
Customer: Civic Technologies
Date: April 21, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Civic
Technologies

Approved By Paul Fomichov | Lead Smart Contract Auditor at Hacken OU

Type ERC3525 token

Platform EVM

Language Solidity

Methodology Link

Website https://www.civic.com/

Changelog 13.04.2023 – Initial Review
21.04.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.civic.com/


Table of contents
Introduction 4
Scope 4
Severity Definitions 7
Executive Summary 8
Risks 9
System Overview 10
Checked Items 12
Findings 15

Critical 15
High 15

H01. Inconsistent Data 15
Medium 15

M01. Only EOA Allowed 15
M02. Best Practice Violation 15

Low 16
L01. Redundant Override Keyword 16
L02. Functions that Can Be Declared External 16
L03. Reading State Variables in a Loop 16
L04. Variable Can Be Set Immutable 17
L05. Floating Pragma 17
L06. Zero Address Check 17
L07. Best Practice Violation 17
L08. Unused Variable 18
L09. Function Can Be Pure 18
L10. Redundant Function 18
L11. Empty Constructor 19
L12. Unfinalized NatSpec 19
L13. Style Guide Violation 19

Disclaimers 20

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Civic Technologies (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/identity-com/on-chain-identity-gateway/tree/develop
/ethereum/smart-contract/

Commit aa70a5c2f

Whitepaper https://github.com/identity-com/gateway-whitepaper/blob/main/gateway-w
hitepaper.pdf

Functional
Requirements

https://github.com/identity-com/on-chain-identity-gateway/blob/develop
/ethereum/README.md

Technical
Requirements

https://github.com/identity-com/on-chain-identity-gateway/blob/develop
/ethereum/README.md

Contracts File: interfaces/IGatewayToken.sol
SHA3: 2e6ec3c969f9728d3bfa8659557cf5c5aaa979fe1d349593cc52af19c979384f

File: interfaces/IParameterizedAccessControl.sol
SHA3: ab775387d0b5a0fe33bf45e43645df594852d03f6334f1216d0890d29b9045f9

File: FlagsStorage.sol
SHA3: bc68a94deef4de471bde0cedf6b3af9487977ba7f366e1f6d70d2410f153f433

File: FlexibleNonceForwarder.sol
SHA3: c6a7cb55a1a1de8a2778e1cda68b897275c33b8e9b1c25f301d101359f87360a

File: MultiERC2771Context.sol
SHA3: 78f4c4bf1ca35ad7b95de7ad73810a007da725b7c00ad6a535407e71a2e9c135

File: TokenBitMask.sol
SHA3: 3ddb9b799cb97b41155461a3c0e0aefd9a897126df2661193ba0dc1b91aa0832

File: TokenBitMask.sol
SHA3: 3ddb9b799cb97b41155461a3c0e0aefd9a897126df2661193ba0dc1b91aa0832

File: library/Charge.sol
SHA3: a462b838a72491bc335a872973709e5dcc571b9b475fdf76561c6e8a9b88dc90

File: Gated.sol
SHA3: 3589e4a087de12dab8d7f67059c6ea5766de77c01404df7097adc336a241be09

File: Forwarder.sol
SHA3: b7f66fd9562ec26c9c390915996dea8f87647639a8f647e26450c24c95cbc8d3

www.hacken.io
4



File: interfaces/IGatewayTokenVerifier.sol
SHA3: cf7a88d3c475d2f9f83ecc49457d03839efd479ffd79b0552636ccfaa46e6905

File: interfaces/IFlagsStorage.sol
SHA3: 69fa17c537dabf76654de4256111cc3736a39fe7ee1b748060e410b686035cda

File: interfaces/IForwarder.sol
SHA3: 03b4b5c14afa62ec510c7a859153d27651422fb024f630a2bf53f91275fe8677

File: interfaces/IParameterizedAccessControl.sol
SHA3: ab775387d0b5a0fe33bf45e43645df594852d03f6334f1216d0890d29b9045f9

File: interfaces/IERC721Expirable.sol
SHA3: 0af56c7d0e1fc82ce2c21675ffa755de2b1b5361f97828ba0354e1787a428cc0

File: interfaces/IERC721Freezable.sol
SHA3: 8eb6c8b09022c902b8a598854bc8f168690d71aa9a8eb1f480cdf27d01eddf7e

File: interfaces/IGatewayTokenVerifier.sol
SHA3: cf7a88d3c475d2f9f83ecc49457d03839efd479ffd79b0552636ccfaa46e6905

File: interfaces/IERC721Revokable.sol
SHA3: 9a782892ad08a12b10f80a7268b1141016b8696cd854229457a25e5838c2df2f

Second review scope

Repository https://github.com/identity-com/on-chain-identity-gateway/tree/develop
/ethereum/smart-contract/

Commit 55547cc6

Whitepaper https://github.com/identity-com/gateway-whitepaper/blob/main/gateway-w
hitepaper.pdf

Functional
Requirements

https://github.com/identity-com/on-chain-identity-gateway/blob/develop
/ethereum/README.md

Technical
Requirements

https://github.com/identity-com/on-chain-identity-gateway/blob/develop
/ethereum/README.md

Contracts File: FlagsStorage.sol
SHA3: c4d4f928b846cbfabf3e1a2526334f8ed58580196c85b270f07b56cef1770cd0

File: FlexibleNonceForwarder.sol
SHA3: ad65ff40a85a941f9437ba6c9229f290b8eb47202b62c08c7f32f5603605f289

File: Gated.sol
SHA3: 02cc2069b02bfe7b8c01dcc0b393bd5644e463126dce4432935b23cf3a974ffe

File: GatewayToken.sol
SHA3: 543a914ae634e3ad21bbc0f7c772acf8e5ab43565b71b1fea6811d3bff3830fd

File: MultiERC2771Context.sol
SHA3: 1ad3328c2980841c0fbe03c9b301f6eaf286b850e714578704e4f573498fe36a

File: ParameterizedAccessControl.sol
SHA3: c51e4ff435b6335732a16e393421a628b234d84cef39a695fee5c40e2719e46e

File: TokenBitMask.sol
SHA3: cfa2ed32fc10b58d166dcef792d0b395c56fa7fa672031d5f2267426055ab6f5

www.hacken.io
5



File: interfaces/IERC721Expirable.sol
SHA3: 97e5b4dbbb4f60163638be823826ee35895ef65439f6b951a5053fb15e2b98ad

File: interfaces/IERC721Freezable.sol
SHA3: 65eec00fa50e04322e432aea1e0f8e64e9f9b424191c87518f34a7c4a8ee8115

File: interfaces/IERC721Revokable.sol
SHA3: a041c20c9f560149a73e92add3cffa5158fc63d95ea69bdcc5b405daafb87c86

File: interfaces/IFlagsStorage.sol
SHA3: 0868dfa0fcaf12b4b62e67872baebca7aa7475b342bd3d401de4c2720901b9af

File: interfaces/IForwarder.sol
SHA3: cbda536359d178e4446c3e7e69e8476e99198d1a754d3abcf0edc09c6639eb73

File: interfaces/IGatewayToken.sol
SHA3: 3f540f005122e233821223eea5b8dfd0b3d66a8331b855dbd015606cb5e67ddc

File: interfaces/IGatewayTokenVerifier.sol
SHA3: 37ebc4734e69d9faab9098da98a1c122ccf131badafa5292942e1bf00eb94f7a

File: interfaces/IParameterizedAccessControl.sol
SHA3: 819c9014797ecf7f84ca0aa0f7b0ce50ae08575d36a4f0258766789cfa5d5aff

File: library/BitMask.sol
SHA3: 07caf24b3c069eeaa33508a756ab0a14919bafb2f64b530e18876f58299c8de8

File: library/Charge.sol
SHA3: 4bd2b5def4c785640daef6332e4db2b90d3eb6e48fab23e492bf70dbfd80327d

File: library/CommonErrors.sol
SHA3: 6a2f9de91d6e94c0074c906ce65548d275a3cfb0b5b70b567fd67ea2e010d2d6

www.hacken.io
6



Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
7



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 9 out of 10.

● Functional requirements are provided and complete.
● Technical description is limited.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● The code follows the official Solidity Style Guide.

Test coverage
Code coverage of the project is 96.21% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Some utility functions are not covered by tests.

Security score
As a result of the audit, the code does not contain found issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

13 April 2023 13 2 1 0

21 April 2023 0 0 0 0

www.hacken.io
8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● The Super Admin role has permissions for performing any change in the
state of the protocol. It makes it very centralized and can impact
security. Although it can not be assured by the code, it is
recommended to use a multisig wallet with at least ⅗ transactions
signing policy for the Super Admin role.

www.hacken.io
9



System Overview

The EVM Gateway Protocol is a standard that enables smart contracts on the
Ethereum Virtual Machine (EVM) to implement access control constraints
using Gateway Tokens (GTs). GTs are non-transferable, semi-fungible tokens
that conform to the ERC-20 interface and are issued by "Gatekeepers" who
verify the eligibility of users for a specific GT. The Gateway Protocol is
open and permissionless, allowing anyone to become a gatekeeper and issue
GTs. Gatekeepers operate within a Gatekeeper Network, a group of
gatekeepers that work together to issue GTs for a particular use case. The
client smart contract specifies the trusted Gatekeeper Network, and if a
user has a valid GT from that network, the transaction can proceed. GTs
have features such as expiry dates, freeze/unfreeze options, and
revocation, giving gatekeepers more control over the token's lifecycle. The
Gateway Protocol is designed to be easily integrated into existing smart
contracts, and it does not prescribe a specific mechanism for obtaining
GTs, allowing gatekeepers to design their own user onboarding flows.

The scope is composed by the following contracts:
● GatewayToken - ERC3525 Token contract, takes care of minting and

handling the token states
● MultiERC2771Context - Extends ContextUpgradeable with ERC2771

trustedForwarders
● ParametrizedAccessControl - Network level access control
● TokenBitMask - An internal smart contract for Gateway Token

implementation that stores KYC flags per identity token in a bitmask
● FlagsStorage - The main contract to store KYC-related flags for

Gateway Token System
● FlexibleNonceForwarder - ERC2771 Forwarder contract extended to allow

for flexible nonces
● Gated - Utility contract to check if msg.sender has a valid token on

a specific network

Privileged roles
● Super admins of the FlagsStorage contract can arbitrarily add, delete

and modify the flags stored. It is therefore entitled to impersonate
or change the logic of critical components of the system at will.

● Super admins of the GatewayToken contract can withdraw locked funds,
change metadata descriptor, update forwarders and update flags
storage.

Recommendations
● Some uint variables do not have their size explicitly specified. It

is better to properly specify the size of the variable to avoid
readability issues (contracts/interfaces/IGatewayToken.sol,

www.hacken.io
10



contracts/library/BitMask.sol, contracts/library/CommonErrors.sol,
contracts/GatewayToken.sol, contracts/MultiERC2771Context.sol).

www.hacken.io
11



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
12

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128


Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Passed

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Not Relevant

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
13

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not Relevant

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
14



Findings

Critical

No critical severity issues were found.

High

H01. Inconsistent Data

The function execute() from FlexibleNonceForwarder accepts Ether and
does not verify if the transaction value (msg.value) is the same as
the request value (req.value) and does not return unused Ether to the
caller. If the transaction value is not enough to perform the
forwarding, it will use funds from the contract (previously collected
funds that were not used).

Path: ./contracts/FlexibleNonceForwarder.sol : execute()

Recommendation: Check if the msg.value is equal to the req.value and
return unused Ether to the caller.

Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

Medium

M01. Only EOA Allowed

The function withdraw() restricts any incoming smart contract calls
by performing high level payable(address).transfer().

This causes inability to call the functionality from multisig
wallets, DAO accounts or any smart contract.

Path: ./contracts/GatewayToken.sol : withdraw()

Recommendation: Remove the restriction or provide alternative ways
for smart contract interactions.

Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

M02. Best Practice Violation

Forwarder contract is a direct implementation of OpenZeppelin’s
MinimalForwarder contract, with no added functionalities.

Its use in production is discouraged by OpenZeppelin itself.

Path: ./contracts/Forwarder.sol

Recommendation: Remove the contract and only use
FlexibleNonceForwarder.

www.hacken.io
15



Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

Low

L01. Redundant Override Keyword

override keyword is used on state variables when not needed.

Path: ./contracts/FlagsStorage.sol : superAdmin, supportedFlagsMask,
flagIndexes

Recommendation: Remove redundant code.

Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

L02. Functions that Can Be Declared External

public functions that are never called by the contract should be
declared “external” to save Gas.

Notice: it is also applicable to the initialize function in
upgradable contracts. There is no advantage in declaring them public
if the contract is not inherited.

Paths: ./contracts/FlagsStorage.sol : initializer(),
updateSuperAdmin(), addFlag(), addFlags(), removeFlag(),
removeFlags(), isFlagSupported()

./contracts/FlexibleNonceForwarder : execute(), getNonce()

./contracts/GatewayToken.sol : initialize(),
setMetadataDescriptor(), addForwarder(), removeForwarder(),
transferDAOManager(), getTokenBitmask(), setBitmask()

./contracts/ParameterizedAccessControl.sol : setSuperAdmin()

Recommendation: Use the external attribute for functions never called
from the contract.

Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

L03. Reading Array Length in a Loop

Array length should be saved in a local variable instead of being
computed in each loop cycle during the condition check.

Paths: ./contracts/FlagsStorage.sol : addFlags(), removeFlags()

./contracts/GatewayToken.sol : _getTokenIdsByOwnerAndNetwork()

www.hacken.io
16



Recommendation: Save the array length in a variable and use that
variable in the for loop condition.

Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

L04. Variable Can Be Set Immutable

Variable _blockAgeTolerance can be declared immutable to save Gas on
computations.

Path: ./contracts/FlexibleNonceForwarder.sol

Recommendation: Declare mentioned variables as mentioned.

Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

L05. Floating Pragma

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively. The
project uses floating pragma ^0.8.9.

Path: all contracts

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

L06. Zero Address Check

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Path: ./contracts/GatewayToken.sol : initialize()

Recommendation: Implement zero address checks.

Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

L07. Best Practice Violation

Since OpenZeppelin’s contracts v4.6.0 it is recommended to use
_disableInitializers() in the constructor instead of the initializer
modifier.

www.hacken.io
17



Paths: ./contracts/FlagsStorage.sol : constructor(),
./contracts/GatewayToken.sol : constructor(),
./contracts/MultiERC2771Context.sol : constructor()

Recommendation: Use _disableInitializers instead of initializer on
constructor as recommended by OpenZeppelin docs.

Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

L08. Unused Variable

Unused variables should be removed from the contracts. Unused
variables are allowed in Solidity and do not pose a direct security
issue. It is best practice to avoid them as they can cause an
increase in computations (and unnecessary Gas consumption) and
decrease readability.

The variable controller is never used.

Path: ./contracts/GatewayToken.sol

Recommendation: Remove unused variable.

Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

L09. Function Can Be Pure

The function transfersRestricted() does not read or modify the
variables of the state and, due to that, should be declared pure.

This can lower Gas taxes.

Path: ./contracts/GatewayToken.sol : transfersRestricted()

Recommendation: Change function state mutability to pure.

Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

L10. Redundant Function

withdraw() function is currently needed because of the ERC3525
payable approve() function, which can lead to funds lock if users
send funds by mistake to the contract.

A cleaner way to solve the issue would be to override the ERC3525
approve() function, letting it revert if msg.value is greater than
zero. This way, funds will not reach the contract in the first place.

Path: ./contracts/GatewayToken.sol : withdraw()

www.hacken.io
18

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract


Recommendation: Override the ERC3525 approve() function, and extend
it by triggering a revert if msg.value is greater than zero.

Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

L11. Empty Constructor

In the contract Forwarder the constructor is empty, which makes it
redundant due to default Solidity behavior to create an empty
constructor if it is not included in code.

This makes redundant parts of code.

Path: ./contracts/Forwarder.sol

Recommendation: Remove redundant parts of code.

Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

L12. Unfinalized NatSpec

In the contract Forwarder the NatSpec placed before the contract
definition is not finalized.

Path: ./contracts/Forwarder.sol

Recommendation: Finish the NatSpec comment block.

Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

L13. Style Guide Violation

The function ordering is not following the official guidelines.

Path: ./contracts/GatewayToken.sol

Recommendation: Follow the official Solidity guidelines.

Found in: aa70a5c2

Status: Fixed (Revised commit: 55547cc6)

www.hacken.io
19

https://docs.soliditylang.org/en/v0.8.13/style-guide.html


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
20


