
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Civic Technologies, Inc.
Date: 31 0ct, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Civic
Technologies, Inc

Approved By
Przemyslaw Swiatowiec | Lead Solidity SC Auditor at Hacken OÜ
Kornel Światłowski | SC Auditor at Hacken OÜ
Roman Tiutiun | SC Auditor at Hacken OÜ

Tags ERC3525

Platform EVM

Language Solidity

Methodology Link

Website https://www.civic.com/

Changelog 23.10.2023 – Initial Review
31.10.2023 – Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.civic.com/


Table of contents
Introduction 4
System Overview 4
Executive Summary 6
Risks 6
Findings 8

Critical 8
High 8
Medium 8

M01. Super admin can delete all other super admins causing inability to
manage GatewayToken contract 8

Low 8
L01. Missing zero address validation 8
L02. ERC-2771 implementation differ from proposal - underflow risk 9

Informational 10
I01. Floating pragma 10
I02. Redundant check of user allowance 10
I03. Redundant imports 11
I04. State variables can be declared immutable 11
I05. Missing validation if a DaoManager is a contract account 12
I06. Missing event for critical value updation 12

Disclaimers 14
Appendix 1. Severity Definitions 15

Risk Levels 15
Impact Levels 16
Likelihood Levels 16
Informational 16

Appendix 2. Scope 17

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Civic Technologies, Inc.
(Customer) to conduct a Smart Contract Code Review and Security Analysis.
This report presents the findings of the security assessment of the
Customer's smart contracts.

System Overview

GATEWAY PROTOCOL is a standard that allows smart contracts to add access
control constraints, requiring that a user has a valid Gateway Token (GT)
in order to interact with the smart contract. with the following contracts:

● GatewayToken.sol — the contract is responsible for managing
Identity.com KYC gateway tokens; those tokens represent completed KYC
with attached identity. Gateway tokens using ERC721 standard with
custom extensions.

● ChargeHandler.sol — is an internal library used by the Gatekeeper to
handle charges made to the gatekeeper on gateway token issuance or
refresh.

● FlagsStorage.sol - is the main contract to store KYC-related flags
for Gateway Token System. KYC flags are identifiable by short
identifiers in bytes32 strings. After adding flags those bit indexes
could be used by GatewayToken implementations to associate flags per
token.

● Gated.sol - the modifier utility that allows function to only be
called by a sender that has a valid gateway token.

● FlexibleNonceForwarder.sol - is the typed data standard specifies a
method in which data to be signed (a transaction, in this case) is
structured according to a schema, which is agreed between the signer
and verifier. While the primary motivation behind this standard is to
increase the security of user-facing wallets, by allowing them to
display the data to be signed in a human-readable format, it also has
benefits for the gateway protocol.

● GatedERC2771.sol - an abstract contract designed to work with a
gateway token contract and a gatekeeper network, both of which are
set during the contract's deployment.

● GatedERC2771Upgradeable.sol - is an abstract contract designed to
work with a gateway token contract and a gatekeeper network.

● MultiERC2771Context.sol - is a Context variant with ERC2771 support
for multiple trusted forwarders.

● MultiERC2771ContextUpgradeable.sol - is an abstract contract that
extends the Context contract from OpenZeppelin. The contract is
designed to support multiple trusted forwarders in the context of
ERC2771, a standard for meta transactions.

www.hacken.io
4



● ParameterizedAccessControl.sol - contract module implements
role-based access control mechanisms. This is a lightweight version
that doesn't allow enumerating role members except through off-chain
means by accessing the contract event logs.

● TokenBitMask.sol - contract is an internal smart contract for Gateway
Token implementation that stores KYC flags per identity token in a
bitmask.

● BitMask.sol - is a library that provides functions for manipulating
bits in a 256-bit unsigned integer.

Privileged roles
The superAdmin of the FlagsStorage.sol contract:

● updateSuperAdmin() - transferring ownership to new super admin.
● addFlag() - adding a new flag into the gateway token system.
● addFlags() - adding multiple flags into the gateway token

system.
● removeFlag() - removing existing flag from gateway token

system.
● removeFlags() - removing multiple existing flags from gateway

token system.
The GatewayToken.sol contract control access to critical functionalities
and has the following privileges:

● DAO_MANAGER_ROLE - the DAO Manager has the ability to transfer
their role to a new address, add or remove network authorities
and gatekeepers, and create new networks. They can also set the
contract to be governed by a DAO.

● GATEKEEPER_ROLE - has authority to mint, burn, freeze, and
unfreeze tokens. They can also set the expiration of tokens and
the bitmask for tokens. Essentially, they have control over the
lifecycle of tokens.

● NETWORK_AUTHORITY_ROLE - has authority to manage the network.
They can add or remove gatekeepers, set network features, and
rename the network. They also have the ability to add or remove
other network authorities.

● onlySuperAdmin() - modifier checks if the caller of the
function is the super admin in the following functions:

○ setMetadataDescriptor()
○ addForwarder()
○ removeForwarder()
○ updateFlagsStorage()
○ updateFlagsStorage()

www.hacken.io
5



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

Code quality
The total Code Quality score is 10 out of 10.

Test coverage
Code coverage of the project is 93.84% (branch coverage)

● Deployment and basic user interactions are covered with tests.
● MultiERC2771Context.sol contact is not covered well.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

23 October 2023 2 1 0 0

31 October 2023 0 0 0 0

Risks

● The FlagsStorage contract is highly centralized, with the super admin
having the power to add or remove flags, update the super admin, and
authorize contract upgrades. This could be a risk if the super
admin's private key is compromised.

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


● The system design necessitates trust in both the Forwarder and
Gatekeeper components. The Gatekeeper holds the crucial
responsibility of validating charge data. Failing to validate this
data could result in potential charges to other users for gateway
tokens, as users are required to set allowances for charges.

● To ensure backward compatibility, the
REMOVE_GATEKEEPER_INVALIDATES_TOKENS feature exclusively affects
newly generated tokens post-contract upgrade.

● The setting of the CHARGE_CALLER_ROLE must be approached with utmost
caution. If a malicious user gains access to the handleCharge
function, they could potentially steal tokens that have been
authorized for expenditure by the ChargeHandler contract.

www.hacken.io
7



Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

M01. Super admin can delete all other super admins causing inability to
manage GatewayToken contract

Impact High

Likelihood Low

The revokeSuperAdmin() function is designed to remove the super admin
role from a specified address. This function is exclusively
executable by super admin. However, a critical scenario could arise
where the last super admin decides to revoke their own role. This
would result in a situation where no other addresses can be assigned
the super admin role. Such a situation would severely impede the
effective management and modification of the GatewayToken contract.

Path: ./contracts/ParameterizedAccessControl.sol: revokeSuperAdmin()

Recommendation: It is recommended to implement a safeguard mechanism
to prevent the last super admin from revoking their own role. This
would ensure that there is always at least one address with the super
admin role, enabling the ongoing management and modification of the
GatewayToken contract.

Found in: 4b7bc57e40497b44e694b75b76603f046de7bbaa

Status: Fixed (Revised commit: d62d94)

Remediation: The revokeSuperAdmin function was updated, so super
admins cannot remove themselves.

Low

L01. Missing zero address validation

Impact Low

Likelihood Low

A function fails to validate whether an address is set to zero before
accepting it as an argument.

www.hacken.io
8



This oversight could result in accidentally adding an incorrect
address to the contract, potentially leading to unexpected behavior
or vulnerabilities. Proper address validation should be implemented
to prevent this risk.

Paths: ./contracts/GatewayToken.sol: updateFlagsStorage()
./contracts/GatedERC2771.sol: constructor().
./contracts/GatedERC2771Upgradeable.sol:
__GatedERC2771Upgradeable_init().

Recommendation: It is recommended to implement zero address
validation.

Found in: 4b7bc57e40497b44e694b75b76603f046de7bbaa

Status: Fixed (Revised commit: 71a6ad5).

Remediation: Zero address checks were introduced.

L02. ERC-2771 implementation differ from proposal - underflow risk

Impact Low

Likelihood Low

The implementation of ERC-2771, specifically in the
MultiERC2771Context and MultiERC2771ContextUpgradeable contracts,
deviates from the accepted proposal. According to the ERC-2771
standard, Transaction Signer extraction from the Recipient contract
should involve the following steps:

1. Check that the Forwarder is trusted.
2. Extract the Transaction Signer address from the last 20 bytes

of the call data and use that as the original sender of the
transaction (instead of msg.sender).

3. If the msg.sender is not a trusted forwarder (or if the
msg.data is shorter than 20 bytes), then return the original
msg.sender as it is.

In the Civic Technologies implementation, checks for msg.data length
(if it is shorter than 20 bytes) are omitted. This omission can
result in an underflow error when msg.data's length is less than 20.
The affected functions include:

_msgSender():

if (isTrustedForwarder(msg.sender)) {

assembly {

// sub(calldatasize(), 20) == calldatasize() - 20

sender := shr(96, calldataload(sub(calldatasize(), 20)))

}

www.hacken.io
9



and _msgData():
if (isTrustedForwarder(msg.sender)) {

return msg.data[:msg.data.length - 20];

}

Paths: ./contracts/MultiERC2771Context.sol: _msgData(), _msgSender(),
./contracts/MultiERC2771ContextUpgradeable.sol: _msgData(),

_msgSender(),

Recommendation: It is recommended add msg.data.length >= 20 check to
prevent underflow.

Found in: 4b7bc57e40497b44e694b75b76603f046de7bbaa

Status: Fixed (Revised commit: d62d94)

Remediation: The length of msg.data check was introduced in
aforementioned functions.

Informational

I01. Floating pragma

The project uses floating pragma (>=0.8.19).

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version, which may include bugs that affect the system negatively.

Path: ./contracts: *

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment. Consider
known bugs (https://github.com/ethereum/solidity/releases) for the
compiler version that is chosen.

Found in: 4b7bc57e40497b44e694b75b76603f046de7bbaa

Status: Fixed (Revised commit: d62d94)

Remediation: The floating pragma is now locked on 0.8.19 version.

I02. Redundant check of user allowance

The _handleERC20Charge() function is designed to handle ERC20
transfers with safeERC20. This function checks the transfer allowance
twice, which increases Gas consumption.

The first check is performed in _handleERC20Charge():

uint256 allowance = token.allowance(charge.tokenSender, address(this));

www.hacken.io
10

https://github.com/ethereum/solidity/releases


if (allowance < charge.value) {

revert Charge__IncorrectAllowance(allowance, charge.value);

}

And a second in the transferFrom() function of ERC20 contract.

Path: ./contracts/ChargeHandler.sol: _handleERC20Charge()

Recommendation: It is recommended to remove the first allowance check
since an equivalent check is already performed internally in the
ERC20 contract with every safeTransfer().

Found in: 4b7bc57e40497b44e694b75b76603f046de7bbaa

Status: Fixed (Revised commit: d62d94)

Remediation: Redundant allowance check was removed.

I03. Redundant imports

Following redundant imports were observed:
● The contract OwnableUpgradeable is imported in the

FlagsStorage contract but never used.
● The enum ChargeType is imported in the GatewayToken

contract but never used.

This redundancy in import operations has the potential to result in
unnecessary Gas consumption during deployment and impacts the code
quality.

Paths: ./contracts/FlagsStorage.sol: OwnableUpgradeable,

./contracts/GatewayToken.sol: ChargeType,

Recommendation: It is recommended to remove redundant imports, and
ensure that the contract is imported only in the required locations,
avoiding unnecessary duplications.

Found in: 4b7bc57e40497b44e694b75b76603f046de7bbaa

Status: Fixed (Revised commit: d62d94)

Remediation: Redundant imports were removed.

I04. State variables can be declared immutable

Compared to regular state variables, the Gas costs of constant and
immutable variables are much lower. Immutable variables are evaluated
once at construction time and their value is copied to all the places
in the code where they are accessed.

Following variables can be declared as immutable:

www.hacken.io
11



● _gatewayTokenContract and _gatekeeperNetwork values are set in
the constructor of Gated and GatedERC2771 contracts and cannot
be changed.

Paths: ./contracts/Gated.sol: _gatewayTokenContract,
_gatekeeperNetwork,

./contracts/GatedERC2771.sol: _gatewayTokenContract,
_gatekeeperNetwork

Recommendation: It is recommended to declare mentioned variables as
immutable.

Found in: 4b7bc57e40497b44e694b75b76603f046de7bbaa

Status: Fixed (Revised commit: 71a6ad5)

Remediation: Aforementioned variables were declared as immutable.

I05. Missing validation if a DaoManager is a contract account

The createNetwork() function, the daoManger address is validated to
ensure it is a contract account. This address is subsequently granted
the DAO_MANAGER_ROLE and NETWORK_AUTHORITY_ROLE roles.

Regrettably, this check is omitted in the transferDAOManager()
function. Consequently, externally owned addresses (EOA) can be
designated as the new DAO manager and receive both the
DAO_MANAGER_ROLE and NETWORK_AUTHORITY_ROLE roles.

Paths: ./contracts/GatewayToken.sol: transferDAOManager(),

Recommendation: It is recommended to include validation of address to
ensure that the provided address is a contract address.

Found in: 4b7bc57e40497b44e694b75b76603f046de7bbaa

Status: Fixed (Revised commit: d62d94)

Remediation: Check in the transferDAOManager() was introduced to
verify that new daoManger is a contract account.

I06. Missing event for critical value updation

Events for critical state changes should be emitted for tracking
things off-chain. It was observed that event emission is missing for
following functions: initialize(), removeForwarder(), and
addForwarder() within the GatewayToken contract.

Path: ./contracts/GatewayToken.sol: initialize(), addForwarder(),
removeForwarder()

Recommendation: Consider emitting events for tracking changes in
aforementioned functions.

Found in: 4b7bc57e40497b44e694b75b76603f046de7bbaa
www.hacken.io

12



Status: Fixed (Revised commit: d62d94)

Remediation: Events were added to aforementioned functions.

www.hacken.io
13



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
14



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, and do not affect
security score but can affect code quality score.

www.hacken.io
15



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
16



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/identity-com/on-chain-identity-gateway/tree/release
/v2-upgrade-full/ethereum

Commit b7bc57e40497b44e694b75b76603f046de7bbaa

Whitepaper https://github.com/identity-com/gateway-whitepaper/blob/main/gateway-w
hitepaper.pdf

Requirements http://docs.civic.com/

Technical
Requirements https://github.com/identity-com/gateway-whitepaper

Contracts File: smart-contract/contracts/ChargeHandler.sol
SHA3:fc5191aaee8f451bed3123cb3b1f48011ac0d1fe3f1318d4888f6c5eb019fd70

File: smart-contract/contracts/FlagsStorage.sol
SHA3 72443df34280f7ff54ec0f53d2ee59bb8a756f02c1e77f28983d367112555e2a

File: smart-contract/contracts/FlexibleNonceForwarder.sol
SHA3:05ba68d8b40b49f7d2831fb3e72c59598a9d803429cea263d5c1229efae5562a

File: smart-contract/contracts/Gated.sol
SHA3: 57d8a35a37069411b863330eff0bbcbd311967e0765102c7e57df5293478d1bf

File: smart-contract/contracts/GatewayToken.sol
SHA: a03a4be310c32a5346e6b5b4ea836fe8746947b58bf694aa016b45a42dd62452

File: smart-contract/contracts/MultiERC2771Context.sol
SHA3: 751901e7c58155786521983efc20f81120ca968a5993b0d1082815fc264bd945

File: smart-contract/contracts/ParameterizedAccessControl.sol
SHA3: dd9f82270f0e479e9c4cb5a183603546dfdc5d862a31644d116b5d289a0cbca5

File: smart-contract/contracts/TokenBitMask.sol
SHA3: 832196e4631f0edb903ed0a3551b695e04b2fb83f5f96727fd7c4f5c7163b010

File: smart-contract/contracts/interfaces/IChargeHandler.sol
SHA3: c1bd92f1b0b5c3c6277056633126ec1e0c7b80389c05fdb436f32291914d541b

File: smart-contract/contracts/interfaces/IERC721Expirable.sol
SHA3: 0e1345c59c398c72d195d3e6c1b29a0524a0673689ab643f77209cf7fc2e99bf

FIle: smart-contract/contracts/interfaces/IERC721Freezable.sol
SHA3: 29a6884240951985868d6fde73ffe0b721612e8b2ac1bd63b77b88ac599b0107

File: smart-contract/contracts/interfaces/IERC721Revokable.sol
SHA3: a69af47b12c2885793bbe66628b4831f0149e29eee399470462e2909cc385c7d

File: smart-contract/contracts/interfaces/IFlagsStorage.sol
SHA3: 482405b2b3daf4025fa89b0505c43000600c1c4c755fc7e164873b1d16325be1

FIle: smart-contract/contracts/interfaces/IForwarder.sol
SHA3: 42388bd2df4cd8659cc9af88afce02dc1a86119319553ed35f80821c38d98cc4

www.hacken.io
17

https://github.com/identity-com/on-chain-identity-gateway/tree/release/v2-upgrade-full/ethereum
https://github.com/identity-com/on-chain-identity-gateway/tree/release/v2-upgrade-full/ethereum
https://github.com/identity-com/gateway-whitepaper/blob/main/gateway-whitepaper.pdf
https://github.com/identity-com/gateway-whitepaper/blob/main/gateway-whitepaper.pdf
http://docs.civic.com/
https://github.com/identity-com/gateway-whitepaper


File: smart-contract/contracts/interfaces/IGatewayToken.sol
SHA3: 199d9e156d2e0c0eb6dbe48155c9d804bfd0b08b8e91b02a97f0a50e65eb0d6a

File: smart-contract/contracts/interfaces/IGatewayTokenVerifier.sol
SHA3: cf713f871fe109af1c39aab965f516ce42aebf4afb9db15fa528b041a1cff342

FIle:
smart-contract/contracts/interfaces/IParameterizedAccessControl.sol
SHA3: 22a068aabe3632eef2f5d1d47b13a0963eaaca4780ea3dc653eb0e18713c62a6

File: smart-contract/contracts/library/BitMask.sol
SHA3: 82f41bc52ab3025e394ba70c01ee5dc3a314d359ba950f30f2a58f7b714bc8ba

FIle: smart-contract/contracts/library/Charge.sol
SHA3: 232f513aa1e18d430524c98738d6f21b0e11dfcf41121faccca93557bf5885f9

File: smart-contract/contracts/library/CommonErrors.sol
SHA3: 250d5785d419029be741c8c88f38d279c9f42b056b7c1e1ee68da55f6e97a666

File: smart-contract/contracts/library/InternalTokenApproval.sol
SHA3: b38255ad91e5d67f2f1dae6144db36d2063cadd845ea3d11709365e72fc88f22

Second review scope

Repository https://github.com/identity-com/on-chain-identity-gateway/pull/468/com
mits/d62d943e7cf8d84c4dc2371a072e0d7e594a6805

Commit d62d943e7cf8d84c4dc2371a072e0d7e594a6805

Whitepaper https://github.com/identity-com/gateway-whitepaper/blob/main/gateway-w
hitepaper.pdf

Requirements http://docs.civic.com/

Technical
Requirements https://github.com/identity-com/gateway-whitepaper

Contracts File: ChargeHandler.sol
SHA3: 479524f6868e113a23ec3e56cbfc35554f1612467988a78ed1f6ccbd6ff1310f

File: FlagsStorage.sol
SHA3: 112df6a6a47da3614cb1ba4f526fb2147681934b3c52114e0ec9d2ae370bf725

File: FlexibleNonceForwarder.sol
SHA3: 880c8c00496dfb9ce84df803bd139be141c3a50c6f3c4f303d00912f16e21d09

File: Gated.sol
SHA3: b03217e8bbdb097603b9c00e9dd26c6ab1d61b522c92af57511bc93d404dfd40

File: GatewayToken.sol
SHA3: edca63743ac1c74d98597638bafcae0eb9710a810746da324175e6c25c434078

File: MultiERC2771Context.sol
SHA3: c7e4c7c2935e6ed402a988424b473c7d0f183446217874168fca0e23dcc9ed8f

File: ParameterizedAccessControl.sol
SHA3: d75d9c004a53a5575500a7ca3387281a0a2944c215718e28e48c1f8e428d1cbb

File: TokenBitMask.sol

www.hacken.io
18

https://github.com/identity-com/on-chain-identity-gateway/pull/468/commits/d62d943e7cf8d84c4dc2371a072e0d7e594a6805
https://github.com/identity-com/on-chain-identity-gateway/pull/468/commits/d62d943e7cf8d84c4dc2371a072e0d7e594a6805
https://github.com/identity-com/gateway-whitepaper/blob/main/gateway-whitepaper.pdf
https://github.com/identity-com/gateway-whitepaper/blob/main/gateway-whitepaper.pdf
http://docs.civic.com/
https://github.com/identity-com/gateway-whitepaper


SHA3: 2b7e7ef26f7465913e20baf144a8803fa6369debeecdadd374d6c02d95ee755d

File: interfaces/IChargeHandler.sol
SHA3: c1bd92f1b0b5c3c6277056633126ec1e0c7b80389c05fdb436f32291914d541b

File: interfaces/IERC721Expirable.sol
SHA3: 0e1345c59c398c72d195d3e6c1b29a0524a0673689ab643f77209cf7fc2e99bf

File: interfaces/IERC721Freezable.sol
SHA3: 29a6884240951985868d6fde73ffe0b721612e8b2ac1bd63b77b88ac599b0107

File: interfaces/IERC721Revokable.sol
SHA3: a69af47b12c2885793bbe66628b4831f0149e29eee399470462e2909cc385c7d

File: interfaces/IFlagsStorage.sol
SHA3: 482405b2b3daf4025fa89b0505c43000600c1c4c755fc7e164873b1d16325be1

File: interfaces/IForwarder.sol
SHA3: 42388bd2df4cd8659cc9af88afce02dc1a86119319553ed35f80821c38d98cc4

File: interfaces/IGatewayToken.sol
SHA3: ac38e219b225782b10904c61c677b1434a4dad79ba24ed187dfb1f47ef9243f9

File: interfaces/IGatewayTokenVerifier.sol
SHA3: cf713f871fe109af1c39aab965f516ce42aebf4afb9db15fa528b041a1cff342

File: interfaces/IParameterizedAccessControl.sol
SHA3: c4cba2e2c00dabc7b17eabcaad7e24658c91e78ab349dcf405be63e07736aed0

File: library/BitMask.sol
SHA3: 82f41bc52ab3025e394ba70c01ee5dc3a314d359ba950f30f2a58f7b714bc8ba

File: library/Charge.sol
SHA3: 232f513aa1e18d430524c98738d6f21b0e11dfcf41121faccca93557bf5885f9

File: library/CommonErrors.sol
SHA3: 250d5785d419029be741c8c88f38d279c9f42b056b7c1e1ee68da55f6e97a666

File: library/InternalTokenApproval.sol
SHA3: cf7c54f5629f4210a66438380c4aeef82669876cc0296dc773ff6e769a6a4039

www.hacken.io
19


