Skip to main content
AAN.com
×
Site maintenance Tuesday, May 28, 2024. Please note that new registrations and purchases will be unavailable on this date.
Views & Reviews
March 27, 2001

Mechanisms of action of glatiramer acetate in multiple sclerosis

March 27, 2001 issue
56 (6) 702-708

Abstract

Glatiramer acetate (GA, Copaxone [Teva Pharmaceuticals, Kansas City, MO], formerly known as copolymer-1) and interferon- (IFN)-β are both used for the immunomodulatory treatment of multiple sclerosis, but they act in different ways. Four major mechanisms of GA have been identified: 1) competition with myelin-basic protein (MBP) for binding to major histocompatibility complex (MHC) molecules; 2) competition of GA/MHC with MBP/MHC for binding to the T-cell receptor; 3) partial activation and tolerance induction of MBP-specific T cells (action as an altered peptide ligand); and 4) induction of GA-reactive T-helper 2- (TH2)-like regulatory cells. Of these four mechanisms, 1 and 2 presumably occur only in vitro and are therefore irrelevant for the in vivo effects of GA. In contrast, mechanisms 3 and 4 could occur in vivo and both could contribute to the clinical effects of GA.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Wolinsky JS. Copolymer 1: a most reasonable alternative therapy for early relapsing-remitting multiple sclerosis with mild disability. Neurology . 1995; 45: 1245–1247.
2.
Noseworthy JH. Progress in determining the causes and treatment of multiple sclerosis. Nature . 1999; 399 (suppl): A40–A47.
3.
Milo R, Panitch H. Glatiramer acetate or interferon-β for multiple sclerosis? A guide to drug choice. CNS Drugs . 1999; 11: 289–306.
4.
Wolinsky JS. Glatiramer acetate. In: Hawkins CP, Wolinsky JS, eds. Principles of treatments in multiple sclerosis. Oxford, Woburn: Butterworth-Heinemann, 2000: 71–94.
5.
Arnon R, Sela M, Teitelbaum D. New insights into the mechanism of action of copolymer 1 in experimental allergic encephalomyelitis and multiple sclerosis. J Neurol . 1996; 243 (suppl 1): S8–S13.
6.
Arnon R. The development of Cop-1 (Copaxone®), an innovative drug for the treatment of multiple sclerosis: personal reflections. Immunol Lett . 1996; 50: 1–15.
7.
Teitelbaum D, Arnon R, Sela M. Cop 1 as a candidate drug for multiple sclerosis. J Neural Transm . 1997; 49 (suppl): 85–91.
8.
Teitelbaum D, Meshorer A, Hirshfeld T, Arnon R, Sela M. Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur J Immunol . 1971; 1: 242–248.
9.
Teitelbaum D, Webb C, Meshorer A, Arnon R, Sela M. Suppression by several synthetic polypeptides of experimental allergic encephalomyelitis induced in guinea pigs and rabbits with bovine and human basic encephalitogen. Eur J Immunol . 1973; 3: 273–279.
10.
Teitelbaum D, Webb C, Bree M, Meshorer A, Arnon R, Sela M. Suppression of experimental allergic encephalomyelitis in rhesus monkeys by a synthetic basic copolymer. Clin Immunol Immunopathol . 1974; 3: 256–262.
11.
Lisak RP, Zweiman B, Blanchard N, Borke LB. Effect of treatment with copolymer 1 (Cop-1) on the in vivo and in vitro manifestations of experimental allergic encephalomyelitis (EAE). J Neurol Sci . 1983; 62: 281–293.
12.
Teitelbaum D, Fridkis-Hareli M, Arnon R, Sela M. Copolymer 1 inhibits chronic relapsing experimental allergic encephalomyelitis induced by proteolipid protein (PLP) peptides in mice and interferes with PLP-specific T cell responses. J Neuroimmunol . 1996; 64: 209–217.
13.
Ben-Nun A, Mendel I, Bakimer R, et al. The autoimmune reactivity to myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis is potentially pathogenic: effect of copolymer 1 on MOG-induced disease. J Neurol . 1996; 243 (suppl 1): S14–S22.
14.
Schlegel PG, Aharoni R, Chen Y, et al. A synthetic random basic copolymer with promiscuous binding to class II major histocompatibility complex molecules inhibits T-cell proliferative responses to major histocompatibility antigens in vitro and confers the capacity to prevent murine graft-versus-host disease in vivo. Proc Natl Acad Sci USA . 1996; 93: 5061–5066.
15.
Zhang M, Chan CC, Vistica B, Hung V, Wiggert B, Gery I. Copolymer 1 inhibits experimental autoimmune uveoretinitis. J Neuroimmunol . 2000; 103: 189–194.
16.
Fridkis-Hareli M, Rosloniec EF, Fugger L, Strominger JL. Synthetic amino acid copolymers that bind to HLA-DR proteins and inhibit type II collagen-reactive T cell clones. Proc Natl Acad Sci USA . 1998; 95: 12528–12531.
17.
Teitelbaum D, Arnon R, Sela M. Immunomodulation of experimental autoimmune encephalomyelitis by oral administration of copolymer 1. Proc Natl Acad Sci USA . 1999; 96: 3842–3847.
18.
Weiner HL. Oral tolerance with copolymer 1 for the treatment of multiple sclerosis. Proc Natl Acad Sci USA . 1999; 96: 3333–3335.
19.
Bornstein MB, Miller A, Slagle S, et al. A pilot trial of Cop 1 in exacerbating–remitting multiple sclerosis. N Engl J Med . 1987; 317: 408–414.
20.
Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis. Results of a phase III multicenter, double-blind, placebo-controlled trial. Neurology . 1995; 45: 1268–1276.
21.
Johnson KP, Brooks BR, Cohen JA, et al. Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Neurology . 1998; 50: 701–708.
22.
Comi G, Filippi M, for the Copaxone MRI Study Group. The effect of glatiramer acetate (Copaxone®) on disease activity as measured by cerebral MRI in patients with relapsing-remitting multiple sclerosis (RRMS): a multi-center, randomized, double blind, placebo-controlled study extended by open-label treatment. Neurology . 1999; 52 (suppl 2): A289.Abstract.
23.
Mancardi GL, Sardanelli F, Parodi RC, et al. Effect of copolymer-1 on serial gadolinium enhanced MRI in relapsing remitting multiple sclerosis. Neurology . 1998; 50: 1127–1133.
24.
Ge Y, Grossman RI, Udupa JK, et al. Glatiramer acetate (Copaxone) treatment in relapsing-remitting MS. Quantitative MR assessment. Neurology . 2000; 54: 813–817.
25.
Sela M. Probing into the realm of proteins and immunity. Protein Sci . 1998; 7: 1653–1659.
26.
Webb C, Teitelbaum D, Arnon R, Sela M. In vivo and in vitro immunological cross-reactions between basic encephalitogen and synthetic basic polypeptides capable of suppressing experimental allergic encephalomyelitis. Eur J Immunol . 1973; 3: 279–286.
27.
Teitelbaum D, Aharoni R, Arnon R, Sela M. Specific inhibition of the T cell response to myelin basic protein by the synthetic copolymer Cop-1. Proc Natl Acad Sci USA . 1988; 85: 9724–9728.
28.
Teitelbaum D, Milo R, Arnon R, Sela M. Synthetic copolymer 1 inhibits human T-cell lines specific for myelin basic protein. Proc Natl Acad Sci USA . 1992; 89: 137–141.
29.
Fridkis-Hareli M, Teitelbaum D, Gurevich E, et al. Direct binding of myelin basic protein and synthetic copolymer 1 to class II major histocompatibility complex molecules on living antigen-presenting cells—specificity and promiscuity. Proc Natl Acad Sci USA . 1994; 91: 4872–4876.
30.
Aharoni R, Schlegel PG, Teitelbaum D, et al. Studies on the mechanism and specificity of the synthetic copolymer GLAT on graft-versus-host disease. Immunol Lett . 1997; 58: 79–87.
31.
Webb C, Teitelbaum D, Herz A, Arnon R, Sela M. Molecular requirements involved in suppression of EAE by synthetic basic copolymers of amino acids. Immunochemistry . 1976; 13: 333–337.
32.
Aharoni R, Teitelbaum D, Arnon R, Sela M. Copolymer 1 acts against the immunodominant epitope 82-100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc Natl Acad Sci USA . 1999; 96: 634–639.
33.
Aharoni R, Teitelbaum D, Arnon R. T suppressor hybridomas and interleukin-2 dependent lines induced by copolymer 1 or by spinal cord homogenate down-regulate experimental allergic encephalomyelitis. Eur J Immunol . 1993; 23: 17–25.
34.
Aharoni R, Teitelbaum D, Sela M, Arnon R. Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA . 1997; 94: 10821–10826.
35.
Aharoni R, Teitelbaum D, Sela M, Arnon R. Bystander suppression of experimental autoimmune encephalomyelitis by T cell lines and clones of the Th2 type induced by copolymer 1. J Neuroimmunol . 1998; 91: 135–146.
36.
Lando Z, Dori Y, Teitelbaum D, Arnon R. Unresponsiveness to experimental allergic encephalomyelitis in mice: replacement of suppressor cells by a soluble factor. J Immunol . 1981; 127: 1915–1919.
37.
Aharoni R, Teitelbaum D, Leitner O, Meshorer A, Sela M, Arnon R. Specific TH2 cells are present in the central nervous system of mice protected against EAE by copolymer 1. Proc Natl Acad Sci USA . 2000; 97: 11472–11477.
38.
Kipnis J, Yoles E, Porat Z, et al. T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci USA . 2000; 97: 7446–7451.
39.
Kerschensteiner M, Gallmeier E, Behrens L, et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor (BDNF) in vitro and in brain lesions: a neuroprotective role of inflammation? J Exp Med . 1999; 189: 865–870.
40.
Brosnan CF, Litwak M, Neighbour PA, et al. Immunogenic potentials of copolymer 1 in normal human lymphocytes. Neurology . 1985; 35: 1754–1759.
41.
Burns J, Krasner LJ, Guerrero F. Human cellular immune response to copolymer I and myelin basic protein. Neurology . 1986; 36: 92–94.
42.
Qin Y, Zhang DQ, Prat A, Pouly S, Antel J. Characterization of T cell lines derived from glatiramer-acetate treated multiple sclerosis patients. J Neuroimmunol . 2000; 108: 201–206.
43.
Neuhaus O, Farina C, Yassouridis A, et al. Multiple sclerosis: comparison of copolymer-1 reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci USA . 2000; 97: 7452–7457.
44.
Gran B, Tranquill LR, Chen M, et al. Mechanisms of immunomodulation by glatiramer acetate. Neurology . 2000; 55: 1704–1714.
45.
Ragheb S, Lisak RP. The lymphocyte proliferative response to glatiramer acetate in normal humans is dependent on both major histocompatibility complex (MHC). J Neurol . 2000; 247 (suppl 3): III/119.Abstract.
46.
Teitelbaum D, Meiner Z, Brenner T, et al. Immunological parameters in a multicenter clinical trial of COP1 in multiple sclerosis (MS): a 2-year follow-up. Neurology . 1994; 44 (suppl 2): A358.Abstract.
47.
Ragheb S, Abramczk S, Lisak RP. Effect of treatment of patients with glatiramer acetate (copolymer-1) on the proliferative response of peripheral blood mononuclear cells to glatiramer acetate in vitro. Ann Neurol . 1999; 46: 457.Abstract.
48.
Duda PW, Schmied MC, Cook SL, Krieger JI, Hafler DA. Glatiramer acetate (Copaxone®) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest . 2000; 105: 967–976.
49.
Farina C, Then Bergh F, Albrecht H, Meinl E, Yassouridis A, Neuhaus O, Hohlfeld R. Treatment of multiple sclerosis with copaxone (COP): Elispot assay detects COP-induced interleukin-4 and interferon-γ response in blood cells. Brain 2001 (in press).
50.
Schmied M, Duda PW, Krieger J, Trollmo T, Hafler DA. Subcutaneous administration of glatiramer acetate induces antigen specific CD4 T cell tolerance. Neurology . 2000; 54 (suppl 3): A149.Abstract.
51.
Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell . 1994; 76: 241–251.
52.
Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today . 1996; 17: 138–146.
53.
Allen JE, Maizels RM. Th1–Th2: reliable paradigm or dangerous dogma? Immunol Today . 1997; 18: 387–392.
54.
Swain SL. Helper T cell differentiation. Curr Opin Immunol . 1999; 11: 180–185.
55.
Miller A, Shapiro S, Gershtein R, et al. Treatment of multiple sclerosis with copolymer-1 (Copaxone®): implicating mechanisms of Th1 to Th2/Th3 immune deviation. J Neuroimmunol . 1998; 92: 113–121.
56.
Dabbert D, Rösner S, Krämer M, et al. Glatiramer acetate (Copolymer-1)-specific, human T cell lines: cytokine profile and suppression of T cell lines reactive against myelin basic protein (MBP). Neurosci Lett . 2000; 289: 205–208.
57.
Prat A, Al-Asmi A, Duquette P, Antel JP. Lymphocyte migration and multiple sclerosis: relation with disease course and therapy. Ann Neurol . 1999; 46: 253–256.
58.
Dufour A, Corsini E, Gelati M, Massa G, Tarcic N, Salmaggi A. In vitro glatiramer acetate treatment of brain endothelium does not reduce adhesion phenomena. Ann Neurol . 2000; 47: 680–681. Letter.
59.
Racke MK, Martin R, McFarland H, Fritz RB. Copolymer-1-induced inhibition of antigen-specific T cell activation: interference with antigen presentation. J Neuroimmunol . 1992; 37: 75–84.
60.
Fridkis-Hareli M, Strominger JL. Promiscuous binding of synthetic copolymer 1 to purified HLA-DR molecules. J Immunol . 1998; 160: 4386–4397.
61.
Fridkis-Hareli M, Neveu JM, Robinson RA, et al. Binding motifs of copolymer 1 to multiple sclerosis- and rheumatoid arthritis-associated HLA-DR molecules. J Immunol . 1999; 162: 4697–4704.
62.
Li Q, Milo R, Panitch H, Swoveland P, Bever CT. Glatiramer acetate blocks the activation of THP-1 cells by interferon-γ. Eur J Pharmacol . 1998; 342: 303–310.
63.
Lobel E, Riven-Kreitman R, Amselem A, Pinchasi I. Copolymer-1. Drugs Fut . 1996; 21: 131–134.
64.
Wekerle H, Linington C, Lassmann H, Meyermann R. Cellular immune reactivity within the CNS. Trends Neurosci . 1986; 9: 271–277.
65.
Krogsgaard M, Wucherpfennig KW, Canella B, et al. Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2–MBP 85-99 complex. J Exp Med . 2000; 191: 1395–1412.
66.
Besser M, Wank R. Clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Th1/Th2-polarized expression of their receptors. J Immunol . 1999; 162: 6303–6306.
67.
Weiner HL. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol Today . 1997; 19: 335–343.
68.
Hohlfeld R. Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and perspectives. Brain . 1997; 120: 865–916.
69.
Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell . 1995; 80: 695–705.
70.
Gran B, Hemmer B, Vergelli M, McFarland HF, Martin R. Molecular mimicry and multiple sclerosis: degenerate T-cell recognition and the induction of autoimmunity. Ann Neurol . 1999; 45: 559–567.
71.
Arnason BG, Reder AT. Interferons and multiple sclerosis. Clin Neuropharmacol . 1994; 17: 495–547.
72.
Weinstock-Guttman B, Ransohoff RM, Kinkel RP, Rudick RA. The interferons: biological effects, mechanisms of action, and use in multiple sclerosis. Ann Neurol . 1995; 37: 7–15.
73.
Yong VW, Chabot S, Stüve O, Williams G. Interferon beta in the treatment of multiple sclerosis. Mechanisms of action. Neurology . 1998; 51: 682–689.
74.
Rep MHG, Hintzen RQ, Polman CH, van Lier RAW. Recombinant interferon-β blocks proliferation but enhances interleukin-10 secretion by activated human T cells. J Neuro-immunol . 1996; 67: 111–118.
75.
Pette M, Pette DF, Muraro PA, Martin R, McFarland HF. Interferon-β interferes with the proliferation but not with the cytokine secretion of myelin basic protein-specific T-helper type 1 lymphocytes. Neurology . 1997; 49: 385–392.
76.
Joseph J, Knobler RL, D’Imperio C, Lublin FD. Down-regulation of interferon-γ-induced class II expression on human glioma cells by recombinant interferon-β: effects of dosage treatment schedule. J Neuroimmunol . 1988; 20: 39–44.
77.
Lu HT, Riley JL, Babcock GT, et al. Interferon (IFN) β acts downstream of IFN-γ-induced class II transactivator messenger RNA accumulation to block histocompatibility complex class II gene expression and requires the 48-kD DNA-binding protein, ISGF3-γ. J Exp Med . 1995; 182: 1517–1525.
78.
Leppert D, Waubant E, Bürk MR, Oksenberg JR, Hauser SL. Interferon beta-1b inhibits gelatinase secretion and in vitro migration of human T cells: a possible mechanism for treatment efficacy in multiple sclerosis. Ann Neurol . 1996; 40: 846–852.
79.
Stüve O, Dooley NP, Uhm JH, et al. Interferon beta-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann Neurol . 1996; 40: 853–863.
80.
Trojano M, Avolio C, Liuzzi GM, et al. Changes of serum sICAM-1 and MMP-9 induced by rINFβ-1b treatment in relapsing-remitting MS. Neurology . 1999; 53: 1402–1408.
81.
Ossege LM, Sindern E, Patzold T, Malin J-P. Immunomodulatory effects of interferon-β-1b in vivo: induction of the expression of transforming growth factor-β1 and its receptor type II. J Neuroimmunol . 1998; 91: 73–81.
82.
Calabresi PA, Pelfrey CM, Tranquill LR, Maloni H, McFarland HF. VLA-4 expression on peripheral blood lymphocytes is downregulated after treatment of multiple sclerosis with interferon-beta. Neurology . 1997; 49: 1111–1116.
83.
Rudick RA, Ransohoff RM, Peppler R, VanderBrug-Medendorp S, Lehmann P, Alam J. Interferon beta induces interleukin-10 expression: relevance to multiple sclerosis. Ann Neurol . 1996; 40: 618–627.
84.
Rep MHG, Schrijver HM, van Lopik T, et al. Interferon (IFN)-β treatment enhances CD95 and interleukin 10 expression but reduces interferon-γ producing T cells in MS patients. J Neuroimmunol . 1999; 96: 92–100.
85.
Wang X, Chen M, Wandinger KP, Williams G, Dhib-Jalbut S. IFN-β-1b inhibits IL-12 production in peripheral blood mononuclear cells in an IL-10-dependent mechanism: relevance to IFN-β-1b therapeutic effects in multiple sclerosis. J Immunol . 2000; 165: 548–557.
86.
Van Weyenbergh J, Lipinski P, Abadie A, et al. Antagonistic action of IFN-ß and IFN-γ on high affinity Fcγ receptor expression in healthy controls and multiple sclerosis patients. J Immunol . 1998; 161: 1568–1574.

Information & Authors

Information

Published In

Neurology®
Volume 56Number 6March 27, 2001
Pages: 702-708
PubMed: 11288751

Publication History

Received: September 29, 2000
Accepted: December 10, 2000
Published online: March 27, 2001
Published in print: March 27, 2001

Permissions

Request permissions for this article.

Authors

Affiliations & Disclosures

Oliver Neuhaus, MD
From the Department of Neuroimmunology (Drs. Neuhaus, Farina, Wekerle, and Hohlfeld), Max-Planck Institute of Neurobiology, Martinsried; and the Institute for Clinical Neuroimmunology and the Department of Neurology (Dr. Hohlfeld), Ludwig Maximilians University, Munich, Germany.
Cinthia Farina, PhD
From the Department of Neuroimmunology (Drs. Neuhaus, Farina, Wekerle, and Hohlfeld), Max-Planck Institute of Neurobiology, Martinsried; and the Institute for Clinical Neuroimmunology and the Department of Neurology (Dr. Hohlfeld), Ludwig Maximilians University, Munich, Germany.
Hartmut Wekerle, MD
From the Department of Neuroimmunology (Drs. Neuhaus, Farina, Wekerle, and Hohlfeld), Max-Planck Institute of Neurobiology, Martinsried; and the Institute for Clinical Neuroimmunology and the Department of Neurology (Dr. Hohlfeld), Ludwig Maximilians University, Munich, Germany.
Reinhard Hohlfeld, MD
From the Department of Neuroimmunology (Drs. Neuhaus, Farina, Wekerle, and Hohlfeld), Max-Planck Institute of Neurobiology, Martinsried; and the Institute for Clinical Neuroimmunology and the Department of Neurology (Dr. Hohlfeld), Ludwig Maximilians University, Munich, Germany.

Notes

Address correspondence and reprint requests to Dr. Reinhard Hohlfeld, Institute for Clinical Neuroimmunology, Klinikum Grosshadern, Ludwig Maximilians University, Marchioninistrasse 15, 81366 Munich, Germany; e-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Select your manager software from the list below and click Download.

Cited By
  1. Repurposing MS immunotherapies for CIDP and other autoimmune neuropathies: unfulfilled promise or efficient strategy?, Therapeutic Advances in Neurological Disorders, 16, (175628642211371), (2023).https://doi.org/10.1177/17562864221137129
    Crossref
  2. A comparison between optimized PLGA and CS-Alg-PLGA microspheres for long-lasting release of glatiramer acetate, Journal of Drug Delivery Science and Technology, 82, (104355), (2023).https://doi.org/10.1016/j.jddst.2023.104355
    Crossref
  3. Neurodegeneration in multiple sclerosis, WIREs Mechanisms of Disease, 15, 1, (2022).https://doi.org/10.1002/wsbm.1583
    Crossref
  4. The impact of translational research on the development of therapeutic agents for multiple sclerosis, Neurotherapeutics in the Era of Translational Medicine, (203-242), (2021).https://doi.org/10.1016/B978-0-12-816475-4.00010-0
    Crossref
  5. Nucleic Acids as Novel Therapeutic Modalities to Address Multiple Sclerosis Onset and Progression, Cellular and Molecular Neurobiology, 42, 8, (2611-2627), (2021).https://doi.org/10.1007/s10571-021-01158-4
    Crossref
  6. Bioactive Synthetic Polymers, Advanced Materials, 34, 2, (2021).https://doi.org/10.1002/adma.202105063
    Crossref
  7. Gene Therapy Approaches in an Autoimmune Demyelinating Disease: Multiple Sclerosis, Current Gene Therapy, 19, 6, (376-385), (2020).https://doi.org/10.2174/1566523220666200306092556
    Crossref
  8. The influence of glatiramer acetate on Th17-immune response in multiple sclerosis, PLOS ONE, 15, 10, (e0240305), (2020).https://doi.org/10.1371/journal.pone.0240305
    Crossref
  9. Glatiramer acetate protects against oxygen-glucose deprivation/reperfusion-induced injury by inhibiting Egr-1 in H9c2 cells, Molecular Immunology, 120, (61-66), (2020).https://doi.org/10.1016/j.molimm.2020.02.003
    Crossref
  10. Mitoxantrone, pixantrone and mitoxantrone (2-hydroxyethyl)piperazine are toll-like receptor 4 antagonists, inhibit NF-κB activation, and decrease TNF-alpha secretion in primary microglia, European Journal of Pharmaceutical Sciences, 154, (105493), (2020).https://doi.org/10.1016/j.ejps.2020.105493
    Crossref
  11. See more
Loading...

View Options

Get Access

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Personal login Institutional Login
Purchase Options

Purchase this article to get full access to it.

Purchase Access, $39 for 24hr of access

View options

Full Text

View Full Text

Full Text HTML

View Full Text HTML

Media

Figures

Other

Tables

Share

Share

Share article link

Share