Advertisement

Preserving Predators

Large-bodied animals play essential roles in ecosystem structuring and stability through both indirect and direct trophic effects. In recent times, humans have disrupted this trophic structure through both habitat destruction and active extirpation of large predators, resulting in large declines in numbers and vast contractions in their geographic ranges. Ripple et al. (10.1126/science.1241484; see the Perspective by Roberts) review the status, threats, and ecological importance of the 31 largest mammalian carnivores globally. These species are responsible for a suite of direct and indirect stabilizing effects in ecosystems. Current levels of decline are likely to result in ecologically ineffective population densities and can lead to ecosystem instability. The preservation of large carnivores can be challenging because of their need for large ranges and their potential for human conflict. However, the authors demonstrate that the preservation of large carnivores is ecologically important and that the need for conservation action is immediate, given the severity of the threats they face.

Structured Abstract

Background

The largest terrestrial species in the order Carnivora are wide-ranging and rare because of their positions at the top of food webs. They are some of the world’s most admired mammals and, ironically, some of the most imperiled. Most have experienced substantial population declines and range contractions throughout the world during the past two centuries. Because of the high metabolic demands that come with endothermy and large body size, these carnivores often require large prey and expansive habitats. These food requirements and wide-ranging behavior often bring them into conflict with humans and livestock. This, in addition to human intolerance, renders them vulnerable to extinction. Large carnivores face enormous threats that have caused massive declines in their populations and geographic ranges, including habitat loss and degradation,persecution, utilization, and depletion of prey. We highlight how these threats can affect theconservation status and ecological roles of this planet’s 31 largest carnivores.

Advances

Based on empirical studies, trophic cascades have been documented for 7 of the 31 largest mammalian carnivores (not including pinnipeds). For each of these species (see figure), human actions have both caused declines and contributed to recovery, providing “natural experiments” for quantifying their effects on food-web and community structure. Large carnivores deliver economic and ecosystem services via direct and indirect pathways that help maintain mammal, avian, invertebrate,and herpetofauna abundance or richness. Further, they affect other ecosystem processes and conditions, such as scavenger subsidies, disease dynamics, carbon storage, stream morphology, and crop production. The maintenance or recovery of ecologically effective densities of large carnivores is an important tool for maintaining the structure and function of diverse ecosystems.

Outlook

Current ecological knowledge indicates that large carnivores are necessary for the maintenanceof biodiversity and ecosystem function. Human actions cannot fully replace the role of large carnivores. Additionally, the future of increasing human resource demands and changing climate will affect biodiversity and ecosystem resiliency. These facts, combined with the importance of resiliente cosystems, indicate that large carnivores and their habitats should be maintained and restored wherever possible. Preventing the extinction of these species and the loss of their irreplaceable ecological function and importance will require novel, bold, and deliberate actions. We propose a Global Large Carnivore Initiative to coordinate local, national, and international research, conservation, and policy.

Abstract

Large carnivores face serious threats and are experiencing massive declines in their populations and geographic ranges around the world. We highlight how these threats have affected the conservation status and ecological functioning of the 31 largest mammalian carnivores on Earth. Consistent with theory, empirical studies increasingly show that large carnivores have substantial effects on the structure and function of diverse ecosystems. Significant cascading trophic interactions, mediated by their prey or sympatric mesopredators, arise when some of these carnivores are extirpated from or repatriated to ecosystems. Unexpected effects of trophic cascades on various taxa and processes include changes to bird, mammal, invertebrate, and herpetofauna abundance or richness; subsidies to scavengers; altered disease dynamics; carbon sequestration; modified stream morphology; and crop damage. Promoting tolerance and coexistence with large carnivores is a crucial societal challenge that will ultimately determine the fate of Earth’s largest carnivores and all that depends upon them, including humans.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Figs. S1 to S4
Tables S1 to S3

Resources

File (ripple.sm.pdf)

References and Notes

1
L. Hunter, Carnivores of the World (Princeton Univ. Press, Princeton, NJ, 2011).
2
Ceballos G., Ehrlich P. R., Mammal population losses and the extinction crisis. Science 296, 904–907 (2002). 10.1126/science.1069349
3
Morrison J. C., Sechrest W., Dinerstein E., Wilcove D. S., Lamoreux J. F., Persistence of large mammal faunas as indicators of global human impacts. J. Mammal. 88, 1363–1380 (2007). 10.1644/06-MAMM-A-124R2.1
4
Prugh L. R., Stoner C. J., Epps C. W., Bean W. T., Ripple W. J., Laliberte A. S., Brashares J. S., The rise of the mesopredator. Bioscience 59, 779–791 (2009). 10.1525/bio.2009.59.9.9
5
Estes J. A., Terborgh J., Brashares J. S., Power M. E., Berger J., Bond W. J., Carpenter S. R., Essington T. E., Holt R. D., Jackson J. B., Marquis R. J., Oksanen L., Oksanen T., Paine R. T., Pikitch E. K., Ripple W. J., Sandin S. A., Scheffer M., Schoener T. W., Shurin J. B., Sinclair A. R., Soulé M. E., Virtanen R., Wardle D. A., Trophic downgrading of planet Earth. Science 333, 301–306 (2011). 10.1126/science.1205106
6
Beschta R. L., Ripple R. J., Large predators and trophic cascades in terrestrial ecosystems of the western United States. Biol. Conserv. 142, 2401–2414 (2009). 10.1016/j.biocon.2009.06.015
7
Ritchie E. G., Elmhagen B., Glen A. S., Letnic M., Ludwig G., McDonald R. A., Ecosystem restoration with teeth: What role for predators? Trends Ecol. Evol. 27, 265–271 (2012). 10.1016/j.tree.2012.01.001
8
Carbone C., Mace G. M., Roberts S. C., Macdonald D. W., Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999). 10.1038/46266
9
Cardillo M., Purvis A., Sechrest W., Gittleman J. L., Bielby J., Mace G. M., Human population density and extinction risk in the world’s carnivores. PLOS Biol. 2, e197 (2004). 10.1371/journal.pbio.0020197
10
Cardillo M., Mace G. M., Jones K. E., Bielby J., Bininda-Emonds O. R., Sechrest W., Orme C. D., Purvis A., Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005). 10.1126/science.1116030
11
Carbone C., Gittleman J. L., A common rule for the scaling of carnivore density. Science 295, 2273–2276 (2002). 10.1126/science.1067994
12
Wallach A. D., Johnson C. N., Ritchie E. G., O’Neill A. J., Predator control promotes invasive dominated ecological states. Ecol. Lett. 13, 1008–1018 (2010). 20545732
13
Ripple W. J., Wirsing A. J., Wilmers C. C., Letnic M., Widespread mesopredator effects after wolf extirpation. Biol. Conserv. 160, 70–79 (2013). 10.1016/j.biocon.2012.12.033
14
Ritchie E. G., Johnson C. N., Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12, 982–998 (2009). 10.1111/j.1461-0248.2009.01347.x
15
Schmitz O. J., Hawlena D., Trussell G. C., Predator control of ecosystem nutrient dynamics. Ecol. Lett. 13, 1199–1209 (2010). 10.1111/j.1461-0248.2010.01511.x
16
Borer E. T., Seabloom E. W., Shurin J. B., Anderson K. E., Blanchette C. A., Broitman B., Cooper S. D., Halpern B. S., What determines the strength of a trophic cascade? Ecology 86, 528–537 (2005). 10.1890/03-0816
17
J. C. Ray, L. Hunter, J. Zigouris, Setting Conservation and Research Priorities for Larger African Carnivores (Report No. 24, Wildlife Conservation Society, New York, 2005).
18
J. S. Brashares, P. R. Prugh, C. J. Stoner, C. W. Epps, in Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature, J. Terborgh, J. A. Estes, Eds. (Island Press, Washington, DC, 2010), pp. 221–240.
19
Savolainen P., Leitner T., Wilton A. N., Matisoo-Smith E., Lundeberg J., A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 101, 12387–12390 (2004). 10.1073/pnas.0401814101
20
Letnic M., Ritchie E. G., Dickman C. R., Top predators as biodiversity regulators: The dingo Canis lupus dingo as a case study. Biol. Rev. Camb. Philos. Soc. 87, 390–413 (2012). 10.1111/j.1469-185X.2011.00203.x
21
Letnic M., Crowther M. S., Koch F., Does a top-predator provide an endangered rodent with refuge from an invasive mesopredator? Anim. Conserv. 12, 302–312 (2009). 10.1111/j.1469-1795.2009.00250.x
22
Johnson C. N., Isaac J. L., Fisher D. O., Rarity of a top predator triggers continent-wide collapse of mammal prey: Dingoes and marsupials in Australia. Proc. Biol. Sci. 274, 341–346 (2007). 10.1098/rspb.2006.3711
23
Pasanen-Mortensen M., Pyykönen M., Elmhagen B., Where lynx prevail, foxes will fail – regulation and limitation of a mesopredator in Eurasia. Glob. Ecol. Biogeogr. 22, 868–877 (2013). 10.1111/geb.12051
24
Melis C., Jędrzejewska B., Apollonio M., Bartoń K. A., Jędrzejewski W., Linnell J. D. C., Kojola I., Kusak J., Adamic M., Ciuti S., Delehan I., Dykyy I., Krapinec K., Mattioli L., Sagaydak A., Samchuk N., Schmidt K., Shkvyrya M., Sidorovich V. E., Zawadzka B., Zhyla S., Predation has a greater impact in less productive environments: Variation in roe deer, Capreolus capreolus, population density across Europe. Glob. Ecol. Biogeogr. 18, 724–734 (2009). 10.1111/j.1466-8238.2009.00480.x
25
Elmhagen B., Ludwig G., Rushton S. P., Helle P., Lindén H., Top predators, mesopredators and their prey: Interference ecosystems along bioclimatic productivity gradients. J. Anim. Ecol. 79, 785–794 (2010). 20337755
26
Schmitz O. J., Exploitation in model food chains with mechanistic consumer-resource dynamics. Theor. Popul. Biol. 41, 161–183 (1992). 10.1016/0040-5809(92)90042-R
27
Oksanen L., Oksanen T., The logic and realism of the hypothesis of exploitation ecosystems. Am. Nat. 155, 703–723 (2000). 10.1086/303354
28
Kenyon K. W., The sea otter in the eastern Pacific Ocean. North Am. Fauna 68, 1–352 (1969). 10.3996/nafa.68.0001
29
Estes J. A., Tinker M. T., Williams T. M., Doak D. F., Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282, 473–476 (1998). 10.1126/science.282.5388.473
30
Estes J. A., Palmisano J. F., Sea otters: Their role in structuring nearshore communities. Science 185, 1058–1060 (1974). 10.1126/science.185.4156.1058
31
J. A. Estes, C. H. Peterson, R. Steneck, in Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature, J. Terborgh, J. A. Estes, Eds. (Island Press, Washington, DC, 2010), pp. 37–54.
32
Konar B., Estes J. A., The stability of boundary regions between kelp beds and deforested areas. Ecology 84, 174–185 (2003). 10.1890/0012-9658(2003)084[0174:TSOBRB]2.0.CO;2
33
Peterson R. O., Vucetich J. A., Page R.E., Chouinard A., Temporal and spatial aspects of predator–prey dynamics. Alces 39, 215–232 (2003).
34
Ripple W. J., Beschta R. L., Large predators limit herbivore densities in northern forest ecosystems. Eur. J. Wildl. Res. 58, 733–742 (2012). 10.1007/s10344-012-0623-5
35
Leopold A., Sowls L. K., Spencer D. L., A survey of over-populated deer ranges in the United States. J. Wildl. Manage. 11, 162–183 (1947). 10.2307/3795561
36
Laliberte A. S., Ripple W. J., Range contractions of North American carnivores and ungulates. Bioscience 54, 123–138 (2004). 10.1641/0006-3568(2004)054[0123:RCONAC]2.0.CO;2
37
S. D. Côté, T. P. Rooney, J. P. Tremblay, C. Dussault, D. M. Waller, Ecological impacts of deer overabundance. Annu. Rev. Ecol. Evol. 35, 113–147 (2004).
38
Ripple W. J., Beschta R. L., Linking a cougar decline, trophic cascade, and catastrophic regime shift in Zion National Park. Biol. Conserv. 133, 397–408 (2006). 10.1016/j.biocon.2006.07.002
39
Ripple W. J., Beschta R. L., Trophic cascades involving cougar, mule deer, and black oaks in Yosemite National Park. Biol. Conserv. 141, 1249–1256 (2008). 10.1016/j.biocon.2008.02.028
40
Terborgh J., Lopez L., Nuñez P., Rao M., Shahabuddin G., Orihuela G., Riveros M., Ascanio R., Adler G. H., Lambert T. D., Balbas L., Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926 (2001). 10.1126/science.1064397
41
J. Terborgh, K. Freeley, in Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature, J. Terborgh, J. A. Estes, Eds. (Island Press, Washington, DC, 2010), pp. 125–140.
42
Berger J., Stacey P. B., Bellis L., Johnson M. P., A mammalian predator-prey imbalance: Grizzly bear and wolf extinction affect avian neotropical migrants. Ecol. Appl. 11, 947–960 (2001).
43
Barber-Meyer S. M., Mech L. D., White P. J., Elk calf survival and mortality following wolf restoration to Yellowstone National Park. Wildl. Monogr. 169, 1–30 (2008).
44
Brodie J., Johnson H., Mitchell M., Zager P., Proffitt K., Hebblewhite M., Kauffman M., Johnson B., Bissonette J., Bishop C., Gude J., Herbert J., Hersey K., Hurley M., Lukacs P. M., McCorquodale S., McIntire E., Nowak J., Sawyer H., Smith D., White P. J., Relative influence of human harvest, carnivores, and weather on adult female elk survival across western North America. J. Appl. Ecol. 50, 295–305 (2013). 10.1111/1365-2664.12044
45
Polis G. A., Strong D. R., Food web complexity and community dynamics. Am. Nat. 147, 813–846 (1996). 10.1086/285880
46
Brodie J. F., Giordano A., Lack of trophic release with large mammal predators and prey in Borneo. Biol. Conserv. 163, 58–67 (2013). 10.1016/j.biocon.2013.01.003
47
Letnic M., Crowther M. S., Patterns in the abundance of kangaroo populations in arid Australia are consistent with the exploitation ecosystems hypothesis. Oikos 122, 761–769 (2013). 10.1111/j.1600-0706.2012.20425.x
48
Chambers C. M., Whitehead J. C., A contingent valuation estimate of the benefits of wolves in Minnesota. Environ. Resour. Econ. 26, 249–267 (2003). 10.1023/A:1026356020521
49
Richardson L., Loomis J., The total economic value of threatened, endangered and rare species: An updated meta-analysis. Ecol. Econ. 68, 1535–1548 (2009). 10.1016/j.ecolecon.2008.10.016
50
Naidoo R., Stuart-Hill G., Weaver L. C., Tagg J., Davis A., Davidson A., Effect of diversity of large wildlife species on financial benefits to local communities in northwest Namibia. Environ. Resour. Econ. 48, 321–335 (2011). 10.1007/s10640-010-9412-3
51
Schmitz O. J., Raymond P. A., Estes J. A., Kurz W. A., Holtgrieve G. W., Ritchie M. E., Schindler D. E., Spivak A. C., Wilson R. W., Bradford M. A., Christensen V., Deegan L., Smetacek V., Vanni M. J., Wilmers C. C., Animating the carbon cycle. Ecosystems 10.1007/s10021-013-9715-7 (2013). 10.1007/s10021-013-9715-7
52
Wilmers C. C., Estes J. A., Edwards M., Laidre K. L., Konar B., Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis for sea otters and kelp forests. Front. Ecol. Environ 10, 409–415 (2012). 10.1890/110176
53
Wilmers C. C., Crabtree R. L., Smith D. W., Murphy K. M., Getz W. M., Trophic facilitation by introduced top predators: Gray wolf subsidies to scavengers in Yellowstone National Park. J. Anim. Ecol. 72, 909–916 (2003). 10.1046/j.1365-2656.2003.00766.x
54
Beschta R. L., Ripple R. J., The role of large predators in maintaining riparian plant communities and river morphology. Geomorphology 157-158, 88–98 (2012). 10.1016/j.geomorph.2011.04.042
55
Smith D. W., Tyers D. B., The history and current status and distribution of beavers in Yellowstone National Park. Northwest Sci. 86, 276–288 (2012). 10.3955/046.086.0404
56
M. Hebblewhite, D. Smith, in The World of the Wolves: New Perspectives on Ecology, Behaviour, and Management, M. P. C. Musiani, P. C. Paquet, Eds. (Univ. of Calgary Press, Calgary, Alberta, Canada, 2010), pp. 69–120.
57
Hebblewhite M., White C. A., Nietvelt C. G., McKenzie J. A., Hurd T. E., Fryxell J. M., Bayley S. E., Paquet P. C., Human activity mediates a trophic cascade caused by wolves. Ecology 86, 2135–2144 (2005). 10.1890/04-1269
58
Packer C., Holt R. D., Hudson P. J., Lafferty K. D., Dobson A. P., Keeping the herds healthy and alert: Implications of predator control for infectious disease. Ecol. Lett. 6, 797–802 (2003). 10.1046/j.1461-0248.2003.00500.x
59
L. van Bommel, C. N. Johnson, Good dog! Using livestock guardian dogs to protect livestock from predators in Australia’s extensive grazing systems. Wildlife Res. 39, 220–229 (2012).
60
Muhly T. B., Musiani M., Livestock depredation by wolves and the ranching economy in the northwestern US. Ecol. Econ. 68, 2439–2450 (2009). 10.1016/j.ecolecon.2009.04.008
61
Nelson E., Mendoza G., Regetz J., Polasky S., Tallis H., Cameron D. R., Chan K. M. A., Daily G. C., Goldstein J., Kareiva P. M., Lonsdorf E., Naidoo R., Ricketts T. H., Shaw M. R., Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ 7, 4–11 (2009). 10.1890/080023
62
Beschta R. L., Ripple R. J., Mexican wolves, elk, and aspen in Arizona: Is there a trophic cascade? For. Ecol. Manage. 260, 915–922 (2010). 10.1016/j.foreco.2010.06.012
63
Ripple W. J., Beschta R. L., Fortin J. K., Robbins C. T., Trophic cascades from wolves to grizzly bears in Yellowstone. J. Anim. Ecol. 83, 223–233 (2014). 10.1111/1365-2656.12123
64
Levi T., Wilmers C. C., Wolves-coyotes-foxes: A cascade among carnivores. Ecology 93, 921–929 (2012). 10.1890/11-0165.1
65
Callan R., Nibbelink N. P., Rooney T. P., Wiedenhoeft J. E., Wydeven A. P., Recolonizing wolves trigger a trophic cascade in Wisconsin (USA). J. Ecol. 101, 837–845 (2013). 10.1111/1365-2745.12095
66
C. Wikenros, thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden (2011).
67
J. Berger, in Large Carnivores and the Conservation of Biodiversity, J. Ray, K. H. Redford, R. Steneck, J. Berger, Eds. (Island Press, Washington, DC, 2005), pp. 315–341.
68
Ripple W. J., Beschta R. L., Wolves and the ecology of fear: Can predation risk structure ecosystems? Bioscience 54, 755–766 (2004). 10.1641/0006-3568(2004)054[0755:WATEOF]2.0.CO;2
69
Elbroch L. M., Wittmer H. U., Nuisance ecology: Do scavenging condors exact foraging costs on pumas in Patagonia? PLOS ONE 8, e53595 (2013). 10.1371/journal.pone.0053595
70
Faeth S. H., Warren P. S., Shochat E., Marussich W. A., Trophic dynamics in urban communities. Bioscience 55, 399–407 (2005). 10.1641/0006-3568(2005)055[0399:TDIUC]2.0.CO;2
71
Smith P., Haberl H., Popp A., Erb K. H., Lauk C., Harper R., Tubiello F. N., de Siqueira Pinto A., Jafari M., Sohi S., Masera O., Böttcher H., Berndes G., Bustamante M., Ahammad H., Clark H., Dong H., Elsiddig E. A., Mbow C., Ravindranath N. H., Rice C. W., Robledo Abad C., Romanovskaya A., Sperling F., Herrero M., House J. I., Rose S., How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 19, 2285–2302 (2013). 10.1111/gcb.12160
72
Ripple W. J., Smith P., Haberl H., Montzka S. A., McAlpine C., Boucher D. H., Ruminants, climate change, and climate policy. Nat. Clim. Change 4, 2–5 (2014).
73
Dawson T. P., Jackson S. T., House J. I., Prentice I. C., Mace G. M., Beyond predictions: Biodiversity conservation in a changing climate. Science 332, 53–58 (2011). 10.1126/science.1200303
74
Parmesan C., Yohe G., A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003). 10.1038/nature01286
75
Parmesan C., Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006). 10.1146/annurev.ecolsys.37.091305.110100
76
Gormezano L. J., Rockwell R. F., What to eat now? Shifts in polar bear diet during the ice-free season in western Hudson Bay. Ecol. Evol 3, 3509–3523 (2013). 24223286
77
Wilmers C. C., Getz W. M., Gray wolves as climate change buffers in Yellowstone. PLOS Biol. 3, e92 (2005). 10.1371/journal.pbio.0030092
78
Ostfeld R. S., Holt R. D., Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Front. Ecol. Environ 2, 13–20 (2004). 10.1890/1540-9295(2004)002[0013:APGFYH]2.0.CO;2
79
Levi T., Kilpatrick A. M., Mangel M., Wilmers C. C., Deer, predators, and the emergence of Lyme disease. Proc. Natl. Acad. Sci. U.S.A. 109, 10942–10947 (2012). 10.1073/pnas.1204536109
80
Holdo R. M., Sinclair A. R., Dobson A. P., Metzger K. L., Bolker B. M., Ritchie M. E., Holt R. D., A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLOS Biol. 7, e1000210 (2009). 10.1371/journal.pbio.1000210
81
Estes J. A., Brashares J. S., Power M. E., Predicting and detecting reciprocity between indirect ecological interactions and evolution. Am. Nat. 181, S76–S99 (2013). 10.1086/668120
82
Doak D. F., Estes J. A., Halpern B. S., Jacob U., Lindberg D. R., Lovvorn J., Monson D. H., Tinker M. T., Williams T. M., Wootton J. T., Carroll I., Emmerson M., Micheli F., Novak M., Understanding and predicting ecological dynamics: Are major surprises inevitable? Ecology 89, 952–961 (2008). 10.1890/07-0965.1
83
Gittleman J. L., Carnivore body size: Ecological and taxonomic correlates. Oecologia 67, 540–554 (1985). 10.1007/BF00790026
84
R. Woodroffe, S. Thirgood, A. Rabinowitz, People and Widlife. Conflict or Co-existence? (Cambridge Univ. Press, Cambridge, 2005).
85
J. L. Gittleman, S. M. Funk, D. MacDonald, R. K. Wayne, Carnivore Conservation (Cambridge Univ. Press, Cambridge, 2001).
86
Large Carnivores Initiative for Europe, http://www.lcie.org/Home.aspx; accessed 18 August 2013.
87
Global Tiger Initiative, http://globaltigerinitiative.org/; accessed 10 October 2013.
88
World Bank, Minding the Stock: Bringing Public Policy to Bear on Livestock Sector Development (Report no. 44010–GLB, The World Bank, Washington, DC, 2009).
89
Sergio F., Caro T., Brown D., Clucas B., Hunter J., Ketchum J., McHugh K., Hiraldo F., Top predators as conservation tools: Ecological rationale, assumptions and efficacy. Annu. Rev. Ecol. Syst. 39, 1–19 (2008). 10.1146/annurev.ecolsys.39.110707.173545
90
L. D. Mech, L. Boitani, Eds., Wolf-Prey Relations. Wolves: Behavior, Ecology, and Conservation (Univ. of Chicago Press, Chicago, 2003).
91
IUCN, The IUCN Red List of Species, Version 2012.2, http://www.iucnredlist.org; downloaded April 2013.
92
Estes J. A., Duggins D. O., Sea otters and kelp forests in Alaska: Generality and variation in a community ecological paradigm. Ecol. Monogr. 65, 75–100 (1995). 10.2307/2937159
93
Letnic M., Koch F., Are dingoes a trophic regulator in arid Australia? A comparison of mammal communities on either side of the dingo fence. Austral Ecol. 35, 167–175 (2010). 10.1111/j.1442-9993.2009.02022.x
94
Ripple W. J., Beschta R. L., Linking wolves to plants: Aldo Leopold on trophic cascades. Bioscience 55, 613–621 (2005). 10.1641/0006-3568(2005)055[0613:LWAPAL]2.0.CO;2
95
Beschta R. L., Ripple W. J., Wolves, trophic cascades, and rivers in the Olympic National Park, USA. Ecohydrology. 1, 118–130 (2008). 10.1002/eco.12
96
White P. J., Proffitt K. M., Lemke T. O., Changes in elk distribution and group sizes after wolf restoration. Am. Midl. Nat. 167, 174–187 (2012). 10.1674/0003-0031-167.1.174
97
Berger K. M., Gese E. M., Does interference competition with wolves limit the distribution and abundance of coyotes? J. Anim. Ecol. 76, 1075–1085 (2007). 10.1111/j.1365-2656.2007.01287.x
98
Berger K. M., Gese E. M., Berger J., Indirect effects and traditional trophic cascades: A test involving wolves, coyotes, and pronghorn. Ecology 89, 818–828 (2008). 10.1890/07-0193.1
99
Miller B. J., Harlow H. J., Harlow T. S., Biggins D., Ripple W. J., Trophic cascades linking wolves (Canis lupus), coyotes (Canis latrans), and small mammals. Can. J. Zool. 90, 70–78 (2012). 10.1139/z11-115
100
Ripple W. J., Beschta R. L., Trophic cascades in Yellowstone: The first 15 years after wolf reintroduction. Biol. Conserv. 145, 205–213 (2012). 10.1016/j.biocon.2011.11.005
101
Baril L. M., Hansen A. J., Renkin R., Lawrence R., Songbird response to increased willow (Salix spp.) growth in Yellowstone’s northern range. Ecol. Appl. 21, 2283–2296 (2011). 10.1890/10-0169.1
102
F. A. O. Statistical Database, http://faostat.fao.org; accessed 12 August 2013.
103
H. Steinfeld, P. Gerber, T. Wassenaar, V. Castel, M. Rosales, C. de Haan, Livestock’s Long Shadow: Environmental Issues and Options (Food and Agriculture Organization of the United Nations, Rome, 2006).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 343 | Issue 6167
10 January 2014

Submission history

Received: 5 June 2013
Accepted: 18 November 2013
Published in print: 10 January 2014

Permissions

Request permissions for this article.

Acknowledgments

We thank S. Arbogast, J. Batchelor, A. Cloud, R. Comforto, A. Comstock, T. Newsome, L. Painter, L. Petracca, and C. Wolf for assisting in this project.

Authors

Affiliations

William J. Ripple* [email protected]
Trophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA.
James A. Estes
Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA.
Robert L. Beschta
Trophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA.
Christopher C. Wilmers
Center for Integrated Spatial Research, Department of Environmental Studies, University of California, Santa Cruz, CA 95064, USA.
Euan G. Ritchie
Centre for Integrative Ecology and School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.
Mark Hebblewhite
Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula MT, 59812, USA, and Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige (TN), Italy.
Joel Berger
Department of Organismic Biology and Ecology, University of Montana, Missoula, MT 59812, and Wildlife Conservation Society, Bronx, NY 10460, USA.
Bodil Elmhagen
Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden.
Mike Letnic
School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
Michael P. Nelson
Trophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA.
Oswald J. Schmitz
School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA.
Douglas W. Smith
Yellowstone Center for Resources, Yellowstone National Park, Post Office Box 168, Mammoth, WY 82190, USA.
Arian D. Wallach
School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia.
Aaron J. Wirsing
School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA.

Notes

*
Corresponding author. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Low-stress livestock handling protects cattle in a five-predator habitat, PeerJ, 11, (e14788), (2023).https://doi.org/10.7717/peerj.14788
    Crossref
  2. Facilitation of a free-roaming apex predator in working lands: evaluating factors that influence leopard spatial dynamics and prey availability in a South African biodiversity hotspot, PeerJ, 11, (e14575), (2023).https://doi.org/10.7717/peerj.14575
    Crossref
  3. Spatio-temporal patterns of co-occurrence of tigers and leopards within a protected area in central India, Web Ecology, 23, 1, (17-34), (2023).https://doi.org/10.5194/we-23-17-2023
    Crossref
  4. Integrating Multiple Diversity and Socioeconomic Criteria in Tibetan Felid Conservation, Ecosystem Health and Sustainability, 10, (2023)./doi/10.34133/ehs.0160
    Abstract
  5. The Factors Influencing Wildlife to Use Existing Bridges and Culverts in Giant Panda National Park, Diversity, 15, 4, (487), (2023).https://doi.org/10.3390/d15040487
    Crossref
  6. Threatened Habitats of Carnivores: Identifying Conservation Areas in Michoacán, México, Conservation, 3, 1, (247-276), (2023).https://doi.org/10.3390/conservation3010018
    Crossref
  7. Bibliometric Analysis on the Impact of Climate Change on Crop Pest and Disease, Agronomy, 13, 3, (920), (2023).https://doi.org/10.3390/agronomy13030920
    Crossref
  8. Delineating origins of cheetah cubs in the illegal wildlife trade: Improvements based on the use of hair δ18O measurements, Frontiers in Ecology and Evolution, 11, (2023).https://doi.org/10.3389/fevo.2023.1058985
    Crossref
  9. Pathways to coexistence with dingoes across Australian farming landscapes, Frontiers in Conservation Science, 4, (2023).https://doi.org/10.3389/fcosc.2023.1126140
    Crossref
  10. Cool cats and communities: Exploring the challenges and successes of community-based approaches to protecting felids from the illegal wildlife trade, Frontiers in Conservation Science, 4, (2023).https://doi.org/10.3389/fcosc.2023.1057438
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media