Advertisement
No access
Research Article
EXOPLANETS

A Neptune-mass exoplanet in close orbit around a very low-mass star challenges formation models

Science
30 Nov 2023
Vol 382, Issue 6674
pp. 1031-1035

Editor’s summary

Planets form in protoplanetary disks of gas and dust around young stars that are undergoing their own formation process. The amount of material in the disk determines how big the planets can grow. Stefánsson et al. observed a nearby low-mass star using near-infrared spectroscopy. They detected Doppler shifts due to an orbiting exoplanet of at least 13 Earth masses, which is almost the mass of Neptune. Theoretical models do not predict the formation of such a massive planet around a low-mass star (see the Perspective by Masset). The authors used simulations to show that its presence could be explained if the protoplanetary disk were 10 times more massive than expected for the host star. —Keith T. Smith

Abstract

Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet’s orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 × 10−4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Materials

This PDF file includes:

Materials and Methods
Supplementary Text
Figs. S1 to S8
Table S1
References (4991)

Other Supplementary Material for this manuscript includes the following:

Data S1 and S2

References and Notes

1
T. J. Henry, W.-C. Jao, J. P. Subasavage, T. D. Beaulieu, P. A. Ianna, E. Costa, R. A. Méndez, The solar neighborhood. XVII. Parallax results from the CTIOPI 0.9 m Program: 20 new members of the RECONS 10 parsec sample. Astron. J.132, 2360–2371 (2006).
2
J. G. Winters, T. J. Henry, J. C. Lurie, N. C. Hambly, W.-C. Jao, J. L. Bartlett, M. R. Boyd, S. B. Dieterich, C. T. Finch, A. D. Hosey, P. A. Ianna, A. R. Riedel, K. J. Slatten, J. P. Subasavage, The solar neighborhood. XXXV. Distances to 1404 M dwarf systems within 25 pc in the southern sky. Astron. J.149, 5 (2015).
3
M. Endl, W. D. Cochran, M. Kurster, D. B. Paulson, R. A. Wittenmyer, P. J. MacQueen, R. G. Tull, Exploring the frequency of close‐in Jovian planets around M dwarfs. Astrophys. J.649, 436–443 (2006).
4
X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, J.-L. Bertaux, The HARPS search for southern extra-solar planets. Astron. Astrophys.549, A109 (2013).
5
S. Sabotta, M. Schlecker, P. Chaturvedi, E. W. Guenther, I. Muñoz Rodríguez, J. C. Muñoz Sánchez, J. A. Caballero, Y. Shan, S. Reffert, I. Ribas, A. Reiners, A. P. Hatzes, P. J. Amado, H. Klahr, J. C. Morales, A. Quirrenbach, T. Henning, S. Dreizler, E. Pallé, M. Perger, M. Azzaro, S. V. Jeffers, A. Kaminski, M. Kürster, M. Lafarga, D. Montes, V. M. Passegger, M. Zechmeister, The CARMENES search for exoplanets around M dwarfs. Astron. Astrophys.653, A114 (2021).
6
M. Gillon, A. H. M. J. Triaud, B.-O. Demory, E. Jehin, E. Agol, K. M. Deck, S. M. Lederer, J. de Wit, A. Burdanov, J. G. Ingalls, E. Bolmont, J. Leconte, S. N. Raymond, F. Selsis, M. Turbet, K. Barkaoui, A. Burgasser, M. R. Burleigh, S. J. Carey, A. Chaushev, C. M. Copperwheat, L. Delrez, C. S. Fernandes, D. L. Holdsworth, E. J. Kotze, V. Van Grootel, Y. Almleaky, Z. Benkhaldoun, P. Magain, D. Queloz, Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature542, 456–460 (2017).
7
M. Zechmeister, S. Dreizler, I. Ribas, A. Reiners, J. A. Caballero, F. F. Bauer, V. J. S. Béjar, L. González-Cuesta, E. Herrero, S. Lalitha, M. J. López-González, R. Luque, J. C. Morales, E. Pallé, E. Rodríguez, C. Rodríguez López, L. Tal-Or, G. Anglada-Escudé, A. Quirrenbach, P. J. Amado, M. Abril, F. J. Aceituno, J. Aceituno, F. J. Alonso-Floriano, M. Ammler-von Eiff, R. Antona Jiménez, H. Anwand-Heerwart, B. Arroyo-Torres, M. Azzaro, D. Baroch, D. Barrado, S. Becerril, D. Benítez, Z. M. Berdiñas, G. Bergond, P. Bluhm, M. Brinkmöller, C. del Burgo, R. Calvo Ortega, J. Cano, C. Cardona Guillén, J. Carro, M. C. Cárdenas Vázquez, E. Casal, N. Casasayas-Barris, V. Casanova, P. Chaturvedi, C. Cifuentes, A. Claret, J. Colomé, M. Cortés-Contreras, S. Czesla, E. Díez-Alonso, R. Dorda, M. Fernández, A. Fernández-Martín, B. Fuhrmeister, A. Fukui, D. Galadí-Enríquez, I. Gallardo Cava, J. Garcia de la Fuente, A. Garcia-Piquer, M. L. García Vargas, L. Gesa, J. Góngora Rueda, E. González-Álvarez, J. I. González Hernández, R. González-Peinado, U. Grözinger, J. Guàrdia, A. Guijarro, E. de Guindos, A. P. Hatzes, P. H. Hauschildt, R. P. Hedrosa, J. Helmling, T. Henning, I. Hermelo, R. Hernández Arabi, L. Hernández Castaño, F. Hernández Otero, D. Hintz, P. Huke, A. Huber, S. V. Jeffers, E. N. Johnson, E. de Juan, A. Kaminski, J. Kemmer, M. Kim, H. Klahr, R. Klein, J. Klüter, A. Klutsch, D. Kossakowski, M. Kürster, F. Labarga, M. Lafarga, M. Llamas, M. Lampón, L. M. Lara, R. Launhardt, F. J. Lázaro, N. Lodieu, M. López del Fresno, M. López-Puertas, J. F. López Salas, J. López-Santiago, H. Magán Madinabeitia, U. Mall, L. Mancini, H. Mandel, E. Marfil, J. A. Marín Molina, D. Maroto Fernández, E. L. Martín, P. Martín-Fernández, S. Martín-Ruiz, C. J. Marvin, E. Mirabet, P. Montañés-Rodríguez, D. Montes, M. E. Moreno-Raya, E. Nagel, V. Naranjo, N. Narita, L. Nortmann, G. Nowak, A. Ofir, M. Oshagh, J. Panduro, H. Parviainen, J. Pascual, V. M. Passegger, A. Pavlov, S. Pedraz, A. Pérez-Calpena, D. Pérez Medialdea, M. Perger, M. A. C. Perryman, O. Rabaza, A. Ramón Ballesta, R. Rebolo, P. Redondo, S. Reffert, S. Reinhardt, P. Rhode, H.-W. Rix, F. Rodler, A. Rodríguez Trinidad, A. Rosich, S. Sadegi, E. Sánchez-Blanco, M. A. Sánchez Carrasco, A. Sánchez-López, J. Sanz-Forcada, P. Sarkis, L. F. Sarmiento, S. Schäfer, J. H. M. M. Schmitt, P. Schöfer, A. Schweitzer, W. Seifert, D. Shulyak, E. Solano, A. Sota, O. Stahl, S. Stock, J. B. P. Strachan, T. Stuber, J. Stürmer, J. C. Suárez, H. M. Tabernero, M. Tala Pinto, T. Trifonov, G. Veredas, J. I. Vico Linares, F. Vilardell, K. Wagner, V. Wolthoff, W. Xu, F. Yan, M. R. Zapatero Osorio, The CARMENES search for exoplanets around M dwarfs. Astron. Astrophys.627, A49 (2019).
8
Y. Alibert, W. Benz, Formation and composition of planets around very low mass stars. Astron. Astrophys.598, L5 (2017).
9
Y. Miguel, A. Cridland, C. W. Ormel, J. J. Fortney, S. Ida, Mon. Not. R. Astron. Soc.491, 1998 (2020).
10
B. Zawadzki, D. Carrera, E. B. Ford, Rapid formation of super-Earths around low-mass stars. Mon. Not. R. Astron. Soc.503, 1390–1406 (2021).
11
R. Burn, M. Schlecker, C. Mordasini, A. Emsenhuber, Y. Alibert, T. Henning, H. Klahr, W. Benz, The New Generation Planetary Population Synthesis (NGPPS). Astron. Astrophys.656, A72 (2021).
12
C. F. Manara, A. Morbidelli, T. Guillot, Why do protoplanetary disks appear not massive enough to form the known exoplanet population?Astron. Astrophys.618, L3 (2018).
13
S. M. Andrews, Observations of protoplanetary disk structures. Annu. Rev. Astron. Astrophys.58, 483–528 (2020).
14
M. Ansdell, J. P. Williams, N. Marel, J. M. Carpenter, G. Guidi, M. Hogerheijde, G. S. Mathews, C. F. Manara, A. Miotello, A. Natta, I. Oliveira, M. Tazzari, L. Testi, E. F. van Dishoeck, S. E. van Terwisga, ALMA survey of Lupus protoplanetary disks. I. Dust and gas masses. Astrophys. J.828, 46 (2016).
15
I. Pascucci, L. Testi, G. J. Herczeg, F. Long, C. F. Manara, N. Hendler, G. D. Mulders, S. Krijt, F. Ciesla, T. Henning, S. Mohanty, E. Drabek-Maunder, D. Apai, L. Szűcs, G. Sacco, J. Olofsson, A steeper than linear disk mass–stellar mass scaling relation. Astrophys. J.831, 125 (2016).
16
J. C. Morales, A. J. Mustill, I. Ribas, M. B. Davies, A. Reiners, F. F. Bauer, D. Kossakowski, E. Herrero, E. Rodríguez, M. J. López-González, C. Rodríguez-López, V. J. S. Béjar, L. González-Cuesta, R. Luque, E. Pallé, M. Perger, D. Baroch, A. Johansen, H. Klahr, C. Mordasini, G. Anglada-Escudé, J. A. Caballero, M. Cortés-Contreras, S. Dreizler, M. Lafarga, E. Nagel, V. M. Passegger, S. Reffert, A. Rosich, A. Schweitzer, L. Tal-Or, T. Trifonov, M. Zechmeister, A. Quirrenbach, P. J. Amado, E. W. Guenther, H.-J. Hagen, T. Henning, S. V. Jeffers, A. Kaminski, M. Kürster, D. Montes, W. Seifert, F. J. Abellán, M. Abril, J. Aceituno, F. J. Aceituno, F. J. Alonso-Floriano, M. Ammler-von Eiff, R. Antona, B. Arroyo-Torres, M. Azzaro, D. Barrado, S. Becerril-Jarque, D. Benítez, Z. M. Berdiñas, G. Bergond, M. Brinkmöller, C. Del Burgo, R. Burn, R. Calvo-Ortega, J. Cano, M. C. Cárdenas, C. C. Guillén, J. Carro, E. Casal, V. Casanova, N. Casasayas-Barris, P. Chaturvedi, C. Cifuentes, A. Claret, J. Colomé, S. Czesla, E. Díez-Alonso, R. Dorda, A. Emsenhuber, M. Fernández, A. Fernández-Martín, I. M. Ferro, B. Fuhrmeister, D. Galadí-Enríquez, I. G. Cava, M. L. G. Vargas, A. Garcia-Piquer, L. Gesa, E. González-Álvarez, J. I. G. Hernández, R. González-Peinado, J. Guàrdia, A. Guijarro, E. de Guindos, A. P. Hatzes, P. H. Hauschildt, R. P. Hedrosa, I. Hermelo, R. H. Arabi, F. H. Otero, D. Hintz, G. Holgado, A. Huber, P. Huke, E. N. Johnson, E. de Juan, M. Kehr, J. Kemmer, M. Kim, J. Klüter, A. Klutsch, F. Labarga, N. Labiche, S. Lalitha, M. Lampón, L. M. Lara, R. Launhardt, F. J. Lázaro, J.-L. Lizon, M. Llamas, N. Lodieu, M. López Del Fresno, J. F. L. Salas, J. López-Santiago, H. M. Madinabeitia, U. Mall, L. Mancini, H. Mandel, E. Marfil, J. A. M. Molina, E. L. Martín, P. Martín-Fernández, S. Martín-Ruiz, H. Martínez-Rodríguez, C. J. Marvin, E. Mirabet, A. Moya, V. Naranjo, R. P. Nelson, L. Nortmann, G. Nowak, A. Ofir, J. Pascual, A. Pavlov, S. Pedraz, D. P. Medialdea, A. Pérez-Calpena, M. A. C. Perryman, O. Rabaza, A. R. Ballesta, R. Rebolo, P. Redondo, H.-W. Rix, F. Rodler, A. R. Trinidad, S. Sabotta, S. Sadegi, M. Salz, E. Sánchez-Blanco, M. A. S. Carrasco, A. Sánchez-López, J. Sanz-Forcada, P. Sarkis, L. F. Sarmiento, S. Schäfer, M. Schlecker, J. H. M. M. Schmitt, P. Schöfer, E. Solano, A. Sota, O. Stahl, S. Stock, T. Stuber, J. Stürmer, J. C. Suárez, H. M. Tabernero, S. M. Tulloch, G. Veredas, J. I. Vico-Linares, F. Vilardell, K. Wagner, J. Winkler, V. Wolthoff, F. Yan, M. R. Z. Osorio, A giant exoplanet orbiting a very-low-mass star challenges planet formation models. Science365, 1441–1445 (2019).
17
A. Quirrenbach, V. M. Passegger, T. Trifonov, P. J. Amado, J. A. Caballero, A. Reiners, I. Ribas, J. Aceituno, V. J. S. Béjar, P. Chaturvedi, L. González-Cuesta, T. Henning, E. Herrero, A. Kaminski, M. Kürster, S. Lalitha, N. Lodieu, M. J. López-González, D. Montes, E. Pallé, M. Perger, D. Pollacco, S. Reffert, E. Rodríguez, C. R. López, Y. Shan, L. Tal-Or, M. R. Z. Osorio, M. Zechmeister, The CARMENES search for exoplanets around M dwarfs. Astron. Astrophys.663, A48 (2022).
18
A. Mercer, D. Stamatellos, Planet formation around M dwarfs via disc instability. Astron. Astrophys.633, A116 (2020).
19
S. Mahadevan, L. Ramsey, C. Bender, R. Terrien, J. T. Wright, S. Halverson, F. Hearty, M. Nelson, A. Burton, S. Redman, S. Osterman, S. Diddams, J. Kasting, M. Endl, R. Deshpande, Proc. SPIE8446, 84461S (2012).
20
S. Mahadevan, L. W. Ramsey, R. Terrien, S. Halverson, A. Roy, F. Hearty, E. Levi, G. K. Stefansson, P. Robertson, C. Bender, C. Schwab, M. Nelson, Proc. SPIE9147, 91471G (2014).
21
L. W. Ramsey, M. T. Adams, T. G. Barnes III, J. A. Booth, M. E. Cornell, J. R. Fowler, N. I. Gaffney, J. W. Glaspey, J. M. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. E. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, Proc. SPIE3352, 34–42 (1998).
22
G. J. Hill, H. Lee, P. J. MacQueen, A. Kelz, N. Drory, B. L. Vattiat, J. M. Good, J. Ramsey, H. Kriel, T. Peterson, D. L. DePoy, K. Gebhardt, J. L. Marshall, S. E. Tuttle, S. M. Bauer, T. S. Chonis, M. H. Fabricius, C. Froning, M. Häuser, B. L. Indahl, T. Jahn, M. Landriau, R. Leck, F. Montesano, T. Prochaska, J. M. Snigula, G. Zeimann, R. Bryant, G. Damm, J. R. Fowler, S. Janowiecki, J. Martin, E. Mrozinski, S. Odewahn, S. Rostopchin, M. Shetrone, R. Spencer, E. Mentuch Cooper, T. Armandroff, R. Bender, G. Dalton, U. Hopp, E. Komatsu, H. Nicklas, L. W. Ramsey, M. M. Roth, D. P. Schneider, C. Sneden, M. Steinmetz, The HETDEX Instrumentation: Hobby–Eberly Telescope Wide-field Upgrade and VIRUS. Astron. J.162, 298 (2021).
23
Materials and methods are available as supplementary matrials.
24
A. W. Mann, G. A. Feiden, E. Gaidos, T. Boyajian, K. von Braun, How to constrain your M dwarf: Measuring effective temperature, bolometric luminosity, mass, and radius. Astrophys. J.804, 64 (2015).
25
A. W. Mann, T. Dupuy, A. L. Kraus, E. Gaidos, M. Ansdell, M. Ireland, A. C. Rizzuto, C.-L. Hung, J. Dittmann, S. Factor, G. Feiden, R. A. Martinez, D. Ruíz-Rodríguez, P. Chia Thao, How to constrain your M dwarf. II. The mass–luminosity–metallicity relation from 0.075 to 0.70 solar masses. Astrophys. J.871, 63 (2019).
26
G. Stefansson, C. Cañas, J. Wisniewski, P. Robertson, S. Mahadevan, M. Maney, S. Kanodia, C. Beard, C. F. Bender, P. Brunt, J. C. Clemens, W. Cochran, S. A. Diddams, M. Endl, E. B. Ford, C. Fredrick, S. Halverson, F. Hearty, L. Hebb, J. Huehnerhoff, J. Jennings, K. Kaplan, E. Levi, E. Lubar, A. J. Metcalf, A. Monson, B. Morris, J. P. Ninan, C. Nitroy, L. Ramsey, A. Roy, C. Schwab, S. Sigurdsson, R. Terrien, J. T. Wright, A Sub-Neptune-sized Planet Transiting the M2.5 Dwarf G 9-40: Validation with the Habitable-zone Planet Finder. Astron. J.159, 100 (2020).
27
P. Robertson, S. Mahadevan, M. Endl, A. Roy, Exoplanet detection. Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581. Science345, 440–444 (2014).
28
T. S. Chonis et al., Proc. SPIE9908, 99084C (2016).
29
E. R. Newton, J. Irwin, D. Charbonneau, P. Berlind, M. L. Calkins, J. Mink, The Hα emission of nearby M dwarfs and its relation to stellar rotation. Astrophys. J.834, 85 (2017).
30
G. R. Ricker, J. N. Winn, R. Vanderspek, D. W. Latham, G. Á. Bakos, J. L. Bean, Z. K. Berta-Thompson, T. M. Brown, L. Buchhave, N. R. Butler, R. P. Butler, W. J. Chaplin, D. Charbonneau, J. Christensen-Dalsgaard, M. Clampin, D. Deming, J. Doty, N. De Lee, C. Dressing, E. W. Dunham, M. Endl, F. Fressin, J. Ge, T. Henning, M. J. Holman, A. W. Howard, S. Ida, J. M. Jenkins, G. Jernigan, J. A. Johnson, L. Kaltenegger, N. Kawai, H. Kjeldsen, G. Laughlin, A. M. Levine, D. Lin, J. J. Lissauer, P. MacQueen, G. Marcy, P. R. McCullough, T. D. Morton, N. Narita, M. Paegert, E. Palle, F. Pepe, J. Pepper, A. Quirrenbach, S. A. Rinehart, D. Sasselov, B. Sato, S. Seager, A. Sozzetti, K. G. Stassun, P. Sullivan, A. Szentgyorgyi, G. Torres, S. Udry, J. Villasenor, Transiting exoplanet survey satellite. J. Astron. Telesc. Instrum. Syst.1, 014003 (2015).
31
F. J. Masci, R. R. Laher, B. Rusholme, D. L. Shupe, S. Groom, J. Surace, E. Jackson, S. Monkewitz, R. Beck, D. Flynn, S. Terek, W. Landry, E. Hacopians, V. Desai, J. Howell, T. Brooke, D. Imel, S. Wachter, Q.-Z. Ye, H.-W. Lin, S. B. Cenko, V. Cunningham, U. Rebbapragada, B. Bue, A. A. Miller, A. Mahabal, E. C. Bellm, M. T. Patterson, M. Jurić, V. Z. Golkhou, E. O. Ofek, R. Walters, M. Graham, M. M. Kasliwal, R. G. Dekany, T. Kupfer, K. Burdge, C. B. Cannella, T. Barlow, A. V. Sistine, M. Giomi, C. Fremling, N. Blagorodnova, D. Levitan, R. Riddle, R. M. Smith, G. Helou, T. A. Prince, S. R. Kulkarni, The Zwicky Transient Facility: Data processing, products, and archive. Publ. Astron. Soc. Pac.131, 018003 (2019).
32
P. Kervella, F. Arenou, F. Mignard, F. Thévenin, Stellar and substellar companions of nearby stars from Gaia DR2. Astron. Astrophys.623, A72 (2019).
33
Gaia Collaboration et al., Astron. Astrophys.674, A34 (2023).
34
C. Ziegler, N. M. Law, C. Baranec, T. Morton, R. Riddle, N. De Lee, D. Huber, S. Mahadevan, J. Pepper, Measuring the recoverability of close binaries in Gaia DR2 with the Robo-AO Kepler Survey. Astron. J.156, 259 (2018).
35
P. C. Thao, A. W. Mann, M. C. Johnson, E. R. Newton, X. Guo, I. J. Kain, A. C. Rizzuto, D. Charbonneau, P. A. Dalba, E. Gaidos, J. M. Irwin, A. L. Kraus, Zodiacal Exoplanets in Time (ZEIT). IX. A flat transmission spectrum and a highly eccentric orbit for the young Neptune K2-25b as revealed by Spitzer. Astron. J.159, 32 (2020).
36
Z. Penoyre, V. Belokurov, N. Wyn Evans, A. Everall, S. E. Koposov, Binary deviations from single object astrometry. Mon. Not. R. Astron. Soc.495, 321–337 (2020).
37
J. T. Wright, A. Roy, S. Mahadevan, S. X. Wang, E. B. Ford, M. Payne, B. L. Lee, J. Wang, J. R. Crepp, B. S. Gaudi, J. Eastman, J. Pepper, J. Ge, S. W. Fleming, L. Ghezzi, J. I. González-Hernández, P. Cargile, K. G. Stassun, J. Wisniewski, L. Dutra-Ferreira, G. F. P. de Mello, M. A. G. Maia, L. N. da Costa, R. L. C. Ogando, B. X. Santiago, D. P. Schneider, F. R. Hearty, MARVELS-1: A face-on double-lined binary star masquerading as a resonant planetary system and consideration of rare false positives in radial velocity planet searches. Astrophys. J.770, 119 (2013).
38
B. Ma, J. Ge, Statistical properties of brown dwarf companions: Implications for different formation mechanisms. Mon. Not. R. Astron. Soc.439, 2781–2789 (2014).
39
M. Pan, S. Wang, J. Ji, The terrestrial planet formation around M dwarfs: Insitu, inward migration, or reversed migration. Mon. Not. R. Astron. Soc.510, 4134–4145 (2022).
40
B. Liu, M. Lambrechts, A. Johansen, I. Pascucci, T. Henning, Pebble-driven planet formation around very low-mass stars and brown dwarfs. Astron. Astrophys.638, A88 (2020).
41
S. Dash, Y. Miguel, Planet formation and disc mass dependence in a pebble-driven scenario for low-mass stars. Mon. Not. R. Astron. Soc.499, 3510–3521 (2020).
42
S. Ida, D. N. C. Lin, Toward a deterministic model of planetary formation. II. The formation and retention of gas giant planets around stars with a range of metallicities. Astrophys. J.616, 567–572 (2004).
43
J. P. Williams, Astronomical evidence for the rapid growth of millimeter‐sized particles in protoplanetary disks. Meteorit. Planet. Sci.47, 1915–1921 (2012).
44
Y. Liu, H. Linz, M. Fang, T. Henning, S. Wolf, M. Flock, G. P. Rosotti, H. Wang, D. Li, Underestimation of the dust mass in protoplanetary disks: Effects of disk structure and dust properties. Astron. Astrophys.668, A175 (2022).
45
K. G. Stassun, R. J. Oelkers, M. Paegert, G. Torres, J. Pepper, N. D. Lee, K. Collins, D. W. Latham, P. S. Muirhead, J. Chittidi, B. Rojas-Ayala, S. W. Fleming, M. E. Rose, P. Tenenbaum, E. B. Ting, S. R. Kane, T. Barclay, J. L. Bean, C. E. Brassuer, D. Charbonneau, J. Ge, J. J. Lissauer, A. W. Mann, B. McLean, S. Mullally, N. Narita, P. Plavchan, G. R. Ricker, D. Sasselov, S. Seager, S. Sharma, B. Shiao, A. Sozzetti, D. Stello, R. Vanderspek, G. Wallace, J. N. Winn, The revised TESS Input Catalog and Candidate Target List. Astron. J.158, 138 (2019).
46
C. A. L. Bailer-Jones, J. Rybizki, M. Fouesneau, M. Demleitner, R. Andrae, Estimating distances from parallaxes. V. Geometric and photogeometric distances to 1.47 billion Stars in Gaia Early Data Release 3. Astron. J.161, 147 (2021).
47
G. Stefansson, HPF-SERVAL release, v. 1.0.0. Zenodo (2023); https://doi.org/10.5281/zenodo.8397170.
48
G. Stefansson et al., Planet Formation Simulations For LHS 3154, v.1.0.0. Zenodo (2023); https://doi.org/10.5281/zenodo.8402572.
49
G. Stefansson, F. Hearty, P. Robertson, S. Mahadevan, T. Anderson, E. Levi, C. Bender, M. Nelson, A. Monson, B. Blank, S. Halverson, C. Henderson, L. Ramsey, A. Roy, C. Schwab, R. Terrien, A versatile technique to enable sub-milli-kelvin instrument stability for precise radial velocity measurements: Tests with the habitable-zone planet finder. Astrophys. J.833, 175 (2016).
50
S. Kanodia et al., Proc. SPIE10702, 107026Q (2018).
51
M. Shetrone, M. E. Cornell, J. R. Fowler, N. Gaffney, B. Laws, J. Mader, C. Mason, S. Odewahn, B. Roman, S. Rostopchin, D. P. Schneider, J. Umbarger, A. Westfall, Ten year review of queue scheduling of the Hobby‐Eberly Telescope. Publ. Astron. Soc. Pac.119, 556–566 (2007).
52
A. J. Metcalf, T. Anderson, C. F. Bender, S. Blakeslee, W. Brand, D. R. Carlson, W. D. Cochran, S. A. Diddams, M. Endl, C. Fredrick, S. Halverson, D. D. Hickstein, F. Hearty, J. Jennings, S. Kanodia, K. F. Kaplan, E. Levi, E. Lubar, S. Mahadevan, A. Monson, J. P. Ninan, C. Nitroy, S. Osterman, S. B. Papp, F. Quinlan, L. Ramsey, P. Robertson, A. Roy, C. Schwab, S. Sigurdsson, K. Srinivasan, G. Stefansson, D. A. Sterner, R. Terrien, A. Wolszczan, J. T. Wright, G. Ycas, Stellar spectroscopy in the near-infrared with a laser frequency comb. Optica6, 233 (2019).
53
J. P. Ninan et al., Proc. SPIE10709, 107092U (2018).
54
K. F. Kaplan et al., ASP Conf. Series.523, 567 (2018).
55
M. Zechmeister, A. Reiners, P. J. Amado, M. Azzaro, F. F. Bauer, V. J. S. Béjar, J. A. Caballero, E. W. Guenther, H.-J. Hagen, S. V. Jeffers, A. Kaminski, M. Kürster, R. Launhardt, D. Montes, J. C. Morales, A. Quirrenbach, S. Reffert, I. Ribas, W. Seifert, L. Tal-Or, V. Wolthoff, Spectrum radial velocity analyser (SERVAL). Astron. Astrophys.609, A12 (2018).
56
G. Anglada-Escudé, R. P. Butler, The HARPS-TERRA Project. I. Description of the algorithms, performance, and new measurements on a few remarkable stars observed by HARPS. Astrophys. J. Suppl. Ser.200, 15 (2012).
57
S. Kanodia, J. Wright, Res. Not. Am. Astron. Soc.2, 4 (2018).
58
J. T. Wright, J. D. Eastman, Barycentric corrections at 1 cm s-1 for precise Doppler velocities. Publ. Astron. Soc. Pac.126, 838–852 (2014).
59
N. Espinoza, D. Kossakowski, R. Brahm, juliet: A versatile modelling tool for transiting and non-transiting exoplanetary systems. Mon. Not. R. Astron. Soc.490, 2262–2283 (2019).
60
B. J. Fulton, E. A. Petigura, S. Blunt, E. Sinukoff, RadVel: The radial velocity modeling toolkit. Publ. Astron. Soc. Pac.130, 044504 (2018).
61
J. S. Speagle, dynesty: A dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc.493, 3132–3158 (2020).
62
G. Stefansson, S. Mahadevan, M. Maney, J. P. Ninan, P. Robertson, J. Rajagopal, F. Haase, L. Allen, E. B. Ford, J. Winn, A. Wolfgang, R. I. Dawson, J. Wisniewski, C. F. Bender, C. Cañas, W. Cochran, S. A. Diddams, C. Fredrick, S. Halverson, F. Hearty, L. Hebb, S. Kanodia, E. Levi, A. J. Metcalf, A. Monson, L. Ramsey, A. Roy, C. Schwab, R. Terrien, J. T. Wright, The habitable zone planet finder reveals a high mass and low obliquity for the young Neptune K2-25b. Astron. J.160, 192 (2020).
63
Astropy Collaboration et al., Astron. Astrophys.558, A33 (2013).
64
M. Zechmeister, M. Kürster, The generalised Lomb-Scargle periodogram. Astron. Astrophys.496, 577–584 (2009).
65
66
S. Kanodia, L. W. Ramsey, M. Maney, S. Mahadevan, C. I. Cañas, J. P. Ninan, A. Monson, A. F. Kowalski, M. C. Goumas, G. Stefansson, C. F. Bender, W. D. Cochran, S. A. Diddams, C. Fredrick, S. Halverson, F. Hearty, S. Janowiecki, A. J. Metcalf, S. C. Odewahn, P. Robertson, A. Roy, C. Schwab, R. C. Terrien, High-resolution near-infrared spectroscopy of a flare around the ultracool dwarf vB 10. Astrophys. J.925, 155 (2022).
67
A. Reiners, G. Basri, Chromospheric activity, rotation, and rotational braking in M and L dwarfs. Astrophys. J.684, 1390–1403 (2008).
68
Y. Metodieva, A. Antonova, V. Golev, D. Dimitrov, D. García-Álvarez, J. G. Doyle, Low-resolution optical spectra of ultracool dwarfs with OSIRIS/GTC. Mon. Not. R. Astron. Soc.446, 3878–3884 (2015).
69
A. A. West, K. L. Weisenburger, J. Irwin, Z. K. Berta-Thompson, D. Charbonneau, J. Dittmann, J. S. Pineda, An activity–rotation relationship and kinematic analysis of nearby mid-to-late-type M dwarfs. Astrophys. J.812, 3 (2015).
70
C. Hedges et al., Res. Not. Am. Astron. Soc.4, 220 (2020).
71
M. C. Stumpe, J. C. Smith, J. H. Catanzarite, J. E. Van Cleve, J. M. Jenkins, J. D. Twicken, F. R. Girouard, Multiscale systematic error correction via wavelet-based bandsplitting in Kepler data. Publ. Astron. Soc. Pac.126, 100–114 (2014).
72
J. Chen, D. Kipping, Probabilistic forecasting of the masses and radii of other worlds. Astrophys. J.834, 17 (2017).
73
X. Dumusque, I. Boisse, N. C. Santos, SOAP 2.0: A tool to estimate the photometric and radial velocity variations induced by stellar spots and plages. Astrophys. J.796, 132 (2014).
74
A. Reiners, J. L. Bean, K. F. Huber, S. Dreizler, A. Seifahrt, S. Czesla, Detecting planets around very low mass stars with the radial velocity method. Astrophys. J.710, 432–443 (2010).
75
E. R. Newton, J. Irwin, D. Charbonneau, Z. K. Berta-Thompson, J. A. Dittmann, A. A. West, The rotation and galactic kinematics of mid M dwarfs in the solar neighborhood. Astrophys. J.821, 93 (2016).
76
J. Bovy, galpy: A python library for galactic dynamics. Astrophys. J. Suppl. Ser.216, 29 (2015).
77
A. Carrillo, K. Hawkins, B. P. Bowler, W. Cochran, A. Vanderburg, Know thy star, know thy planet: Chemo-kinematically characterizing TESS targets. Mon. Not. R. Astron. Soc.491, 4365–4381 (2020).
78
J. Gagné, E. E. Mamajek, L. Malo, A. Riedel, D. Rodriguez, D. Lafrenière, J. K. Faherty, O. Roy-Loubier, L. Pueyo, A. C. Robin, R. Doyon, BANYAN. XI. The BANYAN Σ multivariate Bayesian algorithm to identify members of young associations with 150 pc. Astrophys. J.856, 23 (2018).
79
S. Ida, D. N. C. Lin, M. Nagasawa, Toward a deterministic model of planetary formation. VII. Eccentricity distribution of gas giants. Astrophys. J.775, 42 (2013).
80
F. S. Masset, J. C. B. Papaloizou, Runaway migration and the formation of hot Jupiters. Astrophys. J.588, 494–508 (2003).
81
S.-J. Paardekooper et al., Protostars and planets VII. Astron. Soc. Pac. Conf. Ser.534, 685 (2023).
82
A. Pepliński, P. Artymowicz, G. Mellema, Mon. Not. R. Astron. Soc.386, 179 (2008).
83
A. Pepliński, P. Artymowicz, G. Mellema, Numerical simulations of type III planetary migration - III. Outward migration of massive planets. Mon. Not. R. Astron. Soc.387, 1063–1079 (2008).
84
I. Mosqueira, P. R. Estrada, Formation of the regular satellites of giant planets in an extended gaseous nebula I: Subnebula model and accretion of satellites. Icarus163, 198–231 (2003).
85
Y. Miguel, S. Ida, A semi-analytical model for exploring Galilean satellites formation from a massive disk. Icarus266, 1–14 (2016).
86
Y. Miguel, O. M. Guilera, A. Brunini, The role of the initial surface density profiles of the disc on giant planet formation: Comparing with observations. Mon. Not. R. Astron. Soc.412, 2113–2124 (2011).
87
C. Mordasini, Y. Alibert, W. Benz, H. Klahr, T. Henning, Extrasolar planet population synthesis. Astron. Astrophys.541, A97 (2012).
88
Y. Miguel, O. M. Guilera, A. Brunini, The diversity of planetary system architectures: Contrasting theory with observations. Mon. Not. R. Astron. Soc.417, 314–332 (2011).
89
R. C. Bohlin, B. D. Savage, J. F. Drake, A survey of interstellar H I from L-alpha absorption measurements. II. Astrophys. J.224, 132 (1978).
90
A. Toomre, On the gravitational stability of a disk of stars. Astrophys. J.139, 1217 (1964).
91
S. M. Andrews, K. A. Rosenfeld, A. L. Kraus, D. J. Wilner, The mass dependence between protoplanetary disks and their stellar hosts. Astrophys. J.771, 129 (2013).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 382 | Issue 6674
1 December 2023

Article versions

Submission history

Received: 17 October 2022
Accepted: 9 October 2023
Published in print: 1 December 2023

Permissions

Request permissions for this article.

Acknowledgments

We thank the three anonymous referees for their helpful comments and suggestions, which improved the quality of this paper. Computations were performed at the Pennsylvania State University’s Institute for Computational and Data Sciences (ICDS). The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. The Low Resolution Spectrograph 2 (LRS2) was developed and funded by the University of Texas at Austin McDonald Observatory and Department of Astronomy and by Pennsylvania State University. We thank the Leibniz-Institut für Astrophysik Potsdam (AIP) and the Institut für Astrophysik Göttingen (IAG) for their contributions to the construction of the integral field units.
Funding: This work was partially supported by funding from the Center for Exoplanets and Habitable Worlds, which is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. G.S. acknowledges support provided by NASA through the NASA Hubble Fellowship grant HST-HF2-51519.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, for NASA under contract NAS5-26555. Y.M. acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement 101088557, N-GINE). C.I.C. acknowledges support through an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center administered by Oak Ridge Associated Universities through a contract with NASA. We acknowledge support from NSF grants AST-1006676 (S.M., C.F.B., and L.R), AST-1126413 (S.M., C.F.B., L.R., R.C.T., A.R., G.S., and P.R.), AST-1310885 (S.M. and C.F.B), AST-1310875 (S.D, A.J.M, and C.F.), AST-2108493 (P.R.), AST-2108512 (S.M. and M.D.), AST-2108569 (R.C.T.), AST-2108801 (W.D.C. and M.E.), the NASA Astrobiology Institute (NAI; NNA09DA76A) (S.M.), and PSARC (S.M.). We acknowledge support from the Heising-Simons Foundation through grant 2017-0494 (M.E.) and 2019-1177 (E.B.F.). S.H. acknowledges support for work performed at the Jet Propulsion Laboratory, California Institute of Technology, which was under a contract with NASA (80NM0018D0004). S.M., P.R., and G.S. performed work as part of NASA’s CHAMPs team, supported by NASA under grant 80NSSC23K1399 issued through the Interdisciplinary Consortia for Astrobiology Research (ICAR) program.
Author contributions: G.S. analyzed the RVs and host star properties, interpreted the results, and led the manuscript writing. S.M. is principal investigator of the HPF instrument, provided oversight, and assisted with analysis and interpretation. Y.M. led the planet-formation simulations, with G.S. providing assistance. P.R. provided leadership in obtaining the HPF observations and worked with G.S. and S.M. on the interpretation of the result. M.D. contributed to the RV analysis and revision of the manuscript. C.I.C. and B.P.B. provided the Gaia upper mass limit constraints and investigated the false-positive scenarios. J.N.W. provided interpretation and revision of the manuscript. G.Z., S.K., G.J.H., and G.S. reduced and interpreted the LRS2 spectra. B.Z. and E.B.F. contributed to the interpretation of the planet formation simulations. R.H. aided with the TESS photometric analysis. J.P.N., C.F.B., A.R., and R.C.T. extracted the HPF spectra and performed wavelength calibration, working with S.D., A.J.M., and C.F. to determine the wavelength solution for the HPF spectra. W.D.C. and M.E. led HPF observing programs used to discover the planet. G.S., S.M., P.R., J.P.N., C.F.B., R.C.T., A.R., S.H., S.K., F.H., A.S.J.L., A.M., L.R., C.S., and J.T.W. contributed to the design, monitoring, and execution of the HPF Survey, during which these observations were carried out. All authors contributed to the interpretation of the result.
Competing interests: The authors declare no competing interests.
Data and materials availability: The HPF radial velocities and activity indicators are provided as machine-readable files in data S1 and data S2, respectively. The 137 HPF spectra are available on Zenodo (47). The HPF-SERVAL code used to extract the RVs is available at https://github.com/gummiks/hpfserval_lhs3154 and is archived in the same Zenodo repository (47). The planet formation simulation code is available at https://github.com/AstroYamila-Team/PlanetFormation_SmallStars and is also archived on Zenodo (48).
License information: Copyright © 2023 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-reuse

Authors

Affiliations

Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA.
Roles: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing - original draft, and Writing - review & editing.
Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA.
Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA.
Institute for Particle Physics and Astrophysics, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland.
Roles: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing - original draft, and Writing - review & editing.
Leiden Observatory, Leiden University, 2300 RA Leiden, Netherlands.
Space Research Organisation of the Netherlands, NL-3584 CA Utrecht, Netherlands.
Roles: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software, Validation, Visualization, and Writing - original draft.
Department of Physics and Astronomy, University of California Irvine, Irvine, CA 92697, USA.
Roles: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing - original draft, and Writing - review & editing.
Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA.
Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA.
Roles: Formal analysis, Investigation, Software, and Writing - review & editing.
Shubham Kanodia
Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA.
Roles: Conceptualization, Formal analysis, Investigation, and Methodology.
Caleb I. Cañas
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
Roles: Formal analysis, Software, and Writing - review & editing.
Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA.
Roles: Visualization, Writing - original draft, and Writing - review & editing.
Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005, India.
Roles: Conceptualization, Data curation, Formal analysis, Investigation, Project administration, Software, and Validation.
Department of Physics and Astronomy, Carleton College, Northfield, MN 55057, USA.
Roles: Funding acquisition, Software, and Writing - review & editing.
Department of Physics and Astronomy, University of California Irvine, Irvine, CA 92697, USA.
Roles: Formal analysis, Software, Validation, and Visualization.
Eric B. Ford
Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA.
Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA.
Center for Astrostatistics, The Pennsylvania State University, University Park, PA 16802, USA.
Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
Roles: Methodology, Supervision, and Writing - review & editing.
Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA.
Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA.
Role: Writing - review & editing.
Brendan P. Bowler
Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA.
Roles: Formal analysis and Writing - review & editing.
Steward Observatory, University of Arizona, Tucson, AZ 85721, USA.
Roles: Conceptualization, Data curation, Formal analysis, Investigation, Project administration, Resources, Software, Supervision, and Writing - review & editing.
Center for Planetary Systems Habitability, The University of Texas at Austin, Austin, TX 78712, USA.
McDonald Observatory, The University of Texas at Austin, Austin, TX 78712, USA.
Roles: Conceptualization, Funding acquisition, and Writing - review & editing.
Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80305, USA.
National Institute of Standards and Technology, Boulder, CO 80305, USA.
Department of Physics, University of Colorado, Boulder, CO 80309, USA.
Roles: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Resources, and Supervision.
Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA.
Center for Planetary Systems Habitability, The University of Texas at Austin, Austin, TX 78712, USA.
Roles: Conceptualization, Data curation, Project administration, and Supervision.
National Institute of Standards and Technology, Boulder, CO 80305, USA.
Department of Physics, University of Colorado, Boulder, CO 80309, USA.
Roles: Resources and Validation.
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
Roles: Conceptualization, Methodology, and Software.
Fred Hearty
Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA.
Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA.
Roles: Data curation, Funding acquisition, Project administration, Resources, and Supervision.
Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA.
McDonald Observatory, The University of Texas at Austin, Austin, TX 78712, USA.
Roles: Data curation, Resources, and Writing - review & editing.
Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA.
Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA.
Roles: Resources and Writing - review & editing.
Andrew J. Metcalf
National Institute of Standards and Technology, Boulder, CO 80305, USA.
Department of Physics, University of Colorado, Boulder, CO 80309, USA.
Space Vehicles Directorate, Air Force Research Laboratory, Kirtland AFB, NM 87117, USA.
Roles: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, and Writing - review & editing.
Steward Observatory, University of Arizona, Tucson, AZ 85721, USA.
Roles: Investigation and Resources.
Lawrence Ramsey
Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA.
Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA.
Roles: Conceptualization, Funding acquisition, and Supervision.
Space Telescope Science Institute, Baltimore, MD 21218, USA.
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.
Roles: Conceptualization, Data curation, Resources, Software, Validation, and Writing - review & editing.
Present address: Schmidt Futures, New York, NY 10011, USA.
School of Mathematical and Physical Sciences, Macquarie University, Sydney, NSW 2109, Australia.
Roles: Conceptualization, Methodology, and Writing - review & editing.
Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA.
Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA.
Penn State Extraterrestrial Intelligence Center, The Pennsylvania State University, University Park, PA 16802, USA.
Roles: Funding acquisition, Project administration, and Supervision.
Gregory Zeimann
McDonald Observatory, The University of Texas at Austin, Austin, TX 78712, USA.
Hobby-Eberly Telescope, University of Texas at Austin, Austin, TX 78712, USA.
Roles: Resources, Software, and Writing - original draft.

Funding Information

Space Telescope Science Institute: HST-HF2-51519.001-A

Notes

*
Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. A low-mass star with a large-mass planet, Science, 382, 6674, (999-999), (2023)./doi/10.1126/science.adl3365
    Abstract
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media