
Customer: Civic
Date: 28 Jun 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Civic

Approved By Yevheniy Bezuhlyi | SC Audits Head at Hacken OÜ

Type Digital Identity Platform

Platform Solana

Language Rust

Methodology Link

Website civic.com

Changelog
19.04.2023 – Initial Review
19.05.2023 – Second Review
28.06.2023 – Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.civic.com/


Table of contents
Introduction 4
Scope 4
Severity Definitions 7
Executive Summary 8
Risks 9
System Overview 10
Checked Items 12
Findings 14

Critical 14
High 14

H01. Denial Of Service State 14
Medium 15

M01. Improper Account Funding 15
Low 15

L01. Unfinalized Code 15
L02. Confusing Code 15
L03. Redundant Code 15
L04. Outdated Dependencies 17
L05. Floating Language Version 18
L06. Best Practices Violation 18
L07. Best Practices Violation 19
L08. Best Practices Violation 19
L09. Unsafe Rust Code 20
L10. Missing Documentation 20
L11. Unfinalized Code 21
L12. Confusing Code 21

Disclaimers 22

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Civic (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project includes review and security analysis of the
following smart contracts from the provided repository:

Initial review scope

Repository github.com/identity-com/on-chain-identity-gateway

Commit c939b6feb8aa92d596306a1aeb2dc497c2f7f693

Whitepaper Link

Functional
Requirements

General Overview
Integration Example
Program Functions Description

Technical
Requirements Are not provided

Contracts File: ./solana/integration-lib/src/borsh.rs
SHA3: 6cad789905fe29079c66311e9dcc18a8332f354b6d53440cbbea16ff8810d824

File: ./solana/integration-lib/src/error.rs
SHA3: 29bc298d1924311ad8e959023b529e814b0d71438505525bad2d07fec18fbd49

File: ./solana/integration-lib/src/instruction.rs
SHA3: 3a621d0042e8d0a69be8f6c1ccf36f8ae165e5492358e0e821cc426b0746f0b9

File: ./solana/integration-lib/src/lib.rs
SHA3: c6f27eea7d07010ed647d32a29d7b1f8b49134ec4116e0f3aa87604777fa25ab

File: ./solana/integration-lib/src/networks.rs
SHA3: c0420db1bed69bd3b94dfef28f1a72d4528cf9556e20025c478f812abd942336

File: ./solana/integration-lib/src/state.rs
SHA3: e951c41932455f0f82f610fe9da9ac5a5693e2cbdad9d6a8ae29a0222717cffe

File: ./solana/program/src/entrypoint.rs
SHA3: be82823540d5afb969684a314d2251f6638941f951e434c73656e9c885ee8fe4

File: ./solana/program/src/error.rs
SHA3: 5ae952c07ba22395bb9b6e4ec89cb4e535bea369b5a4d977c72787d3a5bec8f5

File: ./solana/program/src/lib.rs
SHA3: 78472a8f0b94caabbe97333845dfa72836790d1e55a3697d071eef9c65d58c0d

File: ./solana/program/src/processor.rs
SHA3: b9f4fd75c36c6d12117facd4dc767983c5862fad94422c6a6e4424d372215156

File: ./solana/program/src/state.rs
SHA3: 79dc5176667d50af1527d80d71379b4edb13769ac642f7208606941c07c3c325

www.hacken.io
4

https://github.com/identity-com/on-chain-identity-gateway
https://github.com/identity-com/on-chain-identity-gateway/tree/c939b6feb8aa92d596306a1aeb2dc497c2f7f693
https://github.com/identity-com/gateway-whitepaper
https://docs.civic.com/introduction/how-it-works
https://github.com/identity-com/on-chain-identity-gateway/blob/c939b6feb8aa92d596306a1aeb2dc497c2f7f693/solana/integration-lib/README.md
https://github.com/identity-com/on-chain-identity-gateway/blob/c939b6feb8aa92d596306a1aeb2dc497c2f7f693/solana/program/README.md


Second review scope

Repository github.com/identity-com/on-chain-identity-gateway

Commit c181e2db70c1f7b41d88f67f60dbed1fac8c5143

Whitepaper Link

Functional
Requirements General Overview

Technical
Requirements Development Docs

Contracts File: ./solana/program/src/borsh.rs
SHA3: f11511c83fe0fcd14564277a9e9b31b0c66688b3b7f50913faa1e112562bf506

File: ./solana/program/src/entrypoint.rs
SHA3: f6dcb0b1eca536cead7f6da545f5b4aefaa9a8aeb5c047dbed8e12ecbdfd4b5c

File: ./solana/program/src/error.rs
SHA3: 213fc54e55175b4dc113ecfa82be7820b22270b6287af76a869485a374a525ff

File: ./solana/program/src/instruction.rs
SHA3: 75aec7f5644d3dc656c920d2f39817707a52ff5b76efe6321306faa6e1cde653

File: ./solana/program/src/lib.rs
SHA3: c071ec3261c921f8d96e7cda025e8140706dc7a24026267a6716b7d0c403ce36

File: ./solana/program/src/networks.rs
SHA3: 5918fd006bb54a581502df2d863cda6575747a7450869fc0b5ab8f5df7124479

File: ./solana/program/src/processor.rs
SHA3: 424f77be568217d186558c8663f7bd86f48b2014596ddf383586ccacc3beedc1

File: ./solana/program/src/state.rs
SHA3: 812162bdfe16149523411d04f17b7ce3b4a1bac2acb79d6ae39109c295ce758b

www.hacken.io
5

https://github.com/identity-com/on-chain-identity-gateway
https://github.com/identity-com/on-chain-identity-gateway/tree/c181e2db70c1f7b41d88f67f60dbed1fac8c5143
https://github.com/identity-com/gateway-whitepaper
https://docs.civic.com/introduction/how-it-works
https://github.com/identity-com/on-chain-identity-gateway/blob/c181e2db70c1f7b41d88f67f60dbed1fac8c5143/solana/program/README.md


Third review scope

Repository github.com/identity-com/on-chain-identity-gateway

Commit d94bfee1a35b533583efc1b2151a9224b1a4b305

Whitepaper Link

Functional
Requirements General Overview

Technical
Requirements Development Docs

Contracts File: ./solana/program/src/borsh.rs
SHA3: f11511c83fe0fcd14564277a9e9b31b0c66688b3b7f50913faa1e112562bf506

File: ./solana/program/src/entrypoint.rs
SHA3: f6dcb0b1eca536cead7f6da545f5b4aefaa9a8aeb5c047dbed8e12ecbdfd4b5c

File: ./solana/program/src/error.rs
SHA3: 213fc54e55175b4dc113ecfa82be7820b22270b6287af76a869485a374a525ff

File: ./solana/program/src/instruction.rs
SHA3: 75aec7f5644d3dc656c920d2f39817707a52ff5b76efe6321306faa6e1cde653

File: ./solana/program/src/lib.rs
SHA3: c071ec3261c921f8d96e7cda025e8140706dc7a24026267a6716b7d0c403ce36

File: ./solana/program/src/networks.rs
SHA3: 5918fd006bb54a581502df2d863cda6575747a7450869fc0b5ab8f5df7124479

File: ./solana/program/src/processor.rs
SHA3: b26c3abb47a62531ae2ae2547757cfcc4b3e3cb0b3f098953c91a650970e3717

File: ./solana/program/src/state.rs
SHA3: 812162bdfe16149523411d04f17b7ce3b4a1bac2acb79d6ae39109c295ce758b

www.hacken.io
6

https://github.com/identity-com/on-chain-identity-gateway
https://github.com/identity-com/on-chain-identity-gateway/tree/d94bfee1a35b533583efc1b2151a9224b1a4b305
https://github.com/identity-com/gateway-whitepaper
https://docs.civic.com/introduction/how-it-works
https://github.com/identity-com/on-chain-identity-gateway/blob/c181e2db70c1f7b41d88f67f60dbed1fac8c5143/solana/program/README.md


Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused code
or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality.

www.hacken.io
7



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 9 out of 10.

● README.md in the program crate as well as doc comments in
program::instruction state the need to pass the rent sysvar account
to some instructions, but actually the instructions do not expect it.

Code quality
The total Code Quality score is 9 out of 10.

● There are minor cases of unfinalized or confusing code.
● There are hardcoded generated values whose derivation is not

validated properly.
See the Findings section for detailed issue descriptions.

Test coverage
Code coverage of the project is 91%.

● There is both positive and negative cases coverage.
● All kinds of actors are tested.
● program::processor::remove_feature_from_network is not tested.

Security score
As a result of the audit, the code contains 3 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the Findings section of the report.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.38.

The system users should acknowledge all the risks summed up in the Risks
section of the report.

www.hacken.io
8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Table. The distribution of issues during the audit

Review date Low Medium High Critical

19 April 2023 10 1 1 0

19 May 2023 3 0 0 0

28 June 2023 3 0 0 0

Risks

● Generally, in Solana, a program may be deployed as mutable, which
could be used to change the implementation in an unexpected way;
additionally, insufficient funding of the program-containing account
may lead to the program going down.

● The gatekeeper that issued a token is able to freeze it at any
moment.

● Any gatekeeper of the network that issued a token is able to revoke
it, remove it, or render it expired at any moment.

● A gatekeeper network may remove a gatekeeper at any moment.

www.hacken.io
9



System Overview

On-chain Identity Gateway is a platform that implements auth token creation
and management. The main purpose of the system is to allow other smart
contracts to validate the user’s identity (for example, KYC verification,
reCAPTCHA, etc.).

The domain model has the following key entities: “gatekeeper network”,
“gatekeeper”, and “gateway token”. A gatekeeper network can add/remove
gatekeepers to itself. Gatekeepers can create gateway tokens within their
network for arbitrary parties. A gateway token represents a credential that
is meant to be used by client systems to authenticate their users. A party
may be granted many gateway tokens at the same time, including many tokens
from the same network. A gateway token may have an expiration time, which
can be increased or decreased arbitrarily by any gatekeeper in the network.
A gateway token may be paused/unpaused (only by the issuing gatekeeper),
revoked or removed by any gatekeeper in the network. A network may
add/remove features to itself. Currently, the only feature is
self-expiration, which allows a grantee of a gateway token to make the
token expire immediately.

The platform supports several blockchains. The platform implementation
designed for the Solana blockchain is in the audit scope.

In-scope files:
● ./solana/program/ (also referred to as the program crate) — the

folder contains a Rust crate that defines the operations that
gatekeepers can perform on the Solana blockchain, and the client-side
code for interacting with the program.

○ ./solana/program/src/entrypoint.rs — the file contains the
program entrypoint and performs a redirect to the processor.

○ ./solana/program/src/lib.rs — the file contains module
declarations, the program ID declaration, and
reading/validation utilities for gateway tokens.

○ ./solana/program/src/processor.rs — the file contains the
implementation of fundamental operations over the domain
entities.

○ ./solana/program/src/state.rs — the file contains the program
state data structures definitions and helper functions to work
with the state.

○ ./solana/program/src/borsh.rs — the file contains Borsh helpers
to work with data slices.

○ ./solana/program/src/error.rs — the file contains the protocol
error declarations.

www.hacken.io
10



○ ./solana/program/src/instruction.rs — the file contains the
program instruction signatures and the functions constructing
calls into the respective program APIs.

○ ./solana/program/src/networks.rs — the file contains official
gateway network addresses.

Privileged roles
● The owner of the account that contains the program - as allowed in

Solana - can modify the account, including the program code, if it
was not deployed as immutable.

● Within the program, there are no universal high-privileged roles.
Each gateway network is a root of an isolated graph of entities. For
each graph, the ultimate-privilege entity is the gateway network,
which can spawn many gatekeepers that have second-class privileges.
The details of the abilities of the privileged entities are described
in the main body of the System Overview.

www.hacken.io
11



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status

Integer
Overflow and
Underflow

If unchecked math is used, all math operations
should be safe from overflows and underflows. Passed

Unchecked Call
Return Value

The return value of a message call should be
checked. Passed

Access Control
& Authorization

Ownership takeover should not be possible. All
crucial functions should be protected. Users could
not affect data that belongs to other users.

Passed

Assert
Violation

Properly functioning code should never reach a
failing assert statement. Passed

Deprecated Rust
Functions

Deprecated built-in functions should never be
used. Passed

DoS (Denial of
Service)

Execution of the code should never be blocked by a
specific contract state unless required. Passed

Block values as
a proxy for
time

Block numbers should not be used for time
calculations. Not Relevant

Signature
Unique Id

Signed messages should always have a unique id. A
transaction hash should not be used as a unique
id. Chain identifiers should always be used.

Not Relevant

Weak Sources of
Randomness

Random values should never be generated from Chain
Attributes or be predictable. Not Relevant

Race Conditions Race Conditions and Transactions Order Dependency
should not be possible. Passed

Calls Only to
Trusted
Addresses

All external calls should be performed only to
trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused variables if
this is not justified by design. Passed

Assets
Integrity

Funds are protected and cannot be withdrawn
without proper permissions or be locked on the
contract.

Passed

User Balances
Manipulation

Contract owners or any other third party should
not be able to access funds belonging to users. Passed

www.hacken.io
12



Data
Consistency

Smart contract data should be consistent all over
the data flow. Passed

Flashloan
Attack

When working with exchange rates, they should be
received from a trusted source and not be
vulnerable to short-term rate changes that can be
achieved by using flash loans. Oracles should be
used.

Not Relevant

Token Supply
Manipulation

Tokens can be minted only according to rules
specified in a whitepaper or any other
documentation provided by the Customer.

Passed

Gas and Loops
Transaction execution costs should not depend
dramatically on the amount of data stored on the
contract.

Passed

Compiler
Warnings

The code should not force the compiler to throw
warnings. Passed

Requirements
Compliance

The code should be compliant with the requirements
provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a comprehensive
description of how to compile, build and deploy
the code.

Passed

Secure Oracles
Usage

The code should have the ability to pause specific
data feeds that it relies on. This should be done
to protect a contract from compromised oracles.

Not Relevant

Tests Coverage
Above 90%

The code should be covered with unit tests. Test
coverage should be sufficient, with both negative
and positive cases covered. The usage of contracts
by multiple users should be tested.

Passed

Stable Imports The code should not reference draft contracts,
that may be changed in the future. Passed

Unsafe Rust
code

The Rust type system does not check the memory
safety of unsafe Rust code. Thus, if a smart
contract contains any unsafe Rust code, it may
still suffer from memory corruptions such as
buffer overflows, use after frees, uninitialized
memory, etc.

Passed

Improper
account funding

All Solana accounts holding an Account, Mint, or
Multisig must contain enough SOL to be considered
rent exempt. Otherwise, the accounts may fail to
load.

Passed

Missing freeze
authority
checks

When freezing is enabled but the program does not
verify that the freezing account call has been
signed by the appropriate freeze_authority.

Not Relevant

www.hacken.io
13



Findings

Critical

No critical severity issues were found.

High

H01. Denial Of Service State

Note: this could be a false positive - however, this was not possible
to confirm from the functional requirements.

program::processor::issue_vanilla allocates the size for a new token
account as equal to the size (of Borsh encoding) of the newly created
GatewayToken instance.

Since GatewayToken contains several Optional-typed fields
(parent_gateway_token, owner_identity, expire_time), the encoding
size of an instance may vary depending on whether some of the
optionals are non-None. This is because None is encoded compactly in
Borsh i.e. a field encoding is small if the value is None, and may be
larger if the value is different than None.

In particular, program::processor::issue_vanilla does not set
expire_time if it was not given to the method. The current space
allocation approach leads to the impossibility of setting the field
later.

If expire_time is not given to the method, the GatewayToken instance
initial size will be 101. If later for that token
program::processor::update_expiry is called, the token size will
become 109, and the execution will fail to write it to the account.
In other words, if a token is issued without expiration time, the
expiration time cannot be set later. Note that this also blocks
program::processor::expire_token for such a token, because the
function works by setting an expiration time in the past.

Path: program::processor::issue_vanilla

Recommendation: Take the variable encoding size of Optional-typed
fields into consideration or explicitly document the relevant effects
in the current code.

Found in: c939b6f

Status: Fixed (Revised commit: c181e2d)

www.hacken.io
14



Medium

M01. Improper Account Funding

The usage of Rent::default() may cause insufficient or excessive
funding of a newly created account depending on the underlying
blockchain configuration/state. In particular, insufficient funding
may lead to an unexpected purging of the account.

Path: program::processor::add_feature_to_network

Recommendation: Read Rent as a sysvar instead of
default-constructing.

Found in: c939b6f

Status: Fixed (Revised commit: c181e2d)

Low

L01. Unfinalized Code

● integration_lib::state:
○ TODO at line 152
○ Commented-out code at lines 123-124
○ Commented-out code at lines 546-550

Path: In the description

Recommendation: Eliminate the mentioned signs of unfinalized code.

Found in: c939b6f

Status: Fixed (Revised commit: c181e2d)

L02. Confusing Code

● integration_lib::state::verify_gatekeeper:
○ The parameter name gatekeeper could mean “gatekeeper authority”

or “gatekeeper account”
● integration_lib::state::get_gateway_token_address_with_seed:

○ The parameter name authority is misleading, since it actually
represents a grantee, whereas “authority” is something that
grants.

Path: In the description

Recommendation: Eliminate the mentioned confusion.

Found in: c939b6f

Status: Fixed (Revised commit: c181e2d)

L03. Redundant Code

● program::processor::GATEKEEPER_ACCOUNT_LENGTH:
www.hacken.io

15



○ The constant represents 0, and it is used only in cases that
have no direct relation to the gatekeeper account concept.
Therefore, it is better to eliminate it by replacing it with a
literal 0, which would also eliminate the confusion due to its
name.

● program::processor::add_gatekeeper:
○ The check at line 99 is redundant, because data_len is always 0

regardless of whether the account is initialized, and because
the subsequent create_account call ensures that an account has
not been created.

○ The funder_info.is_signer check is redundant, since it will be
done in the system program.

● program::processor::issue_vanilla:
○ The check at line 198 is redundant because size cannot be 0
○ The funder_info.is_signer check is redundant, since it will be

done in the system program.
● program::processor::set_state:

○ The check at line 238 is redundant because the other
validations cover it.

● program::processor::update_expiry:
○ The check at lines 291-296 is redundant because the other

validations cover it.
● program::processor::expire_token:

○ The check at line 366 is redundant because the other
validations cover it.

● program::processor::add_feature_to_network:
○ The funder_account.is_signer check is redundant since it will

be done in the system program.
● program::processor::verify_token_length:

○ The function is redundant because all its usages are redundant
(listed above).

● program::error:
○ The module is not used.

● program::state:
○ Redundant abstraction via the Transitionable trait, since there

is only one implementation.
● program (lib.rs):

○ The program id string at line 14 is duplicated: it is also
defined at integration_lib::Gateway::program_id.

● integration_lib::error::GatewayError
○ InvalidGatekeeperAccount is unused.

● integration_lib::state::Feature:
○ Only Expirable is actually used in the contract.

● integration_lib::state::GatewayToken:
○ parent_gateway_token is effectively unused because it is always

None in the contract.
○ owner_identity is unused in the contract.

www.hacken.io
16



○ The features bitfield is excessive, since the only feature is
Expirable, and its presence is equivalent to
expire_time.is_some().

● integration_lib::state:
○ CompatibleTransactionDetails is unused.
○ SimpleTransactionDetails is unused.

● integration_lib::borsh::try_from_slice_incomplete:
○ The local variable data_mut is redundant because the data

parameter could be declared as mut initially.
● integration_lib::state::GatewayTokenFunctions::hasFeature:

○ The if check is redundant since there is a compile-time
guarantee that the check will always succeed. Moreover, if the
check fails, then the function should panic instead of
returning false - which is a valid result of this function,
thus the fact of a critical error is hidden and ignored; if the
function panics in such a case, then everything depending on it
will always panic, making a significant part of the system
functionality always unavailable. A good way to do such checks
- is a compile-time assertion; there are libraries for that.
However, any test that touches this function directly or
indirectly would reveal the programmer's mistake (of adding too
many variants to the enum), if the function panicked - this
would be an adequate substitute for a compile-time assertion.

Path: In the description

Recommendation: Eliminate the mentioned redundancies.

Found in: c939b6f

Status: Fixed (Revised commit: c181e2d)

L04. Outdated Dependencies

Some dependencies are significantly outdated, which may cause missing
important improvements or fixes.

● solana-*: current is 1.9.29, latest is 1.15.2
● borsh: current is 0.9.1, latest is 0.10.3
● bitflags: current is 1.3.2, latest is 2.1.0
● sol-did: current is 0.2.0, latest is 3.3.0

Path:

● program::Cargo.toml
● integration_lib::Cargo.toml

Recommendation: Update the dependencies as long as it does not cause
a major conflict with the current implementation.

Found in: c939b6f

Status: Fixed (Revised commit: c181e2d)

www.hacken.io
17



L05. Floating Language Version

It is preferable for a production project, especially a smart
contract, to have the programming language version pinned explicitly.
This results in a stable build output, and guards against unexpected
toolchain differences or bugs present in older versions, which could
be used to build the project.

The language version could be pinned in automation/CI scripts, as
well as proclaimed in README or other kinds of developer
documentation. However, in the Rust ecosystem, it can be achieved
more ergonomically via a rust-toolchain.toml descriptor (see
https://rust-lang.github.io/rustup/overrides.html#the-toolchain-file)

Paths: ./solana/rust-toolchain.toml

Recommendation: Pin the language version at the project level.

Found in: c939b6f

Status: Fixed (Revised commit: c181e2d)

L06. Best Practices Violation

integration_lib::state::InPlaceGatewayToken significantly increases
the obscurity, complexity, and rigidity of the codebase in exchange
for a limited performance gain.

The goal of this type is to provide read/write access to the data
fields without wholly decoding/encoding it into a conventional data
struct integration_lib::state::GatewayToken by utilizing the
random-access-ability of Borsh encoding.

This does reduce the run time of a decode-modify-encode workload by
60-75%. However, the only usage of InPlaceGatewayToken in the
contract code (at program::processor::expire_token) leads to a
reduction by ~19% of compute units.

The price of performance improvement is:

● InPlaceGatewayToken is a nontrivial piece of code that takes an
effort to verify. Understanding its purpose is less
problematic, although it may appear challenging because of how
the code looks.

● It causes a significant increase in the number of lines of
code. In particular, there is duplication of access patterns
for every field.

● It increases efforts when adding/removing/reordering
GatewayToken fields or changing their types, especially for
developers other than the author of the code.

● It uses unsafe (see L09).
● The test code for it inherits the complexity and appearance

issues.

www.hacken.io
18

https://rust-lang.github.io/rustup/overrides.html#the-toolchain-file


It is worth noting that the rest of the code is clear and simple - in
sharp contrast to InPlaceGatewayToken.

Full transparency is one of the main traits that distinguish smart
contracts from normal programs: their code, state, and the way they
are executed are meant to be public. This yields a development/usage
culture in which it is important that the code is as comprehensible
as possible.

Path: integration_lib::state::InPlaceGatewayToken

Recommendation:

Use GatewayToken instead of InPlaceGatewayToken.

If the performance in this case is crucial, there is an alternative
way to achieve a faster and cleaner solution, given that an upgrade
of data schema is possible (i.e. if versioning is implemented). It is
possible to use a raw Rust struct representation (see Rust layout
explainer, also keep in mind the code compilation target) as the
binary format for the Solana account data. In GatewayToken, fields
that are Optional<T> could be replaced with separate is_present: bool
and value: T fields to achieve a fixed layout of GatewayToken. The
idea is to use transmute to cast between raw bytes and &GatewayToken
or &mut GatewayToken.

Found in: c939b6f

Status: Fixed (Revised commit: c181e2d)

L07. Best Practices Violation

The GATEWAY_NETWORKS array contains several networks whose addresses
are hardcoded.

It is considered best practice to avoid hardcoding generated values
or provide corresponding tests to validate the data.

Path: integration_lib::networks::(IGNITE, TIBER, TEST_TIBER)

Recommendation: Make the networks’ addresses and bump seeds run-time
calculated or provide corresponding tests to check that the values
are derived correctly.

Found in: c939b6f

Status: Reported

L08. Best Practices Violation

The low-level crate program depends on a higher-level crate
integration_lib. This makes the code dependency structure not aligned
with the architecture.

www.hacken.io
19

https://doc.rust-lang.org/reference/type-layout.html
https://doc.rust-lang.org/reference/type-layout.html


integration_lib is at a higher level of abstraction than program,
because the purpose of integration_lib (as the name and much of its
code suggest) is to provide client-side means for working with the
program.

Path:

● integration_lib::state
● program::state

Recommendation: Move the parts of integration_lib needed by program
to a separate interface-crate or move them to program.

Found in: c939b6f

Status: Fixed (Revised commit: c181e2d)

L09. Unsafe Rust Code

unsafe usage in situations where it can be avoided is widely
recognized as an antipattern. It may be justified in a dedicated
library code, given it is thoroughly tested and there is no
equivalent solution in the standard library.

In smart contracts especially, it may harm the credibility of the
codebase even when it is done flawlessly.

Path:

● integration_lib::state::pubkey_ref_from_array
● integration_lib::state::pubkey_mut_ref_from_array

Recommendation: Avoid unsafe in the contract code.

Found in: c939b6f

Status: Fixed (Revised commit: c181e2d)

L10. Missing Documentation

program::processor::issue_vanilla allows specifying the expire_time
token parameter. However, it is not checked that the gatekeeper
network supports the expiration feature (symbolized by
NetworkFeature::UserTokenExpiry).

Currently, the effect of
integration_lib::instruction::NetworkFeature::UserTokenExpiry is that
a grantee of the token may make the token expired via
program::processor::expire_token. However, the name of the feature
may suggest that this is a feature flag for the availability of
integration_lib::state::GatewayToken::expire_time as a whole.

This may lead to wrong assumptions on the token life cycle.

Path: ./solana/
www.hacken.io

20



Recommendation: Clarify the flow of features enabling/disabling, code
boundary cases by the documentation.

Found in: c939b6f

Status: Fixed (Revised commit: c181e2d)

L11. Unfinalized Code

● program::state:
○ TODO at line 15

Path: In the description

Recommendation: Eliminate the mentioned signs of unfinalized code.

Found in: c181e2d

Status: New

L12. Confusing Code

The parameter name gatekeeper could mean “gatekeeper authority” or
“gatekeeper account”.

Path: program::state::verify_gatekeeper_address_and_account

Recommendation: Rename the parameter to gatekeeper_authority.

Found in: c181e2d

Status: New

www.hacken.io
21



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
22


