SUPPLEMENTARY INFORMATION

Supplementary Figure 1. Spleen weights increase with infection.

Spleen weight was determined 4 weeks after *M. avium* infection of mice. n=4 to 6.

Supplementary Figure 2. Peripheral blood homeostasis is maintained during *M. avium* infection.

(A) Peripheral blood composition, with the exception of platelets, remains stable over 4 weeks of *M. avium* infection. n=3-8. (B) The relative percentage of B cells declines 4 weeks postinfection whereas percentages of CD4+ T-cells and granulocytes increase in mice infected with *M. avium*. n=4 or 5.

Supplementary Figure 3. Infection stimulates changes in myeloid and lymphoid progenitor compartments.

Whole bone marrow was isolated from naïve and M. avium-infected mice 4 weeks postinfection. Progenitor populations shown were previously gated as live cells. For

myeloid progenitor gating, GMPs (granulocyte-macrophage progenitors) are II7r α^- , Lin⁻, c-kit⁺, Sca-1⁻, CD16/32⁺, and CD34⁺, CMPs (common myeloid progenitors) are II7r α^- , Lin⁻, c-kit⁺, Sca-1⁻, CD16/32⁻, and CD34⁺, and MEPs (macrophage-erythroid progenitors) are II7r α^- , Lin⁻, c-kit⁺, Sca-1⁻, CD16/32⁻, and CD34⁻. CLPs (common lymphoid progenitors) are II7r α^+ , Lin⁻, c-kit⁺, and Sca-1⁺. Absolute numbers of progenitor populations are shown below. n=3-7.

Α

Early Progenitors Gated through Lin-Naive *M. avium -* 4 wks 0.9% 5.24% Sca-1 MPP LT 17.9% 42,7% HSC 6.2% FIK2 5.1% ŝт 74.6% HSC 49.7% CD34 Β Gated through LT-HSC Hoechst Blue

Hoechst Red

Supplementary Figure 4. Infection stimulates expansion of early progenitor compartments.

(A) Whole bone marrow was isolated from naïve and *M. avium*-infected mice 4 weeks postinfection. Progenitor populations shown were previously gated as Lin- live cells. MPPs (multipotent progenitors) are Lin⁻, c-kit⁺ Sca-1⁺, Flk2⁺, and CD34⁺. ST-HSCs (short-term HSCs) are Lin⁻, c-kit⁺, Sca-1⁺, Flk2⁻, and CD34⁺. LT-HSCs are Lin⁻, c-kit⁺, Sca-1⁺, Flk2⁻, and CD34⁻. (B) LT-HSCs were gated to Hoechst Blue and Red to view the Side Population. n=3-7.

Supplementary Figure 5. *M. avium* infection stimulates increased HSC cycling. Hoechst and Pyronin Y staining was used to determine the cell cycle status of LT-HSCs (SP^{KLS}) isolated from uninfected and *M. avium*-infected WT mice. n=3-4.

Supplementary Figure 6. Canonical IFN pathway genes are stimulated in HSCs with $IFN\gamma$ exposure.

Real-time RT-PCR was used to determine relative expression of *Stat1, Irf1,* and *Irf9* mRNA in HSCs (SP^{KLS}) with or without IFN γ treatment. n=2-3 independent samples.

Supplementary Figure 7. IFN γ does not cause increased cell death of hematopoietic progenitors.

The percentage of live KSL cells after 6 hours incubation with PBS or IFN γ was determined using Annexin V and propidium iodide staining. n=5.

Supplementary Figure 8. The absolute number of HSCs is unchanged in *lfng*-deficient mice.

Absolute numbers of SP^{KLS} from wild-type and *lfng^{-/-}* mice were determined. n=3-4, data representative of two independent experiments.

Supplementary Figure 9. Model for IFN_γ-mediated regulation of hematopoietic stem cells.

Infection triggers HSC proliferation and mobilization via interferon signaling. Under homeostatic conditions, most HSCs are dormant and generate differentiated progeny at a low rate. Basal levels of IFN γ may contribute to HSC cycling. During infection, IFN γ is generated by macrophages, NK cells, and lymphocytes that sense pathogens such as mycobacteria. After circulation through the bloodstream, IFN γ can activate HSCs in the bone marrow, thereby promoting proliferation and mobilization to replenish immune cell populations.