Skip to main content

Environmental Microplastics: A Significant Pollutant of the Anthropocene

  • Chapter
  • First Online:
Microplastic sources, fate and solution

Abstract

The omnipresence of microplastics (MPs) across the environmental matrixes and their potential as an emerging pollutant is attracting immense attention from researchers and media. Studies have reported MPs as carriers of contaminants including, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pharmaceuticals, metals, pesticides and even microbes. However, the MP concentration in various environmental matrixes is very low compared to other more potent vectors; in the case of aerosols, the dust and microbial concentration is several orders of magnitude higher than MPs. In the aquatic environment, the phytoplankton, zooplankton, and suspended particulate matter far exceed MP concentrations. Hence, the concerns in the context of global seafood security and sustainability need to be reconsidered, and more information on MP levels and their related co-contaminants in seafood species and their subsequent transfer needs to be thoroughly looked at. The claims of translocation of ingested and inhaled MPs across organs and tissues need underpinning with more scientific evidence. This communication intends to initiate a discussion if MP is “THE” pollutant of Anthropocene. Future studies should consider providing a strong basis to assess the overall impact of MPs on human health and food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782

    Google Scholar 

  2. Uddin S et al (2022a) Micro-Nano plastic in the aquatic environment: methodological problems and challenges. Animals 12(3):297

    Article  PubMed  PubMed Central  Google Scholar 

  3. Habibi N et al (2022) Microplastics in the atmosphere: a review. J Environ Exposure Assess 1(1):6

    Google Scholar 

  4. Khant NA, Kim H (2022) Review of current issues and management strategies of microplastics in groundwater environments. Water 14(7):1020

    Article  CAS  Google Scholar 

  5. Alimba CG, Faggio C (2019) Microplastics in the marine environment: current trends in environmental pollution and mechanisms of toxicological profile. Environ Toxicol Pharmacol 68:61–74

    Article  CAS  PubMed  Google Scholar 

  6. Uddin S, Fowler SW, Behbehani M (2020a) An assessment of microplastic inputs into the aquatic environment from wastewater streams. Mar Pollut Bull 160:111538

    Article  CAS  PubMed  Google Scholar 

  7. Naji A et al (2021) Microplastics in wastewater outlets of Bandar Abbas city (Iran): a potential point source of microplastics into the Persian Gulf. Chemosphere 262:128039

    Article  CAS  PubMed  Google Scholar 

  8. Uddin S et al (2021) A review of microplastic distribution in sediment profiles. Mar Pollut Bull 163:111973

    Article  CAS  PubMed  Google Scholar 

  9. Alimi OS et al (2018) Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol 52:1704

    Article  CAS  PubMed  Google Scholar 

  10. Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63

    Article  CAS  PubMed  Google Scholar 

  11. Habib R, Thiemann T, Kendi R (2020) Microplastics and wastewater treatment plants—a review. J Water Resour Protect 12:1–35

    Article  CAS  Google Scholar 

  12. Freeman S et al (2020) Between source and sea: the role of wastewater treatment in reducing marine microplastics. J Environ Manag 266:110642

    Article  CAS  Google Scholar 

  13. Sun J et al (2019) Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res 152:21–37

    Article  CAS  PubMed  Google Scholar 

  14. Sundt P, Schulze P-E, Syversen F (2014) Sources of microplastics-pollution to the marine environment, vol 86. Report no. M-321|2015 Norwegian environment agency, Oslo, p 20

    Google Scholar 

  15. Rochman CM et al (2019) Rethinking microplastics as a diverse contaminant suite. Environ Toxicol Chem 38(4):703–711

    Article  CAS  PubMed  Google Scholar 

  16. Abbasi S et al (2018) Microplastics in different tissues of fish and prawn from the Musa estuary Persian Gulf. Chemosphere 205:80–87

    Article  CAS  PubMed  Google Scholar 

  17. Barboza LGA et al (2020) Microplastic in wild fish from north East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci Total Environ 717:134625

    Article  CAS  PubMed  Google Scholar 

  18. Besseling E et al (2017) Fate of nano- and microplastic in freshwater systems: a modeling study. Environ Pollut 220:540–548

    Article  CAS  PubMed  Google Scholar 

  19. Browne MA et al (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L). Environ Sci Technol 42(13):5026

    Article  CAS  PubMed  Google Scholar 

  20. Mohsen M et al (2019) Microplastic ingestion by the farmed sea cucumber Apostichopus japonicus in China. Environ Pollut 245:1071–1078

    Article  CAS  PubMed  Google Scholar 

  21. Vroom RJE et al (2017) Aging of microplastics promotes their ingestion by marine zooplankton. Environ Pollut 231(Pt 1):987–996

    Article  CAS  PubMed  Google Scholar 

  22. Zhang S et al (2019) Microplastics in the environment: a review of analytical methods, distribution, and biological effects. TrAC Trends Anal Chem 111:62–72

    Article  CAS  Google Scholar 

  23. Zakeri M et al (2020) Microplastic ingestion in important commercial fish in the southern Caspian Sea. Mar Pollut Bull 160:111598

    Article  CAS  PubMed  Google Scholar 

  24. Devriese LI et al (2015) Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the southern North Sea and channel area. Mar Pollut Bull 98(1–2):179–187

    Article  CAS  PubMed  Google Scholar 

  25. Li JN et al (2019) Using mussel as a global bioindicator of coastal microplastic pollution. Environ Pollut 244:522

    Article  CAS  PubMed  Google Scholar 

  26. Lusher AL et al (2017) Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal Methods 9(9):1346

    Article  Google Scholar 

  27. Rochman CM et al (2013) Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep 3:3263

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sussarellu R et al (2016) Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci 113(9):2430–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferreira I et al (2019) Nanoplastics and marine organisms: what has been studied? Environ Toxicol Pharmacol 67:1–7

    Article  CAS  PubMed  Google Scholar 

  30. Pan Z et al (2019) Environmental implications of microplastic pollution in the Northwestern Pacific Ocean. Mar Pollut Bull 146:215–224

    Article  CAS  PubMed  Google Scholar 

  31. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605

    Article  CAS  PubMed  Google Scholar 

  32. Andrady AL (2017) The plastic in microplastics: a review. Mar Pollut Bull 119(1):12–22

    Article  CAS  PubMed  Google Scholar 

  33. Auta HS, Emenike CU, Fauziah SH (2017) Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ Int 102:165–176

    Article  CAS  PubMed  Google Scholar 

  34. Barboza LGA et al (2019) Microplastics pollution in the marine environment, in world seas: An environmental evaluation. In: Sheppard C (ed) Volume III: ecological issues and environmental impacts. Academic Press (Elsevier), London, pp 329–351

    Google Scholar 

  35. Brennecke D et al (2016) Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci 178:189–195

    Article  CAS  Google Scholar 

  36. de Sa LC et al (2018) Studies of the effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future? Sci Total Environ 645:1029–1039

    Article  PubMed  Google Scholar 

  37. Dris R et al (2016) Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Mar Pollut Bull 104(1–2):290–293

    Article  CAS  PubMed  Google Scholar 

  38. Enyoh CE et al (2019) Airborne microplastics: a review study on method for analysis, occurrence, movement and risks. Environ Monit Assess 191(11):668

    Article  CAS  PubMed  Google Scholar 

  39. Fahrenfeld NL et al (2019) Source tracking microplastics in the freshwater environment. TrAC Trends Anal Chem 112:248–254

    Article  CAS  Google Scholar 

  40. Hidalgo-Ruz V et al (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46(6):3060–3075

    Article  CAS  PubMed  Google Scholar 

  41. Lusher A (2015) Microplastics in the marine environment: distribution, interactions and effects. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer International Publishing, Cham, pp 245–307

    Chapter  Google Scholar 

  42. Maes T et al (2019) Shades of grey: marine litter research developments in Europe. Mar Pollut Bull 146:274–281

    Article  CAS  PubMed  Google Scholar 

  43. Rodrigues JP et al (2019) Significance of interactions between microplastics and POPs in the marine environment: a critical overview. TrAC Trends Anal Chem 111:252–260

    Article  CAS  Google Scholar 

  44. Schymanski D et al (2018) Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res 129:154–162

    Article  CAS  PubMed  Google Scholar 

  45. Allen S et al (2019) Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci 12:339–344

    Article  CAS  Google Scholar 

  46. Zhang Y et al (2020) Atmospheric microplastics: a review on current status and perspectives. Earth Sci Rev 203:103118

    Article  CAS  Google Scholar 

  47. Wagner S et al (2018) Tire wear particles in the aquatic environment–a review on generation, analysis, occurrence, fate and effects. Water Res 139:83

    Article  CAS  PubMed  Google Scholar 

  48. Uddin S, Fowler SW, Saeed T (2020b) Microplastic particles in the Persian/Arabian gulf–a review on sampling and identification. Mar Pollut Bull 154:111100

    Article  CAS  PubMed  Google Scholar 

  49. Uddin S et al (2020c) Standardized protocols for microplastics determinations in environmental samples from the Gulf and marginal seas. Mar Pollut Bull 158:111374

    Article  CAS  PubMed  Google Scholar 

  50. Prinz N, Korez Š (2020) Understanding how microplastics affect marine biota on the cellular level is important for assessing ecosystem function: a review. In: Jungblut S, Liebich V, Bode-Dalby M (eds) YOUMARES 9–the oceans: our research, our future: proceedings of the 2018 conference for YOUng MArine RESearcher in Oldenburg, Germany. Springer International Publishing, Cham, pp 101–120

    Chapter  Google Scholar 

  51. Barboza LGA et al (2018) Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar Pollut Bull 133:336–348

    Article  CAS  PubMed  Google Scholar 

  52. Sharma S, Chatterjee S (2017) Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ Sci Pollut Res 24(27):21530–21547

    Article  Google Scholar 

  53. da Costa JP et al (2018) Microplastics in soils: assessment, analytics and risks. Environ Chem 16(1):18–30

    Article  Google Scholar 

  54. Ray SS et al (2022) Microplastics waste in environment: a perspective on recycling issues from PPE kits and face masks during the COVID-19 pandemic. Environ Technol Innov 26:102290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shen M et al (2021) Neglected microplastics pollution in global COVID-19: disposable surgical masks. Sci Total Environ 790:148130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lehtiniemi M et al (2018) Size matters more than shape: ingestion of primary and secondary microplastics by small predators. Food Webs 17:e00097

    Article  Google Scholar 

  57. Coyle R, Hardiman G, Driscoll KO (2020) Microplastics in the marine environment: a review of their sources, distribution processes, uptake and exchange in ecosystems. Case Stud Chem Environ Eng 2:100010

    Article  Google Scholar 

  58. Alprol AE, Gaballah MS, Hassaan MA (2021) Micro and Nanoplastics analysis: focus on their classification, sources, and impacts in marine environment. Reg Stud Mar Sci 42:101625

    Google Scholar 

  59. Browne MA (2008) Environmental consequences of microplastic in marine habitats

    Google Scholar 

  60. Van Colen C et al (2020) Does microplastic ingestion by zooplankton affect predator-prey interactions? An experimental study on larviphagy. Environ Pollut 256:113479

    Article  PubMed  Google Scholar 

  61. Cole M et al (2015) The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ Sci Technol 49(2):1130–1137

    Article  CAS  PubMed  Google Scholar 

  62. Richardson CR et al (2021) Microplastic ingestion induces asymmetry and oxidative stress in larvae of the sea urchin Pseudechinus huttoni. Mar Pollut Bull 168:112369

    Article  CAS  PubMed  Google Scholar 

  63. Kaposi KL et al (2014) Ingestion of microplastic has limited impact on a marine larva. Environ Sci Technol 48(3):1638–1645

    Article  CAS  PubMed  Google Scholar 

  64. Rapp J et al (2021) Microplastic ingestion in jellyfish Pelagia noctiluca (Forsskal, 1775) in the North Atlantic Ocean. Mar Pollut Bull 166:112266

    Article  CAS  PubMed  Google Scholar 

  65. Patterson J et al (2021) Microplastic contamination in Indian edible mussels (Perna perna and Perna viridis) and their environs. Mar Pollut Bull 171:112678

    Article  CAS  PubMed  Google Scholar 

  66. von Moos N, Burkhardt-Holm P, Köhler A (2012) Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46(20):11327–11335

    Article  Google Scholar 

  67. Watts AJR et al (2014) Uptake and retention of microplastics by the shore crab Carcinus maenas. Environ Sci Technol 48(15):8823–8830

    Article  CAS  PubMed  Google Scholar 

  68. Batel A et al (2016) Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environ Toxicol Chem 35(7):1656–1666

    Article  CAS  PubMed  Google Scholar 

  69. Rochman CM, Hentschel BT, Teh SJ (2014) Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. PLoS One 9(1):e85433

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liu S et al (2022) Microplastics as a vehicle of heavy metals in aquatic environments: a review of adsorption factors, mechanisms, and biological effects. J Environ Manag 302:113995

    Article  CAS  Google Scholar 

  71. Hildebrandt L et al (2021) Microplastics as a Trojan horse for trace metals. J Hazard Mater Lett 2:100035

    Article  CAS  Google Scholar 

  72. Sun B et al (2021) Leaching of polybrominated diphenyl ethers from microplastics in fish oil: kinetics and bioaccumulation. J Hazard Mater 406:124726

    Article  CAS  PubMed  Google Scholar 

  73. Singla M et al (2020) Sorption and release process of polybrominated diphenyl ethers (PBDEs) from different composition microplastics in aqueous medium: solubility parameter approach. Environ Pollut 262:114377

    Article  CAS  PubMed  Google Scholar 

  74. Peng B et al (2022) Assessment and sources identification of microplastics, PAHs and OCPs in the Luoyuan Bay, China: based on multi-statistical analysis. Mar Pollut Bull 175:113351

    Article  CAS  PubMed  Google Scholar 

  75. Akhbarizadeh R et al (2021) Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: their possible relationships and health implications. Environ Res 192:110339

    Article  CAS  PubMed  Google Scholar 

  76. Montoto-Martínez T et al (2021) Microplastics, bisphenols, phthalates and pesticides in odontocete species in the Macaronesian region (eastern North Atlantic). Mar Pollut Bull 173:113105

    Article  PubMed  Google Scholar 

  77. Li H et al (2021) Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: kinetics, isotherms, thermodynamics, and molecular dynamics simulation. Chemosphere 264:128556

    Article  CAS  PubMed  Google Scholar 

  78. Carbery M, O'Connor W, Palanisami T (2018a) Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int 115:400–409

    Article  PubMed  Google Scholar 

  79. Panti C et al (2019) Marine litter: one of the major threats for marine mammals. Outcomes from the European cetacean society workshop. Environ Pollut 247:72–79

    Article  CAS  PubMed  Google Scholar 

  80. Danopoulos E et al (2022) A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. J Hazard Mater 427:127861

    Article  CAS  PubMed  Google Scholar 

  81. Compa M et al (2018) Ingestion of microplastics and natural fibres in Sardina pilchardus (Walbaum, 1792) and Engraulis encrasicolus (Linnaeus, 1758) along the Spanish Mediterranean coast. Mar Pollut Bull 128:89–96

    Article  CAS  PubMed  Google Scholar 

  82. Karami A et al (2018) Microplastic and mesoplastic contamination in canned sardines and sprats. Sci Total Environ 612:1380–1386

    Article  CAS  PubMed  Google Scholar 

  83. Piyawardhana N et al (2022) Occurrence of microplastics in commercial marine dried fish in Asian countries. J Hazard Mater 423:127093

    Article  CAS  PubMed  Google Scholar 

  84. Lundebye A-K, Lusher AL, M.S. Bank (2022) Marine microplastics and seafood: implications for food security. In: M.S. Bank (ed) Microplastic in the environment: pattern and process. Springer International, Cham, pp 131–153

    Chapter  Google Scholar 

  85. Smith M et al (2018) Microplastics in seafood and the implications for human health. Curr Environ Health Rep 5(3):375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Senathirajah K et al (2021) Estimation of the mass of microplastics ingested–a pivotal first step towards human health risk assessment. J Hazard Mater 404:124004

    Article  CAS  PubMed  Google Scholar 

  87. Van Cauwenberghe L, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70

    Article  PubMed  Google Scholar 

  88. Cox KD et al (2019a) Human consumption of microplastics. Environ Sci Technol 53:7068

    Article  CAS  PubMed  Google Scholar 

  89. Ragusa A et al (2021) Plasticenta: first evidence of microplastics in human placenta. Environ Int 146:106274

    Article  CAS  PubMed  Google Scholar 

  90. Lim X (2021) Microplastics Are Everywhere—But Are They Harmful? Nature 593:22–25

    Article  CAS  PubMed  Google Scholar 

  91. Panel E, Chain F (2016) Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J 14(6):e04501

    Google Scholar 

  92. Cox KD et al (2019b) Human consumption of microplastics. Environ Sci Technol 53(12):7068–7074

    Article  CAS  PubMed  Google Scholar 

  93. Browne MA et al (2013) Microplastic moves pollutants and additives to Worms, reducing functions linked to health and biodiversity. Curr Biol 23(23):2388–2392

    Article  CAS  PubMed  Google Scholar 

  94. Gallo F et al (2018) Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environ Sci Eur 30(1):13–13

    Article  PubMed  PubMed Central  Google Scholar 

  95. Provvisiero DP et al (2016) Influence of bisphenol a on type 2 diabetes mellitus. Int J Environ Res Public Health 13(10):989

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jenner LC et al (2021) Household indoor microplastics within the Humber region (United Kingdom): quantification and chemical characterisation of particles present. Atmos Environ 259:118512

    Article  CAS  Google Scholar 

  97. Uddin S et al (2022b) A preliminary assessment of size-fractionated microplastics in indoor aerosol-Kuwait's baseline. Toxics 10(2):71

    Article  PubMed  PubMed Central  Google Scholar 

  98. Uddin S, Habibi N, Fowler SW, Behbehani M, Gevao B, Faizuddin M, Gorgun AU (2023) Aerosols as vectors for contaminants: a perspective based on outdoor aerosol data from Kuwait. Atmosphere 14:470. https://doi.org/10.3390/atmos14030470

    Article  CAS  Google Scholar 

  99. Akhbarizadeh R, Moore F, Keshavarzi B (2018) Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of Persian gulf. Environ Pollut 232:154–163

    Article  CAS  PubMed  Google Scholar 

  100. Akhbarizadeh R, Moore F, Keshavarzi B (2019) Investigating microplastics bioaccumulation and biomagnification in seafood from the Persian Gulf: a threat to human health? Food Addit Contam Part A Chem Anal Control Expo Risk Assess 36(11):1696–1708

    Article  CAS  PubMed  Google Scholar 

  101. Al-Lihaibi S et al (2019) Microplastics in sediments and fish from the Red Sea coast at Jeddah (Saudi Arabia). Environ Chem 16(8):641–650

    Article  CAS  Google Scholar 

  102. Alomar C et al (2017) Microplastic ingestion by Mullus surmuletus (Linnaeus, 1758) fish and its potential for causing oxidative stress. Environ Res 159:135–142

    Article  CAS  PubMed  Google Scholar 

  103. Al-Salem SM, Uddin S, Lyons B (2020) Evidence of microplastics (MP) in gut content of major consumed marine fish species in the State of Kuwait (of the Arabian/Persian gulf). Mar Pollut Bull 154:111052

    Article  CAS  PubMed  Google Scholar 

  104. Alvarez G, Barros A, Velando A (2018) The use of European shag pellets as indicators of microplastic fibers in the marine environment. Mar Pollut Bull 137:444–448

    Article  CAS  PubMed  Google Scholar 

  105. Bagheri T et al (2020) Microplastics distribution, abundance and composition in sediment, fishes and benthic organisms of the Gorgan Bay Caspian Sea. Chemosphere 257:127201

    Article  CAS  PubMed  Google Scholar 

  106. Besseling E et al (2013) Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environ Sci Technol 47(1):593

    Article  CAS  PubMed  Google Scholar 

  107. Carbery M, O’Connor W, Palanisami T (2018b) Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int 115:400

    Article  PubMed  Google Scholar 

  108. Catarino AI et al (2018) Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environ Pollut 237:675–684

    Article  CAS  PubMed  Google Scholar 

  109. Collard F et al (2017) Microplastics in livers of European anchovies (Engraulis encrasicolus, L.). Environ Pollut 229:1000–1005

    Article  CAS  PubMed  Google Scholar 

  110. de Sa LC, Luís LG, Guilhermino L (2015) Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ Pollut 196:359–361

    Article  Google Scholar 

  111. Maass S et al (2017) Transport of microplastics by two collembolan species. Environ Pollut 225:456

    Article  CAS  PubMed  Google Scholar 

  112. Hermsen W, Sims I, Crane M (1994) The bioavailability and toxicity to Mytilus edulis L. of two organochlorine pesticides adsorbed to suspended solids. Mar Environ Res 38:61–69

    Article  CAS  Google Scholar 

  113. Kühn S et al (2015) Marine anthropogenic litter, p 75

    Book  Google Scholar 

  114. Koelmans AA et al (2016) Microplastic as a vector for Chemicals in the Aquatic Environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol 50(7):3315–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yao J et al (2022) Surface functional groups determine adsorption of pharmaceuticals and personal care products on polypropylene microplastics. J Hazard Mater 423(Pt B):127131

    Article  CAS  PubMed  Google Scholar 

  116. Jinadasa BKKK, Uddin S, Fowler SW (2023) Microplastics (MPs) in marine food chains: is it a food safety issue? Adv Food Nutr Res 103:101–140. https://doi.org/10.1016/bs.afnr.2022.07.005

    Article  CAS  PubMed  Google Scholar 

  117. Gouin T et al (2011) Thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ Sci Technol 45:1466–1472

    Article  CAS  PubMed  Google Scholar 

  118. Chua EM et al (2014) Assimilation of Polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes Compressa. Environ Sci Technol 48:8127–8134

    Article  CAS  PubMed  Google Scholar 

  119. Abbasi S et al (2020) PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone. Sci Total Environ 744:140984

    Article  CAS  PubMed  Google Scholar 

  120. Gao F et al (2019) Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment. Mar Pollut Bull 144:61–67

    Article  CAS  PubMed  Google Scholar 

  121. Weber A et al (2021) Ingestion and toxicity of microplastics in the freshwater gastropod Lymnaea stagnalis: no microplastic-induced effects alone or in combination with copper. Chemosphere 263:128040

    Article  CAS  PubMed  Google Scholar 

  122. Duis K, Coors A (2016) Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur 28(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  123. Uddin S et al (2018a) 210Po concentration in selected diatoms and dinoflagellates in the northern Arabian gulf. Mar Pollut Bull 129(1):343–346

    Article  CAS  PubMed  Google Scholar 

  124. Uddin S et al (2018b) 210Po concentration in selected calanoid copepods in the northern Arabian gulf. Mar Pollut Bull 133:861–864

    Article  CAS  PubMed  Google Scholar 

  125. Uddin S et al (2019) Concentration of 210Po and 210Pb in macroalgae from the northern gulf. Mar Pollut Bull 145:474–479

    Article  CAS  PubMed  Google Scholar 

  126. Annabi-Trabelsi N et al (2021) Concentrations of trace metals in phytoplankton and zooplankton in the Gulf of Gabès, Tunisia. Mar Pollut Bull 168:112392

    Article  CAS  PubMed  Google Scholar 

  127. Mato Y et al (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35(2):318

    Article  CAS  PubMed  Google Scholar 

  128. Koelmans AA et al (2013) Correction to plastic as a carrier of POPs to aquatic organisms. A model analysis. Environ Sci Technol 47:8992–8993

    Article  CAS  Google Scholar 

  129. Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51(12):6634–6647

    Article  CAS  PubMed  Google Scholar 

  130. Gasperi J et al (2018) Microplastics in air: are we breathing it in? Curr Opin Environ Sci Health 1:1–5

    Article  Google Scholar 

  131. Prata J (2018) Airborne microplastics: consequences to human health? Environ Pollut (Barking, Essex: 1987) 234:115–126

    Article  CAS  Google Scholar 

  132. Marzec A (2014) The effect of dyes, pigments and ionic liquids on the properties of elastomer composites. Université Claude Bernard - Lyon I and Uniwersytet lódzki, Lodz. 175p

    Google Scholar 

  133. Campanale C et al (2020) A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health 17(4):1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schulze F et al (2017) Air quality effects on human health and approaches for its assessment through microfluidic chips. Genes 8(10):244

    Article  PubMed  PubMed Central  Google Scholar 

  135. Xing Y-F et al (2016) The impact of PM2.5 on the human respiratory system. J Thorac Dis 8(1):E69–E74

    PubMed  PubMed Central  Google Scholar 

  136. Pauly JL et al (1998) Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer Epidemiol Biomark Prev 7:419

    CAS  Google Scholar 

  137. Boag AH et al (1999) The pathology of interstitial lung disease in nylon flock workers. Am J Surg Pathol 23(12):1539

    Article  CAS  PubMed  Google Scholar 

  138. Eschenbacher WL et al (1999) Nylon flock associated interstitial lung disease. Am J Respir Crit Care Med 159(6):2003

    Article  CAS  PubMed  Google Scholar 

  139. Kremer AM et al (1994) Airway hyper-responsiveness and the prevalence of work-related symptoms in workers exposed to irritants. Am J Ind Med 26(5):655

    Article  CAS  PubMed  Google Scholar 

  140. Amato-Lourenço LF et al (2020) An emerging class of air pollutants: potential effects of microplastics to respiratory human health? Sci Total Environ 749:141676–141676

    Article  PubMed  PubMed Central  Google Scholar 

  141. Sridharan S et al (2021) Microplastics as an emerging source of particulate air pollution: a critical review. J Hazard Mater 418:126245

    Article  CAS  PubMed  Google Scholar 

  142. Wright S, Levermore J, Kelly F (2019) Raman spectral imaging for the detection of inhalable microplastics in ambient particulate matter samples. Environ Sci Technol 53(15):8947–8956

    Article  CAS  PubMed  Google Scholar 

  143. Uddin S, Fowler SW, Behbehani M (2023) 210Po in the environment: reassessment of dose to humans. Sustainability 15(2):1674

    Article  CAS  Google Scholar 

  144. Abbasi S et al (2019) Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County. Iran Environ Pollut 244:153–164

    Article  CAS  PubMed  Google Scholar 

  145. Dris R et al (2015) Microplastic contamination in an urban area: a case study in greater Paris. Environ Chem 12(5):592–599

    Article  CAS  Google Scholar 

  146. Dris R et al (2017) A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut 221:453–458

    Article  CAS  PubMed  Google Scholar 

  147. Dris R, Gasperi J, Tassin B (2018) Sources and fate of microplastics in urban areas: a focus on Paris megacity. In: Wagner M, Lambert S (eds) Freshwater microplastics: emerging environmental contaminants? Springer, Cham, pp 69–83

    Chapter  Google Scholar 

  148. Wright SL et al (2020) Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ Int 136:105411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull 112(1):39–45

    Article  CAS  PubMed  Google Scholar 

  150. Wright SL et al (2021) Development of screening criteria for microplastic particles in air and atmospheric deposition: critical review and applicability towards assessing human exposure. Microplastics Nanoplastics 1(1):6

    Article  Google Scholar 

  151. Bianco A, Passananti M (2020) Atmospheric micro and Nanoplastics: An enormous microscopic problem. Sustainability 12(18):7327

    Article  Google Scholar 

  152. Zimmermann L et al (2019) Benchmarking the in vitro toxicity and chemical composition of plastic consumer products. Environ Sci Technol 53(19):11467–11477

    Article  CAS  PubMed  Google Scholar 

  153. Hartmann NB et al (2019) Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ Sci Technol 53(3):1039–1047

    Article  CAS  PubMed  Google Scholar 

  154. Jambeck JR et al (2015) Plastic waste inputs from land into the ocean. Science 347(6223):768–771

    Article  CAS  PubMed  Google Scholar 

  155. Bhattacharjee S et al (2014) Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles. RSC Adv 4(37):19321–19330

    Article  CAS  Google Scholar 

  156. Torres-Ruiz M et al (2021) Toxicity of nanoplastics for zebrafish embryos, what we know and where to go next. Sci Total Environ 797:149125

    Article  CAS  PubMed  Google Scholar 

  157. Amereh F et al (2020) The emerging risk of exposure to nano(micro)plastics on endocrine disturbance and reproductive toxicity: from a hypothetical scenario to a global public health challenge. Environ Pollut 261:114158

    Article  CAS  PubMed  Google Scholar 

  158. Amereh F et al (2019) Thyroid endocrine status and biochemical stress responses in adult male Wistar rats chronically exposed to pristine polystyrene nanoplastics. Toxicol Res 8(6):953–963

    Article  CAS  Google Scholar 

  159. Besseling E et al (2019) Quantifying ecological risks of aquatic micro- and nanoplastic. Crit Rev Environ Sci Technol 49(1):32–80

    Article  Google Scholar 

  160. Bhagat J, Nishimura N, Shimada Y (2021) Toxicological interactions of microplastics/nanoplastics and environmental contaminants: current knowledge and future perspectives. J Hazard Mater 405:123913

    Article  CAS  PubMed  Google Scholar 

  161. Bhagat J et al (2020) Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. Sci Total Environ 728:138707

    Article  CAS  PubMed  Google Scholar 

  162. Brandts I et al (2020) Polystyrene nanoplastics accumulate in ZFL cell lysosomes and in zebrafish larvae after acute exposure, inducing a synergistic immune response: in vitro without affecting larval survival in vivo. Environ Sci Nano 7(8):2410–2422

    Article  CAS  Google Scholar 

  163. Brun NR et al (2018) Nanoparticles induce dermal and intestinal innate immune system responses in zebrafish embryos. Environ Sci Nano 5(4):904–916

    Article  CAS  Google Scholar 

  164. Brun NR et al (2019) Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish. Commun Biol 2(1):382

    Article  PubMed  PubMed Central  Google Scholar 

  165. Catarino AI, Frutos A, Henry TB (2019) Use of fluorescent-labelled nanoplastics (NPs) to demonstrate NP absorption is inconclusive without adequate controls. Sci Total Environ 670:915–920

    Article  CAS  PubMed  Google Scholar 

  166. Chae Y, An YJ (2017) Effects of micro- and nanoplastics on aquatic ecosystems: current research trends and perspectives. Mar Pollut Bull 124(2):624–632

    Article  CAS  PubMed  Google Scholar 

  167. Chang X et al (2020) Potential health impact of environmental micro- and nanoplastics pollution. J Appl Toxicol 40(1):4–15

    Article  CAS  PubMed  Google Scholar 

  168. Chen Q et al (2017) Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Sci Total Environ 584-585:1022–1031

    Article  CAS  PubMed  Google Scholar 

  169. Davranche M et al (2020) Nanoplastics on the coast exposed to the North Atlantic gyre: evidence and traceability. NanoImpact 20:100262

    Article  Google Scholar 

  170. Duan Z et al (2020) Barrier function of zebrafish embryonic chorions against microplastics and nanoplastics and its impact on embryo development. J Hazard Mater 395:122621

    Article  CAS  PubMed  Google Scholar 

  171. Fadare OO et al (2020) Eco-Corona vs protein Corona: effects of humic substances on Corona formation and Nanoplastic particle toxicity in daphnia magna. Environ Sci Technol 54(13):8001–8009

    Article  CAS  PubMed  Google Scholar 

  172. Gaylarde CC, Baptista Neto JA, da Fonseca EM (2021) Nanoplastics in aquatic systems - are they more hazardous than microplastics? Environ Pollut 272:115950

    Article  CAS  PubMed  Google Scholar 

  173. Heinlaan M et al (2020) Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Sci Total Environ 707:136073

    Article  CAS  PubMed  Google Scholar 

  174. Hu Q et al (2021) Polystyrene nanoparticles trigger the activation of p38 MAPK and apoptosis via inducing oxidative stress in zebrafish and macrophage cells. Environ Pollut 269:116075

    Article  CAS  PubMed  Google Scholar 

  175. Jeon S et al (2018) Surface charge-dependent cellular uptake of polystyrene nanoparticles. Nano 8(12):1028

    Google Scholar 

  176. Ji Y et al (2020) Realistic polyethylene terephthalate nanoplastics and the size- and surface coating-dependent toxicological impacts on zebrafish embryos. Environ Sci Nano 7(8):2313–2324

    Article  CAS  Google Scholar 

  177. Kik K, Bukowska B, Sicińska P (2020) Polystyrene nanoparticles: sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ Pollut 262:114297

    Article  CAS  PubMed  Google Scholar 

  178. Kögel T et al (2020) Micro- and nanoplastic toxicity on aquatic life: determining factors. Sci Total Environ 709:136050

    Article  PubMed  Google Scholar 

  179. Lee WS et al (2019) Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of au ions in zebrafish embryos. Nanoscale 11(7):3200–3207

    Google Scholar 

  180. Lehner R et al (2019) Emergence of Nanoplastic in the environment and possible impact on human health. Environ Sci Technol 53(4):1748–1765

    Article  CAS  PubMed  Google Scholar 

  181. Liu Y et al (2021a) Effects of Nanoplastics and butyl Methoxydibenzoylmethane on early zebrafish embryos identified by single-cell RNA sequencing. Environ Sci Technol 55(3):1885–1896

    Article  CAS  PubMed  Google Scholar 

  182. Liu Y et al (2019) Ecotoxicological effects on Scenedesmus obliquus and Danio rerio co-exposed to polystyrene nano-plastic particles and natural acidic organic polymer. Environ Toxicol Pharmacol 67:21–28

    Article  CAS  PubMed  Google Scholar 

  183. Liu Z et al (2020) Effects of nanoplastics at predicted environmental concentration on Daphnia pulex after exposure through multiple generations. Environ Pollut 256:113506

    Article  CAS  PubMed  Google Scholar 

  184. Liu Z et al (2021b) Development of an adverse outcome pathway for nanoplastic toxicity in Daphnia pulex using proteomics. Sci Total Environ 766:144249

    Article  CAS  PubMed  Google Scholar 

  185. Mattsson K et al (2017) Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci Rep 7(1):11452

    Article  PubMed  PubMed Central  Google Scholar 

  186. Shen M et al (2019) Recent advances in toxicological research of nanoplastics in the environment: a review. Environ Pollut 252:511–521

    Article  CAS  PubMed  Google Scholar 

  187. Hodson ME et al (2017) Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environ Sci Technol 51(8):4714–4721

    Article  CAS  PubMed  Google Scholar 

  188. Laganà P et al (2019) Do plastics serve as a possible vector for the spread of antibiotic resistance? First insights from bacteria associated to a polystyrene piece from King George Island (Antarctica). Int J Hyg Environ Health 222:89–100

    Article  PubMed  Google Scholar 

  189. Mattsson K et al (2018) Chapter 13–Nanoplastics in the aquatic environment. In: Zeng EY (ed) Microplastic contamination in aquatic environments. Elsevier, pp 379–399

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saif Uddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uddin, A.S., Uddin, S., Fowler, S.W. (2023). Environmental Microplastics: A Significant Pollutant of the Anthropocene. In: Khan, A., Wang, C., Asiri, A.M. (eds) Microplastic sources, fate and solution. Springer, Singapore. https://doi.org/10.1007/978-981-99-0695-6_5

Download citation

Publish with us

Policies and ethics