et al., Science 264, 1775 (1994); M. Krings et al., Cell90, 19 (1997)]. For animal remains, contaminations with human DNA are more easily detected and thus reproduction in different laboratories may be necessary only if extraordinary results are obtained. In this case, we believe that the sequence is authentic because it has been partially determined from five different boluses and found to be identical, and the phylogenetic analysis (Fig. 3) shows it to be related but not identical to a Mylodon sequence previously determined in our laboratory (6) and subsequently reproduced in another laboratory [
Taylor P., Mol. Biol. Evol. 13, 2839 (1996);
]. Furthermore, control extracts performed in parallel with the coprolite extractions yielded no amplification products and no work on these boluses had previously been performed in our laboratory. Finally, nuclear insertions are unlikely sources of the sequences because multiple primers yield the same sequence [M. Krings et al., Cell 90, (1997)].
21
Strimmer K., von Haeseler A., Mol. Biol. Evol. 13, 964 (1996).
22
Höss M., Jaruga P., Zastawny T. H., Dizdaroglu M., Pääbo S., Nucleic Acids Res. 24, 1304 (1996);
Handt O., Krings M., Ward R., Pääbo S., Am. J. Hum. Genet. 59, 368 (1996).
23
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J., J. Mol. Biol. 215, 403 (1990).
24
Thorne R. T., Bot. Rev. 58, 225 (1992).
25
Pääbo S., Irwin D. M., Wilson A. C., J. Biol. Chem. 265, 4718 (1990).
26
H. N. Poinar et al., unpublished data.
27
B. A. Stankiewicz et al., Science276, 1541 (1997).
28
J. C. Hickman, Ed., The Jepson Manual, Higher Plants of California (Univ. of California Press, Berkeley, CA, 1993).
29
W. G. Spaulding, In Packrat Middens: The Last 40,000 Years of Biotic Change, J. L. Betancourt, T. R. Van Devender, P. S. Martin, Eds. (Univ. of Arizona Press, Tucson, AZ, 1990), chap. 9.
30
We thank J. Bada, V. Börner, D. Caccese, G. Eglinton, A. Greenwood, M. Höss, G. Poinar Jr., U. Schultheiss, W. Storch, L. Vigilant, and H. Zischler for help and discussions; the Natural History Museum of Los Angeles County, the Natural History Museum (London) (P. Andrews), and Northern Arizona University, Flagstaff (J. Mead), for coprolite samples; and the Deutsche Forschungsgemeinschaft (S.P.) for financial support. B.A.S., H.B., and R.P.E. thank J. F. Carter and A. Gledhill for technical assistance with the mass spectrometry and head space analysis, which were performed under Natural Environment Research Council grant GST/02/1027 to D. E. G. Briggs and R.P.E.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 281 | Issue 5375
17 July 1998

Submission history

Received: 23 March 1998
Accepted: 3 June 1998
Published in print: 17 July 1998

Permissions

Request permissions for this article.

Authors

Affiliations

Hendrik N. Poinar
H. N. Poinar, M. Hofreiter, S. Pääbo, Max-Planck-Institute for Evolutionary Anthropology and Zoological Institute, University of Munich, Luisenstrasse 14, D-80333 Munich, Germany. W. G. Spaulding, Dames & Moore, 7115 Amigo Street, Suite 110, Las Vegas, NV 89119, USA. P. S. Martin, Desert Laboratory, Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA. B. A. Stankiewicz, H. Bland, R. P. Evershed, Biogeochemistry Research Center, Department of Geology, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS81RJ, UK. G. Possnert, Ångström Laboratory, Division of Ion Physics, P.O. Box, S-75121 Uppsala, Sweden.
Michael Hofreiter
H. N. Poinar, M. Hofreiter, S. Pääbo, Max-Planck-Institute for Evolutionary Anthropology and Zoological Institute, University of Munich, Luisenstrasse 14, D-80333 Munich, Germany. W. G. Spaulding, Dames & Moore, 7115 Amigo Street, Suite 110, Las Vegas, NV 89119, USA. P. S. Martin, Desert Laboratory, Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA. B. A. Stankiewicz, H. Bland, R. P. Evershed, Biogeochemistry Research Center, Department of Geology, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS81RJ, UK. G. Possnert, Ångström Laboratory, Division of Ion Physics, P.O. Box, S-75121 Uppsala, Sweden.
W. Geoffrey Spaulding
H. N. Poinar, M. Hofreiter, S. Pääbo, Max-Planck-Institute for Evolutionary Anthropology and Zoological Institute, University of Munich, Luisenstrasse 14, D-80333 Munich, Germany. W. G. Spaulding, Dames & Moore, 7115 Amigo Street, Suite 110, Las Vegas, NV 89119, USA. P. S. Martin, Desert Laboratory, Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA. B. A. Stankiewicz, H. Bland, R. P. Evershed, Biogeochemistry Research Center, Department of Geology, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS81RJ, UK. G. Possnert, Ångström Laboratory, Division of Ion Physics, P.O. Box, S-75121 Uppsala, Sweden.
Paul S. Martin
H. N. Poinar, M. Hofreiter, S. Pääbo, Max-Planck-Institute for Evolutionary Anthropology and Zoological Institute, University of Munich, Luisenstrasse 14, D-80333 Munich, Germany. W. G. Spaulding, Dames & Moore, 7115 Amigo Street, Suite 110, Las Vegas, NV 89119, USA. P. S. Martin, Desert Laboratory, Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA. B. A. Stankiewicz, H. Bland, R. P. Evershed, Biogeochemistry Research Center, Department of Geology, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS81RJ, UK. G. Possnert, Ångström Laboratory, Division of Ion Physics, P.O. Box, S-75121 Uppsala, Sweden.
B. Artur Stankiewicz*
H. N. Poinar, M. Hofreiter, S. Pääbo, Max-Planck-Institute for Evolutionary Anthropology and Zoological Institute, University of Munich, Luisenstrasse 14, D-80333 Munich, Germany. W. G. Spaulding, Dames & Moore, 7115 Amigo Street, Suite 110, Las Vegas, NV 89119, USA. P. S. Martin, Desert Laboratory, Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA. B. A. Stankiewicz, H. Bland, R. P. Evershed, Biogeochemistry Research Center, Department of Geology, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS81RJ, UK. G. Possnert, Ångström Laboratory, Division of Ion Physics, P.O. Box, S-75121 Uppsala, Sweden.
Helen Bland
H. N. Poinar, M. Hofreiter, S. Pääbo, Max-Planck-Institute for Evolutionary Anthropology and Zoological Institute, University of Munich, Luisenstrasse 14, D-80333 Munich, Germany. W. G. Spaulding, Dames & Moore, 7115 Amigo Street, Suite 110, Las Vegas, NV 89119, USA. P. S. Martin, Desert Laboratory, Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA. B. A. Stankiewicz, H. Bland, R. P. Evershed, Biogeochemistry Research Center, Department of Geology, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS81RJ, UK. G. Possnert, Ångström Laboratory, Division of Ion Physics, P.O. Box, S-75121 Uppsala, Sweden.
Richard P. Evershed
H. N. Poinar, M. Hofreiter, S. Pääbo, Max-Planck-Institute for Evolutionary Anthropology and Zoological Institute, University of Munich, Luisenstrasse 14, D-80333 Munich, Germany. W. G. Spaulding, Dames & Moore, 7115 Amigo Street, Suite 110, Las Vegas, NV 89119, USA. P. S. Martin, Desert Laboratory, Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA. B. A. Stankiewicz, H. Bland, R. P. Evershed, Biogeochemistry Research Center, Department of Geology, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS81RJ, UK. G. Possnert, Ångström Laboratory, Division of Ion Physics, P.O. Box, S-75121 Uppsala, Sweden.
Göran Possnert
H. N. Poinar, M. Hofreiter, S. Pääbo, Max-Planck-Institute for Evolutionary Anthropology and Zoological Institute, University of Munich, Luisenstrasse 14, D-80333 Munich, Germany. W. G. Spaulding, Dames & Moore, 7115 Amigo Street, Suite 110, Las Vegas, NV 89119, USA. P. S. Martin, Desert Laboratory, Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA. B. A. Stankiewicz, H. Bland, R. P. Evershed, Biogeochemistry Research Center, Department of Geology, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS81RJ, UK. G. Possnert, Ångström Laboratory, Division of Ion Physics, P.O. Box, S-75121 Uppsala, Sweden.
Svante Pääbo
H. N. Poinar, M. Hofreiter, S. Pääbo, Max-Planck-Institute for Evolutionary Anthropology and Zoological Institute, University of Munich, Luisenstrasse 14, D-80333 Munich, Germany. W. G. Spaulding, Dames & Moore, 7115 Amigo Street, Suite 110, Las Vegas, NV 89119, USA. P. S. Martin, Desert Laboratory, Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA. B. A. Stankiewicz, H. Bland, R. P. Evershed, Biogeochemistry Research Center, Department of Geology, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS81RJ, UK. G. Possnert, Ångström Laboratory, Division of Ion Physics, P.O. Box, S-75121 Uppsala, Sweden.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Methodological Changes in the Field of Paleogenetics, Genes, 14, 1, (234), (2023).https://doi.org/10.3390/genes14010234
    Crossref
  2. Do I have something in my teeth? The trouble with genetic analyses of diet from archaeological dental calculus, Quaternary International, 653-654, (33-46), (2023).https://doi.org/10.1016/j.quaint.2020.11.019
    Crossref
  3. A chemical framework for the preservation of fossil vertebrate cells and soft tissues, Earth-Science Reviews, 240, (104367), (2023).https://doi.org/10.1016/j.earscirev.2023.104367
    Crossref
  4. Determining the diet of wild Asian elephants (Elephas maximus) at human–elephant conflict areas in Peninsular Malaysia using DNA metabarcoding, Biodiversity Data Journal, 10, (2022).https://doi.org/10.3897/BDJ.10.e89752
    Crossref
  5. A Critical Assessment of the Congruency between Environmental DNA and Palaeoecology for the Biodiversity Monitoring and Palaeoenvironmental Reconstruction, International Journal of Environmental Research and Public Health, 19, 15, (9445), (2022).https://doi.org/10.3390/ijerph19159445
    Crossref
  6. Twentieth-Century Paleoproteomics: Lessons from Venta Micena Fossils, Biology, 11, 8, (1184), (2022).https://doi.org/10.3390/biology11081184
    Crossref
  7. The Technological Advance and Application of Coprolite Analysis, Frontiers in Ecology and Evolution, 9, (2022).https://doi.org/10.3389/fevo.2021.797370
    Crossref
  8. Exploring the Emergence and Evolution of Plant Pathogenic Microbes Using Historical and Paleontological Sources, Annual Review of Phytopathology, 60, 1, (187-209), (2022).https://doi.org/10.1146/annurev-phyto-021021-041830
    Crossref
  9. The untapped potential of macrofossils in ancient plant DNA research, New Phytologist, 235, 2, (391-401), (2022).https://doi.org/10.1111/nph.18108
    Crossref
  10. Using dietary metabarcoding analyses to characterise waterbirds–agriculture interactions, Journal of Applied Ecology, 59, 11, (2756-2766), (2022).https://doi.org/10.1111/1365-2664.14272
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media