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Abstract 

Bovine paratuberculosis is an endemic disease caused by Mycobacterium avium subspecies paratuberculosis (Map). 
Map is mainly transmitted between herds through movement of infected but undetected animals. Our objective was 
to investigate the effect of observed herd characteristics on Map spread on a national scale in Ireland. Herd character-
istics included herd size, number of breeding bulls introduced, number of animals purchased and sold, and number 
of herds the focal herd purchases from and sells to. We used these characteristics to classify herds in accordance with 
their probability of becoming infected and of spreading infection to other herds. A stochastic individual-based model 
was used to represent herd demography and Map infection dynamics of each dairy cattle herd in Ireland. Data on 
herd size and composition, as well as birth, death, and culling events were used to characterize herd demography. 
Herds were connected with each other through observed animal trade movements. Data consisted of 13 353 herds, 
with 4 494 768 dairy female animals, and 72 991 breeding bulls. We showed that the probability of an infected animal 
being introduced into the herd increases both with an increasing number of animals that enter a herd via trade and 
number of herds from which animals are sourced. Herds that both buy and sell a lot of animals pose the highest infec-
tion risk to other herds and could therefore play an important role in Map spread between herds.
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Introduction
Bovine paratuberculosis, or Johne’s disease, is a dis-
ease caused by Mycobacterium avium subspecies para-
tuberculosis (Map). Johne’s disease is endemic in the 
dairy sector worldwide. It has a large economic impact 
due to milk losses, early culling and increased mortal-
ity [1]. Susceptibility reduces with age, and animals are 
usually infected in the 1st year of life [2]. Clinical signs, 
including weight loss, decreased milk production, and 

diarrhoea, do not usually appear before first calving 
and are sometimes never observed [3]. However, shed-
ding starts before animals show clinical signs [4]. Tests 
to identify infected animals include milk or serum 
ELISA, PCR, and faecal culture. However, diagnosing 
infected animals is difficult because of the low sensi-
tivity of these tests, ranging from 15–71% depending 
on the stage of infection [5, 6]. Thus, infectious ani-
mals can remain undetected in a herd. Map is mainly 
transmitted between herds through movement of these 
infected but undetected animals [7]. Understanding 
the effect of animal movements on the spread of Map 
between herds and its subsequent persistence within 
infected herds can be very informative for control 
purposes. Once Map is introduced into a herd, model 
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results suggest that a herd can remain infected for over 
10  years [8, 9]. Indeed, the probability of persistence 
15 years after introduction has been estimated to be up 
to 42.7% following the introduction of a single infected 
animal into a typical spring calving Irish dairy herd 
[10].

In this study we aim to investigate Map spread between 
Irish dairy herds. In Ireland, the dairy industry is pas-
ture-based to optimize the use of grass as the primary 
feed source for lactating cattle [11]. For more than 90% 
of dairy herds, cows are housed during the winter, and 
most calves are born in spring [11, 12]. Herds have the 
opportunity to join the voluntary Irish Johne’s Con-
trol Programme (IJCP), which has four objectives: (1) 
Enhance the ability of farmers to keep their herds free of 
Map, (2) Reduce the level of infection in infected herds, 
(3) Provide additional assurance to the marketplace, and 
(4) Improve calf health and farm biosecurity [13, 14]. At 
the end of 2020, 11% of the dairy herds in Ireland, repre-
senting 18% of the dairy cows, were registered in the IJCP 
[13]. Herd prevalence was estimated to be 20.6% in 2005 
[15] and 28% in 2013–2014 [16].

Although trade movements are well described in Ire-
land [17], the contribution and intensity of trade move-
ments between herds on Map spread at the national scale 
in Ireland are still barely understood. Epidemiological 
modelling is relevant to answering this question, as it 
enables us to integrate both the within-herd population 
and infection dynamics, and to link herds through trade 
movements [18]. So far, only a few such models have 
been developed to predict Map spread between cattle 
herds at a large scale, including a model adapted to the 
dairy farming system of western France [19, 20], a model 
for Northern Italy [21], and a model for Slovenia [22, 
23]. The French model links stochastic compartmental 
within-herd models to each other using cattle trade data. 
Recently, this model has been transformed into an indi-
vidual-based model to better account for animal charac-
teristics and to facilitate assessment of control measures 
[24, 25]. The flexibility of this model makes it a good can-
didate to be adapted to represent Map spread in the pre-
dominantly seasonal Irish dairy farming system [26].

We used an adapted version of the French transmis-
sion model to simulate Map spread. Our objective was 
to investigate the effect of herd characteristics on Map 
spread in dairy herds in Ireland. Herd characteristics that 
could be calculated from the movement data included 
herd size, number of male animals introduced for breed-
ing, number of animals purchased and sold, and number 
of herds that the focal herd purchases from and sells to. 
We used these characteristics to classify herds in accord-
ance with their probability of becoming infected and of 
spreading infection to other herds.

Materials and methods
A stochastic individual-based model was used to repre-
sent herd demography and Map infection dynamics of 
each dairy cattle herd in Ireland [10, 24]. Data on herd 
size and composition, as well as birth, death, and cull-
ing events were used to characterize herd demography. 
Herds were connected with each other through observed 
animal trade movements [17]. A comprehensive dataset 
on cattle trade movements at a national scale in Ireland 
was used, comprising information for each moved animal 
(e.g., age at move, sex, breed, date of move, reason for the 
move, and source and destination herd). Details on the 
datasets used, and on the processes occurring at within- 
and between-herd scale are presented hereafter.

Data
Data were extracted from the Animal Identification and 
Movement system (AIM) of the Irish Government’s 
Department of Agriculture, Food and the Marine. The 
AIM database comprises records on bovine births, move-
ments and movement types [17, 27]. Movement data and 
demographic data (e.g., animal ID, sex, breed, date of 
birth) were extracted for the 10-year period 1st January 
2009–31st December 2018.

Herds included in our dataset, also referred to as the 
studied metapopulation, were dairy herds classified as 
such using a similar methodology to Brock et al. [28]. In 
general, European dairy herds are organized into groups 
of animals that are a similar age. Each group has its own 
housing and management that influence how, and with 
which other animals, they can interact [29]. The model 
was developed to simulate this contact structure for typi-
cal European dairy herds [9, 24, 30]. Therefore, only dairy 
herds were included.

Only herds with more than half of their animals of 
dairy breed (Additional file  1) were selected. Further-
more, more than 30% of the animals had to be female. 
With these two criteria, we were able to separate mixed 
herds (with female and male animals of dairy and beef 
breed) from store dairy male herds (high proportion 
of males that are of dairy breed [28]) and from store 
beef mixed herds (high proportion of beef animals that 
could be either males or females [28]). Next, herds were 
selected based on completeness of movement data (data 
were considered complete when data were available for 
a herd for each year of the study period). To simplify the 
simulations and analyses, we chose to exclude herds that 
closed or started during the study period (2127 herds). A 
herd was considered to be closed when, over the entire 
study period, animals only entered the herd via birth 
and exited the herd via death or slaughter. Because these 
herds do not trade with other herds, they do not contrib-
ute to Map spread and were excluded from the dataset. 
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Only female animals were modelled, with the exception 
of the purchase of some male animals for breeding (see 
below). Hence, herds that did not exchange female ani-
mals with other herds were also excluded. Finally, herds 
were selected on the basis of size: herds with 15 ani-
mals or less, or five adults or less, were considered to 
be non-commercial dairy herds and were excluded. A 
total of 13  353 herds, with 4  494  768 dairy female ani-
mals, were included in the metapopulation. The retained 
herds belonged to one of six possible herd types (defined 
in Table  1), as described in Brock et  al. [28]. Figure  1 
presents the distribution of herds included in the meta-
population per herd type. Some farms within the meta-
population conducted both dairy and fattening activities, 
however, for the purpose of modelling, it was assumed 
that the fattening activities took place on a different part 
of the farm with negligible contact between the dairy and 
fattening herds, and thus the fattening activities were not 
represented in the model.

In Ireland, the use of natural service bulls following 
rounds of artificial insemination is common practice 
[31]. To account for the risk of introducing Map into a 
herd via the purchase of bulls for breeding purposes, 
some males were also included in the dataset. Including 
bulls was only considered for herds that purchased dairy 
or beef bulls (83% of the herds). To differentiate bulls 
introduced for fattening purposes from bulls introduced 
for breeding purposes, only bulls that met the following 
criteria were included: bulls had to be pure bred dairy or 
beef, they had to enter the herd via trade, and beef bulls 
had to come from a non-dairy breeder herd. Bulls had to 
be at least 1 year of age upon entering a herd, and they 
had to remain in a herd for at least 5 months (one breed-
ing season). The maximum length of stay in a herd was 
4  years for beef bulls and 2  years for dairy bulls. It was 
assumed that dairy bulls were only used for breeding for a 

maximum of 2 years because after that these animals had 
the potential to mate with their daughters (who first calve 
at approximately 2  years of age). The number of bulls 
introduced per year was calculated based on the assump-
tion that about half the cows would be serviced by a bull, 
with 20 cows per bull. The other half of the cows will be 
artificially inseminated. The number of cows present in a 
herd was determined on the first of May of a given year. 
Based on this calculation, if more bulls were needed than 
present in the trade data, dairy bulls that were born into a 
herd and kept until breeding age were selected. A total of 
72 991 bulls were selected for 11 121 herds of the metap-
opulation and added to the dataset.

Within‑herd Map transmission model
The within-herd model is adapted from Camanes et  al. 
[24] and Biemans et  al. [10]. All parameters used and 
model equations related to disease transmission are 
described in detail in the supplementary material of 

Table 1  List of herd types 

A full description of these herd types can be found in [28].

Herd type Abbreviation Description

Typical dairy D Female dairy calves are reared to become replacement heifers and most male calves are sold at an 
early age. There are almost no males between the age of 1 and 2 years

Dairy no rearing—contract DnR-C Sell most of their calves, with female dairy calves being moved to external rearing herds. Female calves 
return to their birth herd as pregnant heifers

Dairy no rearing—no contract DnR-nC Cows are bred to beef bulls and most of their calves are sold. Replacement animals are bought from 
herds with a surplus of cows or pregnant heifers

Dairy rearing males DRm Female dairy calves are reared to become replacement heifers and males are kept. There is a high 
proportion of male animals between the age of 1 and 2 years

Mixed M Have both milk and beef production activities. Have pure-bred dairy females and cross-bred dairy and 
beef animals

Store dairy rearing SdR Female dairy calves are reared and inseminated before returning to their birth herd. Animals are usually 
of young age

Figure 1   Distribution of herds included in the metapopulation 
per herd type. Herd types (Table 1) include typical dairy (D), dairy no 
rearing—contract (DnR-C), dairy no rearing—no contract (DnR-nC), 
dairy also rearing male calves (DRm), mixed (M), and herds that rear 
dairy females (SdR). For each herd, its herd type was determined 
based on data from 2017.
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Biemans et  al. which is open access [10]. Please refer 
to that study for a detailed overview. Briefly, it is a sto-
chastic individual-based model with a discrete time step 
of 1 week. A time step of 1 week was chosen because it 
makes it possible to accurately represent the susceptible 
decay and the seasonal herd management of Irish dairy 
herds while reducing computation time compared to a 
time step of, e.g., 1 day. It accounts for herd structure and 
infection dynamics (Additional file 2). Animals belong to 
one of six age groups: newborn calves, unweaned calves, 
weaned calves, young heifers, bred heifers, and cows. 
Depending on the age group that animals are in, they 
move to the next age group either because they reach a 
defined age or at a defined time in the year (Additional 
file  2). Animals also belong to one of six health states: 
susceptible (S), resistant (R), transiently infectious (IT), 
latently infected (IL), moderately infectious (IM), and 
highly infectious and with the possibility to also be 
clinically affected (IH). Animals are assumed to be most 
susceptible at birth, with susceptibility decreasing expo-
nentially with age [2]. Infectious animals (IL, IM, IH) shed 
Map in their faeces and, after calving, in their colostrum 
and milk. The quantity shed depends on the health state 
and is heterogeneous between animals of the same state 
[4, 32]. Animals can get infected via the following trans-
mission routes: in utero including transmission during 
parturition, via ingestion of contaminated colostrum or 
milk (directly or indirectly with faeces), via contact with 
the local environment or the general indoor environment 
contaminated with faeces. Transmission via the local 
environment is defined as the risk posed by other animals 
held in the same place but not necessarily at the same 
time. The local environment can be indoor or on pas-
ture. Transmission via the general indoor environment is 
defined as the risk posed by other animals held indoors 
but not necessarily at the same place or time. All infec-
tious animals that reside indoors contribute to the con-
tamination of the general indoor environment. Within 
the indoor environment, 40% of the Map load present 
was removed per week, representing the effect of remov-
ing manure [9]. Similarly, on pasture, a 7.1% reduction in 
Map load occurred weekly [33]. Additionally, when there 
are no animals present in one of the indoor environ-
ments, they are cleaned more thoroughly, removing an 
extra 16.7% of the Map load [10, 30]. Details of all model 
parameters are in Additional file 1.

To represent Irish dairy farm management, which is 
highly seasonal [26], animals are divided into two clus-
ters depending on the season in which they are born in 
order to prevent mixing of yearlings. The spring clus-
ter consists of animals born in the first half of the year, 
while the autumn cluster consists of animals born in the 
second half of the year. The cluster, animal age, and the 

time of the year determine the age group and environ-
ment of an animal, e.g., spring-born unweaned calves are 
kept indoors up to week 14 of the year and on pasture 
from week 14 onwards, whereas autumn-born unweaned 
calves are always kept indoors. For both clusters, details 
of the transitions between age classes and environments 
in which animals are kept are in Additional file 2.

For each herd in the metapopulation, herd parameters 
for size and exit rates were calculated from the data. 
Herd size was calibrated on the 1st of January 2009. For 
each age class, seasonal exit rates (i.e., exit rates over a 
3-month period; January–March, April–June, July–Sep-
tember, October–December) were defined because it 
resulted in the best agreement between observed and 
modelled herd size compared to the use of yearly or 
monthly exit rates (Additional file 3). A newborn calf was 
added to the herd whenever a birth was observed in the 
data.

Between‑herd Map transmission model
The between-herd model connects all the within-herd 
dynamics through animal movements. Movements from 
and to a herd in the metapopulation are modelled as 
observed in the data. When an animal was moved via a 
market, the movement was represented as if it occurred 
directly from the source herd to the destination herd. 
The movement dataset comprises 2  304  149 animal 
movements of which 17% were between herds in the 
metapopulation, 20% were from a herd outside of the 
metapopulation to a herd in the metapopulation, and 
63% were from a herd in the metapopulation to a herd 
outside of the metapopulation.

The movement data define the date that a movement 
occurs, the age of the animal moved, and the source and 
destination herd. The animal to be moved is randomly 
selected from the relevant age group in the source herd, 
and thus can be of any health state. When there is, due 
to chance, no animal present in the correct age group, an 
animal of the closest age group is selected. If an animal 
is coming from a herd outside of the metapopulation, 
its health state is drawn from a distribution that corre-
sponds to the proportion of animals in each health state 
in the same age group within the entire metapopulation. 
Thus, it is assumed that the average risk of introducing 
an infected animal is the same within and from outside of 
the metapopulation.

Herd characteristics
Seven herd characteristics are calculated from the move-
ment data for every year: in-degree, out-degree, in-
strength, out-strength, polarity, herd size, and number of 
male animals introduced. The in-degree measures the 
number of herds that the herd of interest receives 
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animals from. The out-degree measures the number of 
herds that the herd of interest sends animals to. The in-
strength measures the number of animals purchased by 
the herd of interest (incoming movements). The out-
strength measures the number of animals sold by the 
herd of interest (outgoing movements). Polarity is defined 
as Polarity =

#incoming animals−#outgoing animals
#incoming animals+#outgoing animals

 . Polarity 
takes values between −1 and 1 and represents the trading 
behaviour of a herd, where herds with a polarity between 
−1 and −0.25 can be considered as predominantly selling 
herds, between −0.25 and 0.25 as neither predominantly 
buying or selling herds, and between 0.25 and 1 as pre-
dominantly buying herds [34]. The herd size was calcu-
lated as the total number of animals present in a herd on 
the first of January. These herd characteristics are calcu-
lated for every year and then averaged over the 10-year 
period. The annual strength and degree can vary over the 
years. The median values for the difference between the 
lowest and the highest value were 2.0 for in-degree and 
out-degree, 9.0 for in-strength, and 18.0 for out-strength 
(Additional file 4).

Simulation settings
Which herds were chosen to be infected at the start of 
the simulations had an effect on model predictions 
(Additional file  5). Therefore, we first assessed which 
herds were the most likely to be infected 10  years after 
Map introduction in the metapopulation when they were 
not the ones initially infected. On this basis, for 1000 
replicates, 25% of the herds were randomly chosen to 
be initially infected irrespective of their herd character-
istics. The within-herd prevalence is low in the major-
ity of herds based on earlier analyses of field data [15, 
35]. Therefore, the within-herd prevalence in the herds 
that are initially infected was drawn from a Gaussian 
distribution N(−0.42,0.12), keeping only values below 
0.7 because higher values are rarely observed in the 
field (Additional file  6). The probability of a herd being 
infected after 10  years of simulating Map transmission 
was calculated for each herd given that it was not initially 
infected. The 30% most likely herds to be infected were 
chosen as candidate herds to be initially seeded with Map 
in the subsequent simulations.

Second, for 300 replicates, amongst the candidate herds 
that were most likely to be infected, 25% of the total num-
ber of herds were chosen to be initially infected. Their 
initial within-herd prevalence was drawn from the afore-
mentioned distribution. Assuming a herd prevalence of 
25% in 2009 was in agreement with field observations, 
the prevalence being estimated at 20.6% in 2005 [15], 
while it has been estimated at 28% in 2013–2014 [16]. 
Map transmission was simulated for 10 years, matching 
the temporal extent of the movement data.

Model outputs
Firstly, we analysed over time the proportion of herds 
infected, hereafter called “herd prevalence”, and the pro-
portion of infected animals among > 2-year-old animals 
present in each infected herd the first of January each 
year, hereafter called “within-herd prevalence”. Secondly, 
we investigated the correlation between observed herd 
characteristics to provide context when interpreting 
the results of the simulations. Thirdly, we calculated for 
each herd the probability of becoming infected and the 
probability of escaping infection. We related these prob-
abilities to the in- and out-degrees, in- and out-strengths, 
herd size, and number of male animals introduced for 
breeding. The probability of a herd becoming infected 
was calculated with as denominator the number of rep-
licates in which a herd was not initially infected and as 
numerator the subset of these replicates in which at least 
one infected animal entered the herd during the 10-year 
simulation period. The probability of a herd escaping 
infection was calculated using the same denominator 
(the number of replicates in which a herd was not initially 
infected) and as numerator the subset of these replicates 
in which no infected animal entered the herd within the 
10-year simulation period. A generalized linear model 
with a logit link was used to connect (the logarithm of ) 
each herd characteristic to the probability of a herd being 
infected, model fit was assessed by Akaike information 
criterion (AIC). Fourthly, we investigated the infection 
risk posed by each selling herd type. We determined 
the number of buying herds infected following outward 
movements of infected animals from each selling herd, 
and summarised as the average number of herds infected 
by each selling herd type. A buying herd was consid-
ered to be infected by the selling herd if at least one 
infected animal was introduced and up to that moment 
no infected animals had been present in the herd. Lastly, 
we determined the number of unique infection sources 
per herd. A herd is an infection source if it introduces 
an infected animal in the herd of interest in at least one 
replicate.

Results were analysed and visualized in R [36] using the 
dplyr, tidyr, ggplot2, viridis, ggridges, PerformanceAna-
lytics, multcomp and Reshape2 packages [37–44].

Results
Prevalence
For all replicates, herd prevalence increased over time 
(Figure 2A). After 10 years of simulation, herd prevalence 
was 49.9% on average. The average within-herd preva-
lence among > 2-year-old animals for all herds (including 
uninfected herds) was 4.1% at the start of the simulations 
in January 2009. It increased to 5.6% at the end of the 
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simulations in December of 2018. The average within-
herd prevalence among > 2-year-old animals within 
infected herds (Figure  2B) was 17.8% in 2009, decreas-
ing to 8.5% in 2012 then increasing to 12.7% at the end 
of 2018. This initial decrease was expected as only few 
infected animals are present in newly-infected herds, 
which by calculation induces a decrease in the average 
within-herd prevalence.

Herd characteristics
Table  2 presents the mean value of each herd charac-
teristic per herd type. Herds classified as SdR (herds 
that rear dairy females) have the highest values for 
in-strength and out-strength but the number of SdR 
herds is small (n = 2). On average, herds classified as 
DnR-C (dairy herds which contract out calf rearing to 
other herds) have a higher out-degree and out-strength 

Figure 2   Herd prevalence and within herd prevalence over time. A Herd prevalence for all replicates. B Distribution of within-herd prevalence 
within infected herds, based on infection prevalence among > 2-year-old animals on the 1st of January of the respective years.

Table 2  Mean value of a herd characteristic per herd type 

The 25% and 75% quantile values are in parentheses. Herd types are typical dairy (D), dairy no rearing—contract (DnR-C), dairy no rearing—no contract (DnR-nC), 
dairy also rearing male calves (DRm), mixed (M), and herds that rear dairy females (SdR) (defined in Table 1).

Herd type In-degree Out-degree In-strength Out-strength Herd size Number 
of males 
purchased

D 1.07
(0.30–1.20)

1.92
(1.00–2.20)

4.99
(0.45–4.65)

15.79
(5.90–19.40)

125.6
(72.0–153.9)

0.52
(0.10–0.70)

DnR-C 1.18
(0.70–1.40)

2.37
(1.10–2.80)

22.29
(8.55–27.6)

43.05
(19.30–54.00)

167.5
(99.5–204.7)

0.87
(0.30–1.20)

DnR-nC 2.90
(0.90–2.70)

1.59
(1.00–1.80)

15.08
(3.40–14.43)

15.71
(4.28–15.45)

77.4
(41.2–88.8)

0.40
(0.10–0.50)

DRm 1.41
(0.30–1.30)

1.44
(0.50–1.60)

5.58
(0.60–4.70)

9.75
(2.30–12.40)

118.9
(73.1–146.7)

0.70
(0.20–1.00)

M 1.40
(0.50–1.60)

1.03
(0.50–1.30)

4.78
(1.00–5.80)

5.82
(1.80–7.70)

79.3
(47.1–100.0)

0.49
(0.10–0.60)

SdR 2.45
(1.58–3.33)

1.35
(1.18–1.53)

77.20
(53.70–100.70)

82.60
(52.45–112.75)

62.3
(58.6–66.0)

0.15
(0.08–0.23)

Overall 1.27
(0.40–1.40)

1.62
(0.80–1.90)

6.37
(0.70–6.20)

13.74
(3.70–16.30)

113.3
(62.9–139.3)

0.56
(0.10–0.80)
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compared to the other herd types. Furthermore, herds 
classified as DnR-C or DnR-nC (non-rearing dairy 
herds which do not use contract rearing) have a higher 
in-strength compared to the other herd types.

Figure 3 presents the correlation between the six herd 
characteristics for all 13  353 herds. In-degree and in-
strength have a strong positive correlation (0.80), as 
have in-strength and out-strength (0.72). For the other 

characteristics, the correlation is moderate (0.36–0.67) 
to weak (< 0.36).

Probability of becoming infected and probability 
of escaping infection
Figure  4 presents the probability of a herd becoming 
infected versus six herd characteristics. For all of these 
herd characteristics, the probability to becoming infected 
increased with higher values for the characteristics. For all 

Figure 3   Visualization of the correlation matrix between the six herd characteristics as observed in the dataset for all 13 353 herds. On 
the diagonal are histograms of the values of the herds characteristics, to the right of the diagonal are the Pearson correlation coefficients, and to the 
left are bivariate scatterplots with a fitted line (red).
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models, the explanatory variables were significant, but the 
model with the logarithm of in-strength as the explana-
tory variable had the best fit (lowest AIC). For 957 herds, 
the probability to becoming infected was zero. However, 
this did not necessarily mean that they did not purchase 
any animals, as 177 of these herds had an average in-degree 
(mean = 0.15) and in-strength (mean = 0.36) higher than 
0. For 2390 herds, the probability to becoming infected 
was 100%. However, this did not necessarily mean that 
they purchased animals from many other herds, as 481 of 
these herds (20.1%) had an average in-degree lower than 1 
(mean = 0.69). Herds with an average in-degree higher than 
3, herds with an in-strength higher than 8 and herds that 
purchased more than three breeding bulls per year all had 
a probability exceeding 95% of becoming infected at least 
once during the 10 years of simulation.

Of the 13 353 herds in the metapopulation, 1969 herds 
escaped infection in more than 90% of the replicates. Fig-
ure  5 presents the distribution of herd characteristics 
among these 1969 herds compared to all herds in the meta-
population, and to herds that became infected during the 
10-year simulation period in every replicate. For every herd 
characteristic, the average value was the lowest for herds 
that escaped infection and the highest for herds that always 
became infected. This difference was most pronounced 
for the average in-strength, with a median value of 0.1 for 
herds that escaped infection and 14.0 for herds that always 
became infected. Of the herds that escaped infection, 
57.2% never purchased a male animal, while only 4.4% of 
the herds that were always infected never purchased a male 
animal. For 99.5% of the herds that escaped infection, the 
average in-strength was lower than 4, while for 96.2% of the 
herds that always became infected the average in-strength 
was 4 or more.

The role of the different herd types on Map spread 
between herds
Figure  6 presents the distribution of the infection 
risk posed by each selling herd type. Herds classified 
as DnR-C infected significantly more dairy herds on 
average compared to all other herd types. Herds clas-
sified as DnR-nC and herds classified as typical dairy 
(D) infected significantly more herds than mixed herds 
(M) and dairy herds that also rear male calves (DRm). 
DRm herds infected significantly more dairy herds than 
mixed herds. Thus, for the mean average number of 
dairy herds infected per herd type: DnR-C > DnR-nC 
and D > DRm > M. The percentage of herds per type 
that did not infect any other dairy herds was 23.0% for 
DnR-C, 48.2% for DnR-nC herds, 54.1% for D, 65.6% for 
DRm, and 74.1% for M. The DnR-C herds that infected 
other dairy herds infected 1.7 dairy herds on average, 

with a maximum of 29.9. For all herd types except SdR, 
herds that infected other dairy herds infected between 
1.1 and 1.3 herds on average. The mean of herds classi-
fied as SdR (n = 2) was not significantly different from 
any other herd type.

Figure  7 presents the average number of suscep-
tible herds in which the herd of interest (the selling 
herd) introduced an infected animal versus the aver-
age polarity of the herd of interest. Herds with an aver-
age in-strength of less than 4 are presented separately 
from herds with an average in-strength of 4 or more, 
based on the results presented in  Figure  5C. Herds 
could have a very different in-strength while having the 
same polarity, e.g., a herd that sells one animal and buys 
one animal has a polarity of 0, while a herd that sells 
50 animals and buys 50 animals also has a polarity of 0. 
However, the risk of becoming infected and spreading 
infection is not the same. The mean polarity of herds 
with an in-strength of less than 4 was −0.49, and for 
herds with an in-strength of 4 or more it was −0.09. 
The mean probability of becoming infected during the 
10-year simulation period was 40.0% for herds with an 
in-strength of less than 4, and 93.2% for herds with an 
in-strength of 4 or more. The mean number of suscepti-
ble herds into which an infected animal was introduced 
was 0.34 for selling herds with an in-strength of less 
than 4 and 70% of these selling herds did not infect any 
other herd. For selling herds with an in-strength of 4 
or more this number was 0.89, and 41% of these selling 
herds did not infect any other herds.

Figure  8 presents the distribution of the number 
of unique infection sources per herd type. DnR-nC 
herds had significantly more unique infection sources 
compared to the other herd types. M herds had sig-
nificantly more unique infection sources than D, DRm, 
and DnR-C. DRm herds had significantly more unique 
infection sources than D and DnR-C, and D herds had 
significantly more infection sources than DnR-C. So, 
for the mean number of unique infection sources: DnR-
nC > M > DRm > D > DnR-C. Herds had on average 3.3 
unique sources of infection, with a maximum of 20. 
Again the mean of herds classified as SdR was not sig-
nificantly different from other herd types.

Discussion
We used a stochastic individual-based transmission model 
to simulate Map spread between dairy cattle herds in Ire-
land, with the aim of investigating the effect of herd char-
acteristics on the risk of becoming infected and spreading 
infection on a national scale. We showed that the prob-
ability of an infected animal being introduced into the herd 
increases both with increasing in-strength (the number 
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Figure 4   Probability of a herd becoming infected versus six herd characteristics. Each point represents a single herd. Red lines correspond 
to the prediction of the generalized linear model with a logit link and the logarithm of the herd characteristic (in-degree (A), out-degree (B), 
in-strength (C), out-strength (D), number of males purchased (F)) or the herd characteristic (herd size (E)) as explanatory variable. For the definition 
of the probability of a herd becoming infected see text.

of animals that enter a herd via trade) and in-degree (the 
number of herds from which animals are sourced). Fur-
thermore, herds that both buy and sell a lot of animals pose 
the highest infection risk. Non-rearing dairy herds trade 

more animals and with more dairy herds than other herd 
types and could therefore play an important role in Map 
spread between dairy cattle herds.
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We found that herds classified as non-rearing dairy 
herds infected on average more herds compared to other 
herd types. These herds (DnR-C and DnR-nC) do not rear 
their own female dairy calves. Calves are moved to con-
tract rearing herds and pregnant heifers are bought back 
from the same contract rearing herd (DnR-C). Or cows 
are bred to beef bulls and the calves are sold, replacement 
heifers are bought from other herds (DnR-nC). The in-
strength and out-strength (and to a lesser extent in-degree 
and out-degree) of these herd types was high compared to 
other herd types. DnR-C and DnR-nC herds also infected 
on average more herds compared to other herd types, and 
DnR-nC herds had the highest number of unique infection 
sources. Over 84% of the DnR-C and over 52% of the DnR-
nC herds infected at least one other herd after they became 
infected themselves. Furthermore, 89% of the DnR-C herds 
and 40% of the DnR-nC herds had a probability greater 
than 97.5% of becoming infected during the 10-year simu-
lation period. Because of these herd characteristics, it could 
be that these herd types play an important role in disease 
spread between herds. Although the trading structures 
are very different, pig herds in the pork supply chain with 
a high out-degree or long outgoing infection chain were 
of particular importance during an epidemic with regard 
to disease spread [45]. The in-going and out-going infec-
tion chains, while being complex to calculate for a national 
trade network of the size of the one considered in our 
study, could provide interesting insight in how much every 
herd type actually contributes to Map spread between 
dairy cattle herds.

We observed a strong positive correlation between in-
degree and in-strength (0.80), meaning that herds that 
bought from a small number of other herds were also likely 
to buy a small total number of animals and vice-versa. Fur-
thermore, we found a high correlation between in-strength 
and out-strength (0.72), meaning that herds that bought a 
lot of animals were likely to also sell a lot of animals, and 
vice-versa. Tratalos et al. [17], who analysed movements of 
all cattle in Ireland in 2016 including movements of males 
and animals of beef breed, also observed a strong correla-
tion between in-degree and in-strength (0.88). However, 
there was little correlation between in- and out-strength 
(0.057). This could be because the trading pattern of female 
animals for dairy herds is different from the trading pattern 
of all animals (including males and animals of beef breed) 
for all cattle herds in Ireland which involves many differ-
ent herd types. For most dairy herds trade is from herd to 
herd. These movements are all considered when calculating 
the in- and out-strength. In contrast, many beef herds sell 
directly to abattoirs, these movements were not considered 
for the calculations [17].

We found that the probability of a herd becoming 
infected during the 10-year simulation period increased 

rapidly with increasing number of animals purchased per 
year. Herds that bought more than 8 animals per year had, 
on average, a probability of over 95% of becoming infected. 
Also for France the probability of becoming infected 
increased with the number of animals purchased; French 
farms that bought three or more animals per year had a 
probability of over 50% of becoming infected within the 
9-year simulation period [19]. However, buying an infected 
animal does not always imply disease persistence in the 
herd. For France, the probability of persistence decreases 
when the number of animals traded increases, i.e., a high 
turnover rate increases the probability of removing infected 
animals [19]. Further work could focus on investigating 
whether this phenomenon is also observed in Ireland.

We used polarity as a measure to investigate the prob-
ability of a herd becoming infected and thereafter being a 
risk of spreading infection to other herds. Results are pre-
sented separately for herds with an average in-strength of 
less than 4 and herds with an average in-strength of 4 or 
more. Herds with an average in-strength of less than 4 often 
escape infection and herds with an average in-strength of 
4 or more have a high probability to become infected (Fig-
ures 4C and 5C). There is also a difference in mean polar-
ity for herds with an in-strength of less than 4 and herds 
with an in-strength of 4 or more. Herds with an in-strength 
of less than 4 are generally sellers, while herds with an in-
strength of 4 or more are generally wholesalers (herds that 
both buy and sell animals). For France, it was shown that 
wholesalers are more likely to spread infection compared to 
sellers or buyers [19]. In Ireland this is especially true for 
wholesalers with a high in-strength; because of the large 
number of animals going in and out of these herds, they 
not only have a high probability of becoming infected, but 
also have a high probability of spreading infection to other 
herds (Figure 7).

Map infection was very persistent, as shown by herd 
prevalence increasing over time for all replicates. Model 
predictions in dairy herds in France showed that, even 
with low herd prevalence and within-herd prevalence, 
extinction was impossible without intervention strate-
gies [19]. However, herd prevalence could be lowered 
using combinations of control measures, for example by 
combining intervention strategies with risk based trad-
ing based on herd status to prevent Map introductions in 
free herds [20, 25]. In Ireland, herd prevalence was esti-
mated at 28% in 2013–2014 [16]. In the French modelling 
study looking at risk-based trading [25], a much higher 
initial herd prevalence was assumed, but considering 
very low within-herd prevalence, most infected herds 
had a within-herd prevalence below the detection thresh-
old. Another major difference between the two modelled 
regions lies in the number of trade movements, with 
many more trade movements in Ireland (2  304  149 for 
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Figure 5  Distribution of herd characteristics among all herds, those escaping infection, and those always infected. Herd characteristics 
of all herds in the metapopulation (n = 13 353, striped), herds that have a probability > 90% of escaping infection (1629 herds, green), and herds 
that consistently became infected during the 10-years simulation period (3862 herds, blue). Herd characteristics considered: average in-degree (A), 
average out-degree (B), average in-strength (C), average out-strength (D), average herd size (E), and average number of males purchased (F). For the 
definition of the probability of a herd escaping infection or becoming infected see text.

13 353 herds) than in France (919 304 for 12 857 herds). 
It would, therefore, be interesting to investigate whether 
combining risk-based trading with intervention strategies 
would lead to similar results to those for France.

We included breeding bulls in the dataset because we 
wanted to account for the associated risk of Map intro-
duction. After their introduction in the herd, bulls were 
assumed to behave like, and reside in the same location 
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Figure 6  Distribution of the infection risk posed by each selling herd type. A Infection risk posed per herd type. Each box contains values 
between the first and the third quartiles, the horizontal line corresponding to the median. Vertical lines outside the boxes extend to 10th and 90th 
percentiles. B Tukey test-95% family-wise confidence level for each combination of herd types. The figure presents the value of the difference 
between the means and their respective 95% CI. The vertical dashed line indicates the point where the difference in means is zero. Herd types are 
described in Table 1. For the definition of infection risk posed see text.

Figure 7  Infection risk versus average polarity. A Herds with an average in-strength of less than 4 (n = 8478); B Herds with an average 
in-strength of 4 or more (n = 4875). Polarity is an indicator of the trading behaviour of a herd, where herds with a polarity between −1 and −0.25 
can be considered as predominantly selling herds, between −0.25 and 0.25 as neither predominantly buying or selling herds, and between 0.25 
and 1 as predominantly buying herds. Points are coloured according to the probability of a herd being infected. Lines show the density curve. For 
the definition of infection risk posed see text.
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as, female animals of their age group. Transmission via 
semen [46–48], whether through natural service or arti-
ficial insemination, was not modelled as such. Beef bulls 
that were introduced came from herds outside of the 
metapopulation. The probability of a herd becoming 
infected increased with an increasing average number of 
bulls purchased per year. However, the average number 
of bulls purchased per year was not the best predictor for 
the probability of a herd to become infected, average in-
strength being better. The number of bulls purchased per 
year was low (mean = 0.56) compared to the in-strength 
(mean = 6.37). Therefore, to reduce the risk of becoming 
infected, it is probably more effective to lower the num-
ber of female animals introduced from other herds than 
to stop using beef bulls for breeding.

The model is data-driven, meaning that herd-specific 
parameters such as initial herd size, exit rate, calves born 
over time and animal movements between herds were 
based on real trade data. An advantage of using real data 
is that there is a close resemblance to reality; actual herd 
demographics resemble simulated herd demographics, 
and herds interacting in reality are also interacting in the 
model. It was, therefore, possible to identify which herds 
with associated herd characteristics were most exposed 
to infection, had a higher chance of escaping it, or con-
tributed most to Map spread. A disadvantage of using 

real data is that the simulated period and the number of 
herds modelled are constrained by the data, and simula-
tions are based on past events. Farm numbers declined 
over the studied period [49, 50], and only herds with data 
over the whole period 2009–2018 were included in the 
model. Predicting animal movements based on trade pat-
terns between herds would make it possible to simulate 
future dynamics as well. However, no method is available 
so far to predict animal movements at such a large scale 
(several thousand herds). In addition, obtaining accurate 
predictions might be difficult for some herds that have 
highly variable trade characteristics between years.

In the model, several assumptions are made. Validat-
ing the realism of these assumptions is not always easy 
because detailed data is not available. However, model 
components and the parameters used in the model are 
based on research, and updated when new information 
becomes available. For the within-herd part of the model, 
the transmission rates are the most uncertain. Two previ-
ous studies using a similar model, performed a sensitiv-
ity analysis on these parameters. For transmission within 
Irish dairy herds, only variation in the transmission rate 
parameter for the general indoor environment had an 
effect on prevalence over time, but the conclusion that 
the general indoor environment was the most important 
transmission route remained unchanged [10]. Similar 

Figure 8  The distribution of the number of unique infection sources per destination herd type. A herd is counted as an infection source if 
it introduced an infected animal to the destination herd in at least one replicate. Herd types are described in Table 1. A Number of unique infection 
sources per herd summarized by herd type of destination herds. Each box contains values between the first and the third quartiles, the horizontal 
line corresponding to the median. Vertical lines outside the boxes extend to 10th and 90th percentiles. B Tukey test-95% family-wise confidence level 
for each combination of herd types. The figure presents the value of the difference between the means and their respective 95% CI. The vertical 
dashed line indicates the point where the difference in means is zero. For the definition of unique infection source see text.
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results were found for transmission within French dairy 
herds, when transmission rate parameters were varied 
with 50% compared to the reference scenario [9]. For the 
between-herd part of the model, the only assumption 
that was made is that the herd and within-herd preva-
lence of herds outside of the metapopulation is the same 
as the herd and within-herd prevalence of herds within 
the metapopulation. Data to validate this assumption 
are lacking, and therefore it was simplest to assume that 
the average risk of introducing an infected animal from 
within and from outside of the metapopulation was the 
same.

Brock et  al. [28] identified 17 different herd types in 
Ireland based on nine variables. Our focus was on dairy 
herds, and therefore, only herds belonging to one of 
the following six dairy herd types were included in the 
model. In typical dairy herds (D), the most common 
dairy herd type, most female dairy calves are reared 
to become replacement heifers and most of their male 
calves are sold at an early age. Therefore, there are almost 
no males between the age of 1 and 2 years in these herds. 
Mixed herds (M), the second most common dairy herd 
type, are characterised by having both milk and beef pro-
duction activities; on average, these herd have half pure-
bred dairy females and half cross-bred dairy and beef 
animals. For these mixed herds, even though there are 
two production types on the same farm, we assumed that 
the milk and beef production activities were managed in 
separate locations and that contact between dairy and 
beef animals was negligible. Therefore, we also neglected 
in- and out-movements related to the beef production 
activity. The third most common herd type is dairy herds 
that also rear their male calves (DRm). Similar to typical 
dairy herds (D), female dairy calves are reared to become 
replacement heifers, however, in DRm herds the males 
are kept, resulting in a high proportion of male animals 
between the age of 1 and 2 years. In the model, only data 
on female animals was included (with the exception of 
some data on breeding bulls), therefore, data on male 
animals in DRm herds was not included. Since the males 
are sold as young stock before the age of 104 weeks for 
fattening [51], we assumed that the probability that they 
are shedding Map substantially in the presence of young 
dairy female calves is low, and therefore, their contribu-
tion to Map spread is minimal. Slightly less prevalent 
were the non-rearing dairy herds (DnR-C and DnR-nC). 
These herds sell most of their calves, with female dairy 
calves being moved to external contract rearing herds 
(e.g., herds that rear dairy females (SdR)). The differ-
ence between DnR-C herds and DnR-nC herds is that in 
DnR-C herds the female calves return to their birth herd 
as pregnant heifers (contract rearing), whereas in DnR-
nC herds there is no contract rearing and replacement 

animals are bought from other herds with a surplus of 
cows or pregnant heifers. In SdR herds, female dairy 
calves are reared and inseminated before returning to 
their birth herd (the DnR-C herds). In these herds, ani-
mals are usually of young age. Since herds with less 
than five adults were too small to be taken into account 
by the model, only two SdR herds were included in the 
metapopulation.

Non-dairy herds were connected to the dairy herds 
as well. However, 63% of the movements were from a 
dairy herd in the metapopulation to a herd outside of 
the metapopulation. Only 20% of the movements were 
from a herd outside of the metapopulation to a herd 
in the metapopulation. Brock et  al. [51] investigated 
transport flows per herd type for Ireland. The major-
ity of the movements to dairy herds came from store 
herds. In our manuscript, only two store herds (SdR) 
were included, mainly because in store herds often 
only young animals are present (i.e., young female dairy 
calves are introduced, reared and inseminated, before 
being returned to their birth herd). Most store herds 
were excluded from the metapopulation based on the 
criteria that at least five adult animals needed to be 
present in the herd. However, movements from these 
herds into the metapopulation were still simulated. The 
risk of introducing an infected animal through such a 
movement was drawn from a distribution that corre-
sponded to the proportion of animals in each health 
state in the same age group within the entire metapop-
ulation. So the risk of transmission was accounted for. 
Unfortunately, it was not possible to include non-dairy 
herd types because the model was specifically designed 
to represent dairy herd management.

In the model, we assumed that herd management was 
similar for all farms, even though the characteristics of 
the herd types, especially with regard to which age groups 
are present, are different. In the model, animals were 
divided into age classes, each with their own properties, 
and therefore all herds could be modelled in the same 
way. For example, for all herds we assumed that cows 
would go to pasture in the beginning of March, whereas 
calves stay indoors to the end of April. Thus, properties 
between age classes were different but for a given age 
class properties were the same across farm types.

We have shown that herds that buy many animals from 
a lot of different source herds have the highest probabil-
ity of becoming infected, whereas herds that buy only a 
few animals from a few sources have the highest prob-
ability of escaping infection. Furthermore, on average, 
herds classified as non-rearing dairy herds are at great-
est risk of infecting other herds, compared to other herd 
types. These findings could be used to identify herds 
on which the control programme could particularly 



Page 15 of 16Biemans et al. Veterinary Research           (2022) 53:45 	

focus, including those at highest risk of being infected 
and those at highest risk of spreading infection to other 
herds. For example, by combining intervention strategies 
with risk based trading, there is the possibility to prevent 
Map introduction into herds that are currently free of 
infection.
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