ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Human Consumption of Microplastics

  • Kieran D. Cox*
    Kieran D. Cox
    Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2 Canada
    Hakai Institute, Calvert Island, British Columbia V0P 1H0 Canada
    *E-mail: [email protected]. Phone: +1 778 977-0142.
    More by Kieran D. Cox
  • Garth A. Covernton
    Garth A. Covernton
    Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2 Canada
  • Hailey L. Davies
    Hailey L. Davies
    Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2 Canada
  • John F. Dower
    John F. Dower
    Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2 Canada
    More by John F. Dower
  • Francis Juanes
    Francis Juanes
    Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2 Canada
    More by Francis Juanes
  • , and 
  • Sarah E. Dudas
    Sarah E. Dudas
    Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2 Canada
    Hakai Institute, Calvert Island, British Columbia V0P 1H0 Canada
    Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia V9T 6N7 Canada
    More by Sarah E. Dudas
Cite this: Environ. Sci. Technol. 2019, 53, 12, 7068–7074
Publication Date (Web):June 5, 2019
https://doi.org/10.1021/acs.est.9b01517
Copyright © 2019 American Chemical Society

    Article Views

    57036

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Microplastics are ubiquitous across ecosystems, yet the exposure risk to humans is unresolved. Focusing on the American diet, we evaluated the number of microplastic particles in commonly consumed foods in relation to their recommended daily intake. The potential for microplastic inhalation and how the source of drinking water may affect microplastic consumption were also explored. Our analysis used 402 data points from 26 studies, which represents over 3600 processed samples. Evaluating approximately 15% of Americans’ caloric intake, we estimate that annual microplastics consumption ranges from 39000 to 52000 particles depending on age and sex. These estimates increase to 74000 and 121000 when inhalation is considered. Additionally, individuals who meet their recommended water intake through only bottled sources may be ingesting an additional 90000 microplastics annually, compared to 4000 microplastics for those who consume only tap water. These estimates are subject to large amounts of variation; however, given methodological and data limitations, these values are likely underestimates.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.9b01517.

    • Polymer identification methods, details of studies included in the analysis, source information on the dietary recommended intake of each food group used to determine human microplastic consumption (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 1272 publications.

    1. Emeka Ephraim Emecheta, Patrizia Marie Pfohl, Wendel Wohlleben, Andrea Haase, Alexander Roloff. Desorption of Polycyclic Aromatic Hydrocarbons from Microplastics in Human Gastrointestinal Fluid Simulants─Implications for Exposure Assessment. ACS Omega 2024, 9 (23) , 24281-24290. https://doi.org/10.1021/acsomega.3c09380
    2. Seungyeop Choi, Seungha Lee, Myung-Ki Kim, Eui-Sang Yu, Yong-Sang Ryu. Challenges and Recent Analytical Advances in Micro/Nanoplastic Detection. Analytical Chemistry 2024, 96 (22) , 8846-8854. https://doi.org/10.1021/acs.analchem.3c05948
    3. Xunsi Qin, Mingjun Cao, Tianliu Peng, Hongying Shan, Weisi Lian, Yang Yu, Guanghou Shui, Rong Li. Features, Potential Invasion Pathways, and Reproductive Health Risks of Microplastics Detected in Human Uterus. Environmental Science & Technology 2024, Article ASAP.
    4. Sophia Vincoff, Beatrice Schleupner, Jasmine Santos, Margaret Morrison, Newland Zhang, Meagan M. Dunphy-Daly, William C. Eward, Andrew J. Armstrong, Zoie Diana, Jason A. Somarelli. The Known and Unknown: Investigating the Carcinogenic Potential of Plastic Additives. Environmental Science & Technology 2024, Article ASAP.
    5. Yu Chen, Yuchuan Meng, Guodong Liu, Xiaohua Huang, Guangming Chai. Probabilistic Estimation of Airborne Micro- and Nanoplastic Intake in Humans. Environmental Science & Technology 2024, 58 (21) , 9071-9081. https://doi.org/10.1021/acs.est.3c09189
    6. Xiang Zhao, Fengqi You. Microplastic Human Dietary Uptake from 1990 to 2018 Grew across 109 Major Developing and Industrialized Countries but Can Be Halved by Plastic Debris Removal. Environmental Science & Technology 2024, 58 (20) , 8709-8723. https://doi.org/10.1021/acs.est.4c00010
    7. Zehua Yan, Ziao Hao, Zhanao Zhang, Runqi Liu, Kanglin Zhao, Yan Zhang. A Noninvasive Quantitative Method for Evaluating Intestinal Exposure to Microplastics Based on the Excretion and Metabolism Patterns of Microplastics and Their Additives. Environmental Science & Technology 2024, 58 (18) , 7791-7801. https://doi.org/10.1021/acs.est.4c01549
    8. Beata Taudul, Frederik Tielens, Monica Calatayud. Raman Characterization of Plastics: A DFT Study of Polystyrene. The Journal of Physical Chemistry B 2024, 128 (17) , 4243-4254. https://doi.org/10.1021/acs.jpcb.3c08453
    9. Nicolas D. Müller, Anish Kirtane, Roman B. Schefer, Denise M. Mitrano. eDNA Adsorption onto Microplastics: Impacts of Water Chemistry and Polymer Physiochemical Properties. Environmental Science & Technology 2024, 58 (17) , 7588-7599. https://doi.org/10.1021/acs.est.3c10825
    10. Lan Zhang, Jing Zhang, Haorui Ma, Zhiliang Wei, Guanxu Liu, Haoyang Zhang, Yongfeng Liu. Removal of Nanoplastics from Copollutant Systems Using Seaweed Cellulose Nanofibers. Journal of Agricultural and Food Chemistry 2024, 72 (16) , 9033-9043. https://doi.org/10.1021/acs.jafc.4c00832
    11. Zhan Yang, Hua Zhang, Fan Lü, Yicheng Yang, Tian Hu, Pinjing He. A Novel High-Throughput Detection Method for Plastic Debris in Organic-Rich Matrices Based on Image Fusion. Analytical Chemistry 2024, 96 (15) , 6045-6054. https://doi.org/10.1021/acs.analchem.4c00584
    12. Libo Xu, Xinyi Bai, Kang Li, Guangbao Zhang, Mengjun Zhang, Min Hu, Yi Huang. Human Exposure to Ambient Atmospheric Microplastics in a Megacity: Spatiotemporal Variation and Associated Microorganism-Related Health Risk. Environmental Science & Technology 2024, 58 (8) , 3702-3713. https://doi.org/10.1021/acs.est.3c09271
    13. Kohei Oda, Alexander Wlodawer. Development of Enzyme-Based Approaches for Recycling PET on an Industrial Scale. Biochemistry 2024, 63 (4) , 369-401. https://doi.org/10.1021/acs.biochem.3c00554
    14. Penghui Li, Jingfu Liu. Micro(nano)plastics in the Human Body: Sources, Occurrences, Fates, and Health Risks. Environmental Science & Technology 2024, 58 (7) , 3065-3078. https://doi.org/10.1021/acs.est.3c08902
    15. Ziye Yang, Huajiang Dong, Yifei Gao, Shuang Liu, Long Chen, Guangjian Ni, Xiaoyu Guo, Meixue Wang, Can Wang, Yue Chen, Liqun Chen. Airborne Nanoplastics Exposure Inducing Irreversible Glucose Increase and Complete Hepatic Insulin Resistance. Environmental Science & Technology 2024, 58 (7) , 3108-3117. https://doi.org/10.1021/acs.est.3c06468
    16. Long Zhu, Mindong Ma, Xizhuang Sun, Zhixin Wu, Yanyan Yu, Yulin Kang, Zheng Liu, Qiujin Xu, Lihui An. Microplastics Entry into the Blood by Infusion Therapy: Few but a Direct Pathway. Environmental Science & Technology Letters 2024, 11 (2) , 67-72. https://doi.org/10.1021/acs.estlett.3c00905
    17. Xiaojie Xu, Ria A. Goros, Zheng Dong, Xin Meng, Guangle Li, Wei Chen, Sijin Liu, Juan Ma, Yi Y. Zuo. Microplastics and Nanoplastics Impair the Biophysical Function of Pulmonary Surfactant by Forming Heteroaggregates at the Alveolar–Capillary Interface. Environmental Science & Technology 2023, 57 (50) , 21050-21060. https://doi.org/10.1021/acs.est.3c06668
    18. Pinal S. Bhavsar, Pravin R. Dongare, Yasuhito Shimada, Anil H. Gore. A Critical Review on Current Challenges in the Analysis of Microplastics in Food Samples. ACS Food Science & Technology 2023, 3 (12) , 2001-2017. https://doi.org/10.1021/acsfoodscitech.3c00285
    19. Yongfeng Deng, Pan Yang, Hongli Tan, Ruqin Shen, Da Chen. Polylactic Acid Microplastics Do Not Exhibit Lower Biological Toxicity in Growing Mice Compared to Polyvinyl Chloride Microplastics. Journal of Agricultural and Food Chemistry 2023, 71 (49) , 19772-19782. https://doi.org/10.1021/acs.jafc.3c06576
    20. Shaojie Liu, Xinyuan Liu, Jialin Guo, Ruoru Yang, Hangwei Wang, Yongyun Sun, Bo Chen, Ruihua Dong. The Association Between Microplastics and Microbiota in Placentas and Meconium: The First Evidence in Humans. Environmental Science & Technology 2023, 57 (46) , 17774-17785. https://doi.org/10.1021/acs.est.2c04706
    21. Faisal Mahmood, Shazma Ashraf, Muhammad Shahzad, Bin Li, Furqan Asghar, Waseem Amjad, Muhammad Mubashar Omar. Graphene Synthesis from Organic Substrates: A Review. Industrial & Engineering Chemistry Research 2023, 62 (42) , 17314-17327. https://doi.org/10.1021/acs.iecr.3c01715
    22. Yue Li, Le Tao, Qiong Wang, Fengbang Wang, Gang Li, Maoyong Song. Potential Health Impact of Microplastics: A Review of Environmental Distribution, Human Exposure, and Toxic Effects. Environment & Health 2023, 1 (4) , 249-257. https://doi.org/10.1021/envhealth.3c00052
    23. Anqi Sun, Wen-Xiong Wang. Human Exposure to Microplastics and Its Associated Health Risks. Environment & Health 2023, 1 (3) , 139-149. https://doi.org/10.1021/envhealth.3c00053
    24. Hannah S. Zurier, Julie M. Goddard. PETase Engineering for Enhanced Degradation of Microplastic Fibers in Simulated Wastewater Sludge Processing Conditions. ACS ES&T Water 2023, 3 (8) , 2210-2218. https://doi.org/10.1021/acsestwater.3c00021
    25. Kazi Albab Hussain, Svetlana Romanova, Ilhami Okur, Dong Zhang, Jesse Kuebler, Xi Huang, Bing Wang, Lucia Fernandez-Ballester, Yongfeng Lu, Mathias Schubert, Yusong Li. Assessing the Release of Microplastics and Nanoplastics from Plastic Containers and Reusable Food Pouches: Implications for Human Health. Environmental Science & Technology 2023, 57 (26) , 9782-9792. https://doi.org/10.1021/acs.est.3c01942
    26. Yuxuan Liu, Xin Ling, Runren Jiang, Ling Chen, Lin Ye, Yonghua Wang, Guanghua Lu, Bing Wu. High-Content Screening Discovers Microplastics Released by Contact Lenses under Sunlight. Environmental Science & Technology 2023, 57 (23) , 8506-8513. https://doi.org/10.1021/acs.est.3c01601
    27. Yang Geng, Zhichun Zhang, Wei Zhou, Xuehua Shao, Zhaofen Li, Ying Zhou. Individual Exposure to Microplastics through the Inhalation Route: Comparison of Microplastics in Inhaled Indoor Aerosol and Exhaled Breath Air. Environmental Science & Technology Letters 2023, 10 (6) , 464-470. https://doi.org/10.1021/acs.estlett.3c00147
    28. Junjie Zhang, Miao Peng, Enkui Lian, Lu Xia, Alexandros G. Asimakopoulos, Sihai Luo, Lei Wang. Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy. Environmental Science & Technology 2023, 57 (22) , 8365-8372. https://doi.org/10.1021/acs.est.3c00842
    29. Himani Yadav, Md Rakib Hasan Khan, Mohiuddin Quadir, Kelly A. Rusch, Partho Pritom Mondal, Megan Orr, Elvis Genbo Xu, Syeed Md Iskander. Cutting Boards: An Overlooked Source of Microplastics in Human Food?. Environmental Science & Technology 2023, 57 (22) , 8225-8235. https://doi.org/10.1021/acs.est.3c00924
    30. Qianyu Yang, Huaxing Dai, Beilei Wang, Jialu Xu, Yue Zhang, Yitong Chen, Qingle Ma, Fang Xu, Haibo Cheng, Dongdong Sun, Chao Wang. Nanoplastics Shape Adaptive Anticancer Immunity in the Colon in Mice. Nano Letters 2023, 23 (8) , 3516-3523. https://doi.org/10.1021/acs.nanolett.3c00644
    31. Xiang Zhao, Fengqi You. Cascading Polymer Macro-Debris Upcycling and Microparticle Removal as an Effective Life Cycle Plastic Pollution Mitigation Strategy. Environmental Science & Technology 2023, 57 (16) , 6506-6519. https://doi.org/10.1021/acs.est.2c08686
    32. Guodong Cao, Zongwei Cai. Getting Health Hazards of Inhaled Nano/Microplastics into Focus: Expectations and Challenges. Environmental Science & Technology 2023, 57 (9) , 3461-3463. https://doi.org/10.1021/acs.est.3c00029
    33. Christopher M. Plummer, Le Li, Yongming Chen. Ring-Opening Polymerization for the Goal of Chemically Recyclable Polymers. Macromolecules 2023, 56 (3) , 731-750. https://doi.org/10.1021/acs.macromol.2c01694
    34. Hyeri Kim, Giyoung Shin, Min Jang, Fritjof Nilsson, Minna Hakkarainen, Hyo Jung Kim, Sung Yeon Hwang, Junhyeok Lee, Sung Bae Park, Jeyoung Park, Dongyeop X. Oh, Hyeonyeol Jeon, Jun Mo Koo. Toward Sustaining Bioplastics: Add a Pinch of Seasoning. ACS Sustainable Chemistry & Engineering 2023, 11 (5) , 1846-1856. https://doi.org/10.1021/acssuschemeng.2c06247
    35. Seokwon Joo, Jong Hyeok Kim, Chae-Eun Lee, Jeongmin Kang, Soonmin Seo, Ju-Hyung Kim, Yoon-Kyu Song. Eco-Friendly Keratin-Based Additives in the Polymer Matrix to Enhance the Output of Triboelectric Nanogenerators. ACS Applied Bio Materials 2022, 5 (12) , 5706-5715. https://doi.org/10.1021/acsabm.2c00736
    36. Kushani Perera, Shima Ziajahromi, Susan Bengtson Nash, Pathmalal M. Manage, Frederic D.L. Leusch. Airborne Microplastics in Indoor and Outdoor Environments of a Developing Country in South Asia: Abundance, Distribution, Morphology, and Possible Sources. Environmental Science & Technology 2022, 56 (23) , 16676-16685. https://doi.org/10.1021/acs.est.2c05885
    37. Ahmed Al Harraq, Philip J. Brahana, Olivia Arcemont, Donghui Zhang, Kalliat T. Valsaraj, Bhuvnesh Bharti. Effects of Weathering on Microplastic Dispersibility and Pollutant Uptake Capacity. ACS Environmental Au 2022, 2 (6) , 549-555. https://doi.org/10.1021/acsenvironau.2c00036
    38. Yongfeng Deng, Hexia Chen, Yichao Huang, Yan Zhang, Hongqiang Ren, Mingliang Fang, Qing Wang, Wen Chen, Robert C. Hale, Tamara S. Galloway, Da Chen. Long-Term Exposure to Environmentally Relevant Doses of Large Polystyrene Microplastics Disturbs Lipid Homeostasis via Bowel Function Interference. Environmental Science & Technology 2022, 56 (22) , 15805-15817. https://doi.org/10.1021/acs.est.1c07933
    39. Elijah. J. Petersen, Ana C. Barrios, Theodore B. Henry, Monique E. Johnson, Albert A. Koelmans, Antonio R. Montoro Bustos, Joanna Matheson, Matthias Roesslein, Jian Zhao, Baoshan Xing. Potential Artifacts and Control Experiments in Toxicity Tests of Nanoplastic and Microplastic Particles. Environmental Science & Technology 2022, 56 (22) , 15192-15206. https://doi.org/10.1021/acs.est.2c04929
    40. Xiaojie Hu, Michael Gatheru Waigi, Bing Yang, Yanzheng Gao. Impact of Plastic Particles on the Horizontal Transfer of Antibiotic Resistance Genes to Bacterium: Dependent on Particle Sizes and Antibiotic Resistance Gene Vector Replication Capacities. Environmental Science & Technology 2022, 56 (21) , 14948-14959. https://doi.org/10.1021/acs.est.2c00745
    41. Claire Fuschi, Haihui Pu, Margaret MacDonell, Kurt Picel, Maria Negri, Junhong Chen. Microplastics in the Great Lakes: Environmental, Health, and Socioeconomic Implications and Future Directions. ACS Sustainable Chemistry & Engineering 2022, 10 (43) , 14074-14091. https://doi.org/10.1021/acssuschemeng.2c02896
    42. Wanzhen Chen, Yufeng Gong, Michael McKie, Husein Almuhtaram, Jianxian Sun, Holly Barrett, Diwen Yang, Menghong Wu, Robert C. Andrews, Hui Peng. Defining the Chemical Additives Driving In Vitro Toxicities of Plastics. Environmental Science & Technology 2022, 56 (20) , 14627-14639. https://doi.org/10.1021/acs.est.2c03608
    43. Hannah S. Zurier, Julie M. Goddard. Directed Immobilization of PETase on Mesoporous Silica Enables Sustained Depolymerase Activity in Synthetic Wastewater Conditions. ACS Applied Bio Materials 2022, 5 (10) , 4981-4992. https://doi.org/10.1021/acsabm.2c00700
    44. William Toh, Elisa Yun Mei Ang, Teng Yong Ng, Rongming Lin, Zishun Liu. Antifouling Bilayer Graphene Slit Membrane for Desalination of Nanoplastic-Infested Seawater: A Molecular Dynamics Simulation Study. ACS Applied Materials & Interfaces 2022, 14 (38) , 43965-43974. https://doi.org/10.1021/acsami.2c12638
    45. Kerestin E. Goodman, Timothy Hua, Qing-Xiang Amy Sang. Effects of Polystyrene Microplastics on Human Kidney and Liver Cell Morphology, Cellular Proliferation, and Metabolism. ACS Omega 2022, 7 (38) , 34136-34153. https://doi.org/10.1021/acsomega.2c03453
    46. Yongfeng Deng, Hexia Chen, Yichao Huang, Qing Wang, Wen Chen, Da Chen. Polystyrene Microplastics Affect the Reproductive Performance of Male Mice and Lipid Homeostasis in Their Offspring. Environmental Science & Technology Letters 2022, 9 (9) , 752-757. https://doi.org/10.1021/acs.estlett.2c00262
    47. Meilan Feng, Juanjuan Luo, Yiping Wan, Jiannan Zhang, Chunjiao Lu, Maya Wang, Lu Dai, Xiaoqian Cao, Xiaojun Yang, Yajun Wang. Polystyrene Nanoplastic Exposure Induces Developmental Toxicity by Activating the Oxidative Stress Response and Base Excision Repair Pathway in Zebrafish (Danio rerio). ACS Omega 2022, 7 (36) , 32153-32163. https://doi.org/10.1021/acsomega.2c03378
    48. Shao-Yu Liang, Shih-Chih Wan, Yen-Peng Ho, Yu-Tze Horng, Po-Chi Soo, Wen-Ping Peng. Rapid Quantification of Polyhydroxybutyrate Polymer from Single Bacterial Cells with Mass Spectrometry. Analytical Chemistry 2022, 94 (34) , 11734-11738. https://doi.org/10.1021/acs.analchem.2c02807
    49. Xiang Zhao, Fengqi You. Life Cycle Assessment of Microplastics Reveals Their Greater Environmental Hazards than Mismanaged Polymer Waste Losses. Environmental Science & Technology 2022, 56 (16) , 11780-11797. https://doi.org/10.1021/acs.est.2c01549
    50. Seyed Mohammad Mirsoleimani Azizi, Nervana Haffiez, Basem S. Zakaria, Bipro Ranjan Dhar. Thermal Hydrolysis of Sludge Counteracts Polystyrene Nanoplastics-Induced Stress during Anaerobic Digestion. ACS ES&T Engineering 2022, 2 (7) , 1306-1315. https://doi.org/10.1021/acsestengg.1c00460
    51. Wala A. Algozeeb, Paul E. Savas, Zhe Yuan, Zhe Wang, Carter Kittrell, Jacklyn N. Hall, Weiyin Chen, Praveen Bollini, James M. Tour. Plastic Waste Product Captures Carbon Dioxide in Nanometer Pores. ACS Nano 2022, 16 (5) , 7284-7290. https://doi.org/10.1021/acsnano.2c00955
    52. Inbo Park, Wonseok Yang, Dong-Kwon Lim. Current Status of Organic Matters in Bottled Drinking Water in Korea. ACS ES&T Water 2022, 2 (5) , 738-748. https://doi.org/10.1021/acsestwater.1c00435
    53. Siyi Zhang, Zhenzhen He, Chenyuan Wu, Zihe Wang, Yingwen Mai, Ruiwen Hu, Xiaojie Zhang, Wei Huang, Yuehui Tian, Dehua Xia, Cheng Wang, Qingyun Yan, Zhili He, Longfei Shu. Complex Bilateral Interactions Determine the Fate of Polystyrene Micro- and Nanoplastics and Soil Protists: Implications from a Soil Amoeba. Environmental Science & Technology 2022, 56 (8) , 4936-4949. https://doi.org/10.1021/acs.est.1c06178
    54. Fu Xiao, Li-Juan Feng, Xiao-Dong Sun, Yue Wang, Zhong-Wei Wang, Fan-Ping Zhu, Xian-Zheng Yuan. Do Polystyrene Nanoplastics Have Similar Effects on Duckweed (Lemna minor L.) at Environmentally Relevant and Observed-Effect Concentrations?. Environmental Science & Technology 2022, 56 (7) , 4071-4079. https://doi.org/10.1021/acs.est.1c06595
    55. Yunlong Luo, Xian Zhang, Zixing Zhang, Ravi Naidu, Cheng Fang. Dual-Principal Component Analysis of the Raman Spectrum Matrix to Automatically Identify and Visualize Microplastics and Nanoplastics. Analytical Chemistry 2022, 94 (7) , 3150-3157. https://doi.org/10.1021/acs.analchem.1c04498
    56. Shenyu Lan, Xiwang Ke, Zhi Li, Lei Mai, Mingshan Zhu, Eddy Y. Zeng. Piezoelectric Disinfection of Water Co-Polluted by Bacteria and Microplastics Energized by Water Flow. ACS ES&T Water 2022, 2 (2) , 367-375. https://doi.org/10.1021/acsestwater.1c00411
    57. Xin Guo, Helen Lin, Shuping Xu, Lili He. Recent Advances in Spectroscopic Techniques for the Analysis of Microplastics in Food. Journal of Agricultural and Food Chemistry 2022, 70 (5) , 1410-1422. https://doi.org/10.1021/acs.jafc.1c06085
    58. Mohamad Zandieh, Kshiti Patel, Juewen Liu. Adsorption of Linear and Spherical DNA Oligonucleotides onto Microplastics. Langmuir 2022, 38 (5) , 1915-1922. https://doi.org/10.1021/acs.langmuir.1c03190
    59. Zehua Yan, Yafei Liu, Ting Zhang, Faming Zhang, Hongqiang Ren, Yan Zhang. Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status. Environmental Science & Technology 2022, 56 (1) , 414-421. https://doi.org/10.1021/acs.est.1c03924
    60. P. Takunda Chazovachii, Julie M. Rieland, Violet V. Sheffey, Timothy M. E. Jugovic, Paul M. Zimmerman, Omolola Eniola-Adefeso, Brian J. Love, Anne J. McNeil. Using Adhesives to Capture Microplastics from Water. ACS ES&T Engineering 2021, 1 (12) , 1698-1704. https://doi.org/10.1021/acsestengg.1c00272
    61. Junjie Zhang, Lei Wang, Leonardo Trasande, Kurunthachalam Kannan. Occurrence of Polyethylene Terephthalate and Polycarbonate Microplastics in Infant and Adult Feces. Environmental Science & Technology Letters 2021, 8 (11) , 989-994. https://doi.org/10.1021/acs.estlett.1c00559
    62. Natalia P. Ivleva. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chemical Reviews 2021, 121 (19) , 11886-11936. https://doi.org/10.1021/acs.chemrev.1c00178
    63. Hayley K. McIlwraith, Joel Kim, Paul Helm, Satyendra P. Bhavsar, Jeremy S. Metzger, Chelsea M. Rochman. Evidence of Microplastic Translocation in Wild-Caught Fish and Implications for Microplastic Accumulation Dynamics in Food Webs. Environmental Science & Technology 2021, 55 (18) , 12372-12382. https://doi.org/10.1021/acs.est.1c02922
    64. Seyyed Mohsen Beladi-Mousavi, Soňa Hermanová, Yulong Ying, Jan Plutnar, Martin Pumera. A Maze in Plastic Wastes: Autonomous Motile Photocatalytic Microrobots against Microplastics. ACS Applied Materials & Interfaces 2021, 13 (21) , 25102-25110. https://doi.org/10.1021/acsami.1c04559
    65. Swarup Roy, Jong-Whan Rhim. Fabrication of Carboxymethyl Cellulose/Agar-Based Functional Films Hybridized with Alizarin and Grapefruit Seed Extract. ACS Applied Bio Materials 2021, 4 (5) , 4470-4478. https://doi.org/10.1021/acsabm.1c00214
    66. Win Cowger, Andrew B. Gray, James J. Guilinger, Brandon Fong, Kryss Waldschläger. Concentration Depth Profiles of Microplastic Particles in River Flow and Implications for Surface Sampling. Environmental Science & Technology 2021, 55 (9) , 6032-6041. https://doi.org/10.1021/acs.est.1c01768
    67. Nur Hazimah Mohamed Nor, Merel Kooi, Noël J. Diepens, Albert A. Koelmans. Lifetime Accumulation of Microplastic in Children and Adults. Environmental Science & Technology 2021, 55 (8) , 5084-5096. https://doi.org/10.1021/acs.est.0c07384
    68. Jiaxin Feng, Hansen Zhao, Xiaoyun Gong, Meng-Chan Xia, Lesi Cai, Huan Yao, Xu Zhao, Zihe Yan, Zhanping Li, Honggang Nie, Xiaoxiao Ma, Sichun Zhang. In Situ Identification and Spatial Mapping of Microplastic Standards in Paramecia by Secondary-Ion Mass Spectrometry Imaging. Analytical Chemistry 2021, 93 (13) , 5521-5528. https://doi.org/10.1021/acs.analchem.0c05383
    69. Peter L. Lenaker, Steven R. Corsi, Sherri A. Mason. Spatial Distribution of Microplastics in Surficial Benthic Sediment of Lake Michigan and Lake Erie. Environmental Science & Technology 2021, 55 (1) , 373-384. https://doi.org/10.1021/acs.est.0c06087
    70. Guanjun Xu, Hanyun Cheng, Robin Jones, Yiqing Feng, Kedong Gong, Kejian Li, Xiaozhong Fang, Muhammad Ali Tahir, Ventsislav Kolev Valev, Liwu Zhang. Surface-Enhanced Raman Spectroscopy Facilitates the Detection of Microplastics <1 μm in the Environment. Environmental Science & Technology 2020, 54 (24) , 15594-15603. https://doi.org/10.1021/acs.est.0c02317
    71. Wala A. Algozeeb, Paul E. Savas, Duy Xuan Luong, Weiyin Chen, Carter Kittrell, Mahesh Bhat, Rouzbeh Shahsavari, James M. Tour. Flash Graphene from Plastic Waste. ACS Nano 2020, 14 (11) , 15595-15604. https://doi.org/10.1021/acsnano.0c06328
    72. Zeynep Aytac, Runze Huang, Nachiket Vaze, Tao Xu, Brian David Eitzer, Walter Krol, Luke A. MacQueen, Huibin Chang, Douglas W. Bousfield, Mary B. Chan-Park, Kee Woei Ng, Kevin Kit Parker, Jason C. White, Philip Demokritou. Development of Biodegradable and Antimicrobial Electrospun Zein Fibers for Food Packaging. ACS Sustainable Chemistry & Engineering 2020, 8 (40) , 15354-15365. https://doi.org/10.1021/acssuschemeng.0c05917
    73. Huiwen Tan, Tongtao Yue, Yan Xu, Jian Zhao, Baoshan Xing. Microplastics Reduce Lipid Digestion in Simulated Human Gastrointestinal System. Environmental Science & Technology 2020, 54 (19) , 12285-12294. https://doi.org/10.1021/acs.est.0c02608
    74. Xinlei Liu, Mehdi Gharasoo, Yu Shi, Gabriel Sigmund, Thorsten Hüffer, Lin Duan, Yongfeng Wang, Rong Ji, Thilo Hofmann, Wei Chen. Key Physicochemical Properties Dictating Gastrointestinal Bioaccessibility of Microplastics-Associated Organic Xenobiotics: Insights from a Deep Learning Approach. Environmental Science & Technology 2020, 54 (19) , 12051-12062. https://doi.org/10.1021/acs.est.0c02838
    75. Andrew C. Johnson, Hollie Ball, Richard Cross, Alice A. Horton, Monika D. Jürgens, Daniel S. Read, Jes Vollertsen, Claus Svendsen. Identification and Quantification of Microplastics in Potable Water and Their Sources within Water Treatment Works in England and Wales. Environmental Science & Technology 2020, 54 (19) , 12326-12334. https://doi.org/10.1021/acs.est.0c03211
    76. Uschi M. Graham, Alan K. Dozier, Günter Oberdörster, Robert A. Yokel, Ramon Molina, Joseph D. Brain, Jayant M. Pinto, Jennifer Weuve, David A. Bennett. Tissue Specific Fate of Nanomaterials by Advanced Analytical Imaging Techniques - A Review. Chemical Research in Toxicology 2020, 33 (5) , 1145-1162. https://doi.org/10.1021/acs.chemrestox.0c00072
    77. Raffaelina Mercogliano, Carlo Giacomo Avio, Francesco Regoli, Aniello Anastasio, Giampaolo Colavita, Serena Santonicola. Occurrence of Microplastics in Commercial Seafood under the Perspective of the Human Food Chain. A Review. Journal of Agricultural and Food Chemistry 2020, 68 (19) , 5296-5301. https://doi.org/10.1021/acs.jafc.0c01209
    78. Mohan Bi, Qiang He, Yi Chen. What Roles Are Terrestrial Plants Playing in Global Microplastic Cycling?. Environmental Science & Technology 2020, 54 (9) , 5325-5327. https://doi.org/10.1021/acs.est.0c01009
    79. Qun Zhang, Elvis Genbo Xu, Jiana Li, Qiqing Chen, Liping Ma, Eddy Y. Zeng, Huahong Shi. A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environmental Science & Technology 2020, 54 (7) , 3740-3751. https://doi.org/10.1021/acs.est.9b04535
    80. Florian Pohl, Joris T. Eggenhuisen, Ian A. Kane, Michael A. Clare. Transport and Burial of Microplastics in Deep-Marine Sediments by Turbidity Currents. Environmental Science & Technology 2020, 54 (7) , 4180-4189. https://doi.org/10.1021/acs.est.9b07527
    81. Susan D. Richardson, Susana Y. Kimura. Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry 2020, 92 (1) , 473-505. https://doi.org/10.1021/acs.analchem.9b05269
    82. Laura M. Hernandez, Elvis Genbo Xu, Hans C. E. Larsson, Rui Tahara, Vimal B. Maisuria, Nathalie Tufenkji. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environmental Science & Technology 2019, 53 (21) , 12300-12310. https://doi.org/10.1021/acs.est.9b02540
    83. Junjie Zhang, Lei Wang, Kurunthachalam Kannan. Polyethylene Terephthalate and Polycarbonate Microplastics in Pet Food and Feces from the United States. Environmental Science & Technology 2019, 53 (20) , 12035-12042. https://doi.org/10.1021/acs.est.9b03912
    84. Yanghui Xu, Qiang He, Caihong Liu, Xiaoliu Huangfu. Are Micro- or Nanoplastics Leached from Drinking Water Distribution Systems?. Environmental Science & Technology 2019, 53 (16) , 9339-9340. https://doi.org/10.1021/acs.est.9b03673
    85. Yifan Zhang, Jingjing Duan, Ruiqian Liu, Evangelos Petropoulos, Yanfang Feng, Lihong Xue, Linzhang Yang, Shiying He. Efficient magnetic capture of PE microplastic from water by PEG modified Fe3O4 nanoparticles: Performance, kinetics, isotherms and influence factors. Journal of Environmental Sciences 2025, 147 , 677-687. https://doi.org/10.1016/j.jes.2023.07.025
    86. Jino Affrald R. Microplastic menace: a path forward with innovative solutions to reduce pollution. Asian Journal of Atmospheric Environment 2024, 18 (1) https://doi.org/10.1007/s44273-024-00026-z
    87. Ismena Gałęcka, Natalia Szyryńska, Jarosław Całka. Influence of polyethylene terephthalate (PET) microplastic on selected active substances in the intramural neurons of the porcine duodenum. Particle and Fibre Toxicology 2024, 21 (1) https://doi.org/10.1186/s12989-024-00566-w
    88. Silvia Fraissinet, Giuseppe E. De Benedetto, Cosimino Malitesta, Rupert Holzinger, Dusan Materić. Microplastics and nanoplastics size distribution in farmed mussel tissues. Communications Earth & Environment 2024, 5 (1) https://doi.org/10.1038/s43247-024-01300-2
    89. Mansoor Ahmad Bhat. Microplastics in indoor deposition samples in university classrooms. Discover Environment 2024, 2 (1) https://doi.org/10.1007/s44274-024-00054-0
    90. Gonca Alak, Mine Köktürk, Muhammed Atamanalp. Evaluation of phthalate migration potential in vacuum-packed. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-54730-5
    91. Junjie Fan, Li Liu, Yongling Lu, Qian Chen, Shijun Fan, Yongjun Yang, Yupeng Long, Xin Liu. Acute exposure to polystyrene nanoparticles promotes liver injury by inducing mitochondrial ROS-dependent necroptosis and augmenting macrophage-hepatocyte crosstalk. Particle and Fibre Toxicology 2024, 21 (1) https://doi.org/10.1186/s12989-024-00578-6
    92. Adil Bakir, Alexandra R. McGoran, Briony Silburn, Josie Russell, Holly Nel, Amy L. Lusher, Ruth Amos, Ronick S. Shadrack, Shareen J. Arnold, Cecy Castillo, Joaquin F. Urbina, Eduardo Barrientos, Henry Sanchez, Keshnee Pillay, Lucienne Human, Tarryn Swartbooi, Muhammad Reza Cordova, Sofia Yuniar Sani, T. W. A. Wasantha Wijesinghe, A. A. Deeptha Amarathunga, Jagath Gunasekara, Sudarshana Somasiri, Kushani Mahatantila, Sureka Liyanage, Moritz Müller, Yet Yin Hee, Deo Florence Onda, Khairiatul Mardiana Jansar, Zana Shiraz, Hana Amir, Andrew G. Mayes. Creation of an international laboratory network towards global microplastics monitoring harmonisation. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-62176-y
    93. Daiman Xing, Tangmilan Zhao, Xindong Tan, Jing Liu, Shihan Wu, Jingyu Xu, Muting Yan, Binmei Sun, Shaoqun Liu, Peng Zheng. Microplastics in tea from planting to the final tea product: Traceability, characteristics and dietary exposure risk analysis. Food Chemistry 2024, 455 , 139636. https://doi.org/10.1016/j.foodchem.2024.139636
    94. Nunna Sai Venkata Lakshmayya, Ashoutosh Panday, Rajasri Yadavalli, Chintakunta Nagendranatha Reddy, Sanjeeb Kumar Mandal, Dinesh Chand Agrawal, Bishwambhar Mishra. Food Contamination with Micro-plastics: Occurrences, Bioavailability, Human Vulnerability, and Prevention. Current Nutrition & Food Science 2024, 20 (7) , 797-810. https://doi.org/10.2174/1573401319666230915164116
    95. Jonathan Pérez-Flores, Merle M. Borges-Ramírez, Jorge A. Vargas-Contreras, Jaime Rendón-von Osten. Inter-annual variation in the microplastics abundance in feces of the Baird's tapir (Tapirus bairdii) from the Selva Maya, México. Science of The Total Environment 2024, 941 , 173659. https://doi.org/10.1016/j.scitotenv.2024.173659
    96. Ji Liang, Feng Ji, Anisah Lee Binti Abdullah, Wei Qin, Tian Zhu, Yi Juin Tay, Yiming Li, Mingming Han. Micro/nano-plastics impacts in cardiovascular systems across species. Science of The Total Environment 2024, 942 , 173770. https://doi.org/10.1016/j.scitotenv.2024.173770
    97. Sweta Upadhyay, Pradeep Kumar Sharma, Kanika Dogra, Prosun Bhattacharya, Manish Kumar, Vijay Tripathi, Rachan Karmakar. Microplastics in freshwater: Unveiling sources, fate, and removal strategies. Groundwater for Sustainable Development 2024, 26 , 101185. https://doi.org/10.1016/j.gsd.2024.101185
    98. Yu Chen, Yuchuan Meng, Guodong Liu, Xiaohua Huang, Guangming Chai, Yang Xie. Atmospheric deposition of microplastics at a western China metropolis: Relationship with underlying surface types and human exposure. Environmental Pollution 2024, 355 , 124192. https://doi.org/10.1016/j.envpol.2024.124192
    99. Gokhan Tuncelli, Idil Can Tuncelli, Eda Dagsuyu, Ismet Burcu Turkyilmaz, Refiye Yanardag, Nuray Erkan. The effect of different types of microplastic and acute cadmium exposure on the Mytilus galloprovincialis (Lamarck, 1819). Science of The Total Environment 2024, 936 , 173505. https://doi.org/10.1016/j.scitotenv.2024.173505
    100. Ajeet Kaushik, Avtar Singh, V Kumar Gupta, Yogendra Kumar Mishra. Nano/micro-plastic, an invisible threat getting into the brain. Chemosphere 2024, 361 , 142380. https://doi.org/10.1016/j.chemosphere.2024.142380
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect