Skip to main content

Exercise-Induced Right Heart Disease in Athletes

  • Chapter
  • First Online:
The Right Ventricle in Health and Disease

Abstract

There is little doubt about the health benefits of exercise on, not only the cardiorespiratory system, but also on mental health, bone health, and overall mortality risk (Circulation 116:1081–93, 2007). Most of the data supporting the pleotropic benefits of exercise are derived from large observational studies of cohorts engaged in exercise of limited duration and of mild-to-moderate intensity. There is also evidence that these health benefits extend to athletes participating in high-level training and competition (Eur Heart J 34:3145–50, 2013; JAMA 285:44–5, 2001; Med Sci Sports Exerc 25:237–44, 1993), although it is difficult to determine whether it is the healthy lifestyle and absence of comorbidities (the ‘healthy cohort effect’) or exercise itself which is the main determinant of the observed improvements in longevity (Curr Sports Med Rep 12:63–9, 2013). Intense physical training promotes changes in cardiac structure, function, and electrical conduction termed the “athlete’s heart” and, whilst many of these changes are considered physiological and healthy, there is increasing concern that more extreme exercise may promote permanent changes in myocardial structure and that a small number of athletes may be predisposed to arrhythmias, such as atrial fibrillation (Curr Sports Med Rep 12:63–9, 2013; Europace 11:1156–9, 2009; Heart 96:398–405, 2010). To date, much of the research regarding athlete’s heart has focused on the left ventricle (LV), but there is evolving evidence that the right ventricle (RV) is of even greater importance in understanding the hemodynamic stressors on the heart during intense exercise and in understanding the potential arrhythmia complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haskell WL, Lee IM, Pate RR, et al. Physical activity and public health—updated recommendation for adults from the American college of sports medicine and the American heart association. Circulation. 2007;116:1081–93.

    Article  PubMed  Google Scholar 

  2. Marijon E, Tafflet M, Antero-Jacquemin J, et al. Mortality of French participants in the Tour de France (1947–2012). Eur Heart J. 2013;34:3145–50.

    Article  PubMed  Google Scholar 

  3. Kujala UM, Tikkanen HO, Sarna S, Pukkala E, Kaprio J, Koskenvuo M. Disease-specific mortality among elite athletes. JAMA. 2001;285:44–5.

    Article  PubMed  CAS  Google Scholar 

  4. Sarna S, Sahi T, Koskenvuo M, Kaprio J. Increased life expectancy of world class male athletes. Med Sci Sports Exerc. 1993;25:237–44.

    Article  PubMed  CAS  Google Scholar 

  5. La Gerche A. Can intense endurance exercise cause myocardial damage and fibrosis? Curr Sports Med Rep. 2013;12:63–9.

    Article  PubMed  Google Scholar 

  6. Abdulla J, Nielsen JR. Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis. Europace. 2009;11:1156–9.

    Article  PubMed  Google Scholar 

  7. Mont L. Arrhythmias and sport practice. Heart. 2010;96:398–405.

    Article  PubMed  Google Scholar 

  8. Fagard R. Athlete’s heart. Heart. 2003;86:1455–61.

    Article  Google Scholar 

  9. Prior DL, La Gerche A. The athlete’s heart. Heart. 2012;98:947–55.

    Article  PubMed  Google Scholar 

  10. Baggish AL, Wood MJ. Athlete’s heart and cardiovascular care of the athlete: scientific and clinical update. Circulation. 2011;123:2723–35.

    Article  PubMed  Google Scholar 

  11. La Gerche A, Claessen G, Van de Bruaene A, et al. Cardiac MRI: a new gold standard for ventricular volume quantification during high-intensity exercise. Circ Cardiovasc Imaging. 2013;6:329–38.

    Article  PubMed  Google Scholar 

  12. La Gerche A, Burns AT, Taylor AJ, Macisaac AI, Heidbuchel H, Prior DL. Maximal oxygen consumption is best predicted by measures of cardiac size rather than function in healthy adults. Eur J Appl Physiol. 2012;112:2139–47.

    Article  PubMed  Google Scholar 

  13. Lankhaar JW, Westerhof N, Faes TJ, et al. Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension. Eur Heart J. 2008;29: 1688–95.

    Article  PubMed  Google Scholar 

  14. Slife DM, Latham RD, Sipkema P, Westerhof N. Pulmonary arterial compliance at rest and exercise in normal humans. Am J Physiol. 1990;258:H1823–8.

    PubMed  CAS  Google Scholar 

  15. Lewis GD, Murphy RM, Shah RV, et al. Pulmonary vascular response patterns during exercise in left ventricular systolic dysfunction predict exercise capacity and outcomes. Circ Heart Fail. 2011;4:276–85.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Reeves JT, Groves BM, Cymerman A, et al. Operation Everest II: cardiac filling pressures during cycle exercise at sea level. Respir Physiol. 1990;80:147–54.

    Article  PubMed  CAS  Google Scholar 

  17. Bidart CM, Abbas AE, Parish JM, Chaliki HP, Moreno CA, Lester SJ. The noninvasive evaluation of exercise-induced changes in pulmonary artery pressure and pulmonary vascular resistance. J Am Soc Echocardiogr. 2007;20:270–5.

    Article  PubMed  Google Scholar 

  18. Argiento P, Chesler N, Mule M, et al. Exercise stress echocardiography for the study of the pulmonary circulation. Eur Respir J. 2010;35:1273–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. La Gerche A, Heidbuchel H, Burns AT, et al. Disproportionate exercise load and remodeling of the athlete’s right ventricle. Med Sci Sports Exerc. 2011;43:974–81.

    Article  PubMed  Google Scholar 

  20. La Gerche A, MacIsaac AI, Burns AT, et al. Pulmonary transit of agitated contrast is associated with enhanced pulmonary vascular reserve and right ventricular function during exercise. J Appl Physiol. 2010;109:1307–17.

    Article  PubMed  Google Scholar 

  21. Kovacs G, Berghold A, Scheidl S, Olschewski H. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J. 2009;34:888–94.

    Article  PubMed  CAS  Google Scholar 

  22. Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative left ventricular dimensions in trained athletes. Ann Intern Med. 1975;82:521–4.

    Article  PubMed  CAS  Google Scholar 

  23. Fagard RH. Athlete’s heart: a meta-analysis of the echocardiographic experience. Int J Sports Med. 1996;17 Suppl 3:S140–4.

    Article  PubMed  Google Scholar 

  24. Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE. The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation. 2000;101:336–44.

    Article  PubMed  CAS  Google Scholar 

  25. Aaron CP, Tandri H, Barr RG, et al. Physical activity and right ventricular structure and function. The MESA-right ventricle study. Am J Respir Crit Care Med. 2011;183:396–404.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Scharhag J, Schneider G, Urhausen A, Rochette V, Kramann B, Kindermann W. Athlete’s heart: right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J Am Coll Cardiol. 2002;40:1856–63.

    Article  PubMed  Google Scholar 

  27. Scharf M, Brem MH, Wilhelm M, Schoepf UJ, Uder M, Lell MM. Atrial and ventricular functional and structural adaptations of the heart in elite triathletes assessed with cardiac MR imaging. Radiology. 2010;257:71–9.

    Article  PubMed  Google Scholar 

  28. Scharf M, Brem MH, Wilhelm M, Schoepf UJ, Uder M, Lell MM. Cardiac magnetic resonance assessment of left and right ventricular morphologic and functional adaptations in professional soccer players. Am Heart J. 2010;159:911–8.

    Article  PubMed  Google Scholar 

  29. Spence AL, Carter HH, Murray CP, et al. Magnetic resonance imaging-derived right ventricular adaptations to endurance versus resistance training. Med Sci Sports Exerc. 2013;45:534–41.

    Article  PubMed  Google Scholar 

  30. Perseghin G, De Cobelli F, Esposito A, et al. Effect of the sporting discipline on the right and left ventricular morphology and function of elite male track runners: a magnetic resonance imaging and phosphorus 31 spectroscopy study. Am Heart J. 2007;154:937–42.

    Article  PubMed  Google Scholar 

  31. Modesti PA, Vanni S, Bertolozzi I, et al. Different growth factor activation in the right and left ventricles in experimental volume overload. Hypertension. 2004;43:101–8.

    Article  PubMed  CAS  Google Scholar 

  32. Oxborough D, Batterham AM, Shave R, et al. Interpretation of two-dimensional and tissue Doppler-derived strain (epsilon) and strain rate data: is there a need to normalize for individual variability in left ventricular morphology? Eur J Echocardiogr. 2009;10:677–82.

    Article  PubMed  Google Scholar 

  33. La Gerche A, Jurcut R, Voigt JU. Right ventricular function by strain echocardiography. Curr Opin Cardiol. 2010;22:430–6.

    Article  Google Scholar 

  34. D’Andrea A, Caso P, Severino S, et al. Different involvement of right ventricular myocardial function in either physiologic or pathologic left ventricular hypertrophy: a Doppler tissue study. J Am Soc Echocardiogr. 2003;16:154–61.

    Article  PubMed  Google Scholar 

  35. Teske AJ, Prakken NH, De Boeck BW, et al. Echocardiographic tissue deformation imaging of right ventricular systolic function in endurance athletes. Eur Heart J. 2009;30:969–77.

    Article  PubMed  Google Scholar 

  36. La Gerche A, Burns AT, D’Hooge J, Macisaac AI, Heidbuchel H, Prior DL. Exercise strain rate imaging demonstrates normal right ventricular contractile reserve and clarifies ambiguous resting measures in endurance athletes. J Am Soc Echocardiogr. 2012;25:253–262.

    Google Scholar 

  37. Prakken NH, Velthuis BK, Teske AJ, Mosterd A, Mali WP, Cramer MJ. Cardiac MRI reference values for athletes and nonathletes corrected for body surface area, training hours/week and sex. Eur J Cardiovasc Prev Rehabil. 2010;17(2):198–203.

    Article  PubMed  Google Scholar 

  38. D’Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115:343–9.

    Article  PubMed  Google Scholar 

  39. Raymond RJ, Hinderliter AL, Willis PW, et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39:1214–9.

    Article  PubMed  Google Scholar 

  40. Sun XG, Hansen JE, Oudiz RJ, Wasserman K. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation. 2001;104:429–35.

    Article  PubMed  CAS  Google Scholar 

  41. Forfia PR, Fisher MR, Mathai SC, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174:1034–41.

    Article  PubMed  Google Scholar 

  42. Groepenhoff H, Vonk-Noordegraaf A, van de Veerdonk MC, Boonstra A, Westerhof N, Bogaard HJ. Prognostic relevance of changes in exercise test variables in pulmonary arterial hypertension. PLoS One. 2013;8:e72013.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Blumberg FC, Arzt M, Lange T, Schroll S, Pfeifer M, Wensel R. Impact of right ventricular reserve on exercise capacity and survival in patients with pulmonary hypertension. Eur J Heart Fail. 2013;15:771–5.

    Article  PubMed  Google Scholar 

  44. Steding K, Engblom H, Buhre T, et al. Relation between cardiac dimensions and peak oxygen uptake. J Cardiovasc Magn Reson. 2010;12:8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Eldridge MW, Dempsey JA, Haverkamp HC, Lovering AT, Hokanson JS. Exercise-induced intrapulmonary arteriovenous shunting in healthy humans. J Appl Physiol. 2004;97: 797–805.

    Article  PubMed  Google Scholar 

  46. Stickland MK, Welsh RC, Haykowsky MJ, et al. Intra-pulmonary shunt and pulmonary gas exchange during exercise in humans. J Physiol. 2004;561:321–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Lalande S, Yerly P, Faoro V, Naeije R. Pulmonary vascular distensibility predicts aerobic capacity in healthy individuals. J Physiol. 2012;590:4279–88.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Bernheim AM, Attenhofer Jost CH, Zuber M, et al. Right ventricle best predicts the race performance in amateur ironman athletes. Med Sci Sports Exerc. 2013;45:1593–9.

    Article  PubMed  Google Scholar 

  49. Siegel AJ, Silverman LM, Holman BL. Elevated creatine kinase MB isoenzyme levels in marathon runners. Normal myocardial scintigrams suggest noncardiac source. JAMA. 1981;246:2049–51.

    Article  PubMed  CAS  Google Scholar 

  50. Rifai N, Douglas PS, O'Toole M, Rimm E, Ginsburg GS. Cardiac troponin T and I, echocardiographic [correction of electrocardiographic] wall motion analyses, and ejection fractions in athletes participating in the Hawaii Ironman Triathlon. Am J Cardiol. 1999;83: 1085–9.

    Article  PubMed  CAS  Google Scholar 

  51. Neumayr G, Gaenzer H, Pfister R, et al. Plasma levels of cardiac troponin I after prolonged strenuous endurance exercise. Am J Cardiol. 2001;87:369–71, A10.

    Article  PubMed  CAS  Google Scholar 

  52. Neumayr G, Pfister R, Mitterbauer G, et al. Effect of the “Race Across The Alps” in elite cyclists on plasma cardiac troponins I and T. Am J Cardiol. 2002;89:484–6.

    Article  PubMed  CAS  Google Scholar 

  53. La Gerche A, Boyle A, Wilson AM, Prior DL. No evidence of sustained myocardial injury following an Ironman distance triathlon. Int J Sports Med. 2004;25:45–9.

    Article  PubMed  Google Scholar 

  54. La Gerche A, Taylor AJ, Prior DL. Athlete’s heart: the potential for multimodality imaging to address the critical remaining questions. JACC Cardiovasc Imaging. 2009;2:350–63.

    Article  PubMed  Google Scholar 

  55. Melanson SE, Green SM, Wood MJ, Neilan TG, Lewandrowski EL. Elevation of myeloperoxidase in conjunction with cardiac-specific markers after marathon running. Am J Clin Pathol. 2006;126:888–93.

    Article  PubMed  CAS  Google Scholar 

  56. Shave R, George KP, Atkinson G, et al. Exercise-induced cardiac troponin T release: a meta-analysis. Med Sci Sports Exerc. 2007;39:2099–106.

    Article  PubMed  CAS  Google Scholar 

  57. Neilan TG, Januzzi JL, Lee-Lewandrowski E, et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation. 2006;114:2325–33.

    Article  PubMed  Google Scholar 

  58. La Gerche A, Burns AT, Mooney DJ, et al. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J. 2012;33:998–1006.

    Article  PubMed  Google Scholar 

  59. Scherr J, Braun S, Schuster T, et al. 72-h kinetics of high-sensitive troponin T and inflammatory markers after marathon. Med Sci Sports Exerc. 2011;43:1819–27.

    Article  PubMed  CAS  Google Scholar 

  60. Shave R, George K, Whyte G, Hart E, Middleton N. Postexercise changes in left ventricular function: the evidence so far. Med Sci Sports Exerc. 2008;40:1393–9.

    Article  PubMed  Google Scholar 

  61. La Gerche A, Connelly KA, Mooney DJ, MacIsaac AI, Prior DL. Biochemical and functional abnormalities of left and right ventricular function after ultra-endurance exercise. Heart. 2008;94:860–6.

    Article  PubMed  Google Scholar 

  62. Oxborough D, Shave R, Warburton D, et al. Dilatation and dysfunction of the right ventricle immediately after ultraendurance exercise: exploratory insights from conventional two-dimensional and speckle tracking echocardiography. Circ Cardiovasc Imaging. 2011;4:253–63.

    Article  PubMed  Google Scholar 

  63. Douglas PS, O’Toole ML, Hiller WD, Reichek N. Different effects of prolonged exercise on the right and left ventricles. J Am Coll Cardiol. 1990;15:64–9.

    Article  PubMed  CAS  Google Scholar 

  64. Mousavi N, Czarnecki A, Kumar K, et al. Relation of biomarkers and cardiac magnetic resonance imaging after marathon running. Am J Cardiol. 2009;103:1467–72.

    Article  PubMed  Google Scholar 

  65. Trivax JE, Franklin BA, Goldstein JA, et al. Acute cardiac effects of marathon running. J Appl Physiol. 2010;108:1148–53.

    Article  PubMed  CAS  Google Scholar 

  66. Shave R, Baggish A, George K, et al. Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J Am Coll Cardiol. 2010;56:169–76.

    Article  PubMed  CAS  Google Scholar 

  67. Karjalainen J, Kujala UM, Kaprio J, Sarna S, Viitasalo M. Lone atrial fibrillation in vigorously exercising middle aged men: case-control study. BMJ. 1998;316:1784–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Grimsmo J, Grundvold I, Maehlum S, Arnesen H. High prevalence of atrial fibrillation in long-term endurance cross-country skiers: echocardiographic findings and possible predictors—a 28–30 years follow-up study. Eur J Cardiovasc Prev Rehabil. 2010;17:100–5.

    Article  PubMed  Google Scholar 

  69. Molina L, Mont L, Marrugat J, et al. Long-term endurance sport practice increases the incidence of lone atrial fibrillation in men: a follow-up study. Europace. 2008;10:618–23.

    Article  PubMed  Google Scholar 

  70. Mont L, Sambola A, Brugada J, et al. Long-lasting sport practice and lone atrial fibrillation. Eur Heart J. 2002;23:477–82.

    Article  PubMed  CAS  Google Scholar 

  71. Elosua R, Arquer A, Mont L, et al. Sport practice and the risk of lone atrial fibrillation: a case-control study. Int J Cardiol. 2006;108:332–7.

    Article  PubMed  Google Scholar 

  72. Baldesberger S, Bauersfeld U, Candinas R, et al. Sinus node disease and arrhythmias in the long-term follow-up of former professional cyclists. Eur Heart J. 2008;29:71–8.

    Article  PubMed  Google Scholar 

  73. Heidbuchel H, Anne W, Willems R, Adriaenssens B, Van de Werf F, Ector H. Endurance sports is a risk factor for atrial fibrillation after ablation for atrial flutter. Int J Cardiol. 2006;107:67–72.

    Article  PubMed  Google Scholar 

  74. La Gerche A, Schmied CM. Atrial fibrillation in athletes and the interplay between exercise and health. Eur Heart J. 2013;34(47):3599–602.

    Article  PubMed  Google Scholar 

  75. Biffi A, Maron BJ, Verdile L, et al. Impact of physical deconditioning on ventricular tachyarrhythmias in trained athletes. J Am Coll Cardiol. 2004;44:1053–8.

    Article  PubMed  Google Scholar 

  76. Biffi A, Pelliccia A, Verdile L, et al. Long-term clinical significance of frequent and complex ventricular tachyarrhythmias in trained athletes. J Am Coll Cardiol. 2002;40:446–52.

    Article  PubMed  Google Scholar 

  77. Heidbuchel H, Hoogsteen J, Fagard R, et al. High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias. Role of an electrophysiologic study in risk stratification. Eur Heart J. 2003;24:1473–80.

    Article  PubMed  Google Scholar 

  78. Ector J, Ganame J, van der Merwe N, et al. Reduced right ventricular ejection fraction in endurance athletes presenting with ventricular arrhythmias: a quantitative angiographic assessment. Eur Heart J. 2007;28:345–53.

    Article  PubMed  Google Scholar 

  79. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370–80.

    Article  PubMed  CAS  Google Scholar 

  80. Pelliccia A, Maron BJ, De Luca R, Di Paolo FM, Spataro A, Culasso F. Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation. 2002; 105:944–9.

    Article  PubMed  Google Scholar 

  81. Luthi P, Zuber M, Ritter M, et al. Echocardiographic findings in former professional cyclists after long-term deconditioning of more than 30 years. Eur J Echocardiogr. 2008;9:261–7.

    PubMed  Google Scholar 

  82. Grimsmo J, Grundvold I, Maehlum S, Arnesen H. Echocardiographic evaluation of aged male cross country skiers. Scand J Med Sci Sports. 2011;21:412–9.

    Article  PubMed  CAS  Google Scholar 

  83. O’Hanlon R, Wilson M, Wage R, et al. Troponin release following endurance exercise: is inflammation the cause? A cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2010;12:38.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Breuckmann F, Mohlenkamp S, Nassenstein K, et al. Myocardial late gadolinium enhancement: prevalence, pattern, and prognostic relevance in marathon runners. Radiology. 2009;251:50–7.

    Article  PubMed  Google Scholar 

  85. Mohlenkamp S, Lehmann N, Breuckmann F, et al. Running: the risk of coronary events: prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J. 2008;29:1903–10.

    Article  PubMed  Google Scholar 

  86. Wilson M, O’Hanlon R, Prasad S, et al. Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J Appl Physiol. 2011;110:1622–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Blyth KG, Groenning BA, Martin TN, et al. Contrast enhanced-cardiovascular magnetic resonance imaging in patients with pulmonary hypertension. Eur Heart J. 2005;26:1993–9.

    Article  PubMed  Google Scholar 

  88. McCann GP, Gan CT, Beek AM, Niessen HW, Vonk Noordegraaf A, van Rossum AC. Extent of MRI delayed enhancement of myocardial mass is related to right ventricular dysfunction in pulmonary artery hypertension. AJR Am J Roentgenol. 2007;188:349–55.

    Article  PubMed  Google Scholar 

  89. Benito B, Gay-Jordi G, Serrano-Mollar A, et al. Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation. 2011;123:13–22.

    Article  PubMed  Google Scholar 

  90. Mousavi N, Czarnecki A, Kumar K, et al. Relation of biomarkers and cardiac magnetic resonance imaging after marathon running. Am J Cardiol. 2009;103:1467–72.

    Article  PubMed  Google Scholar 

  91. Campbell DJ, Somaratne JB, Jenkins AJ, et al. Reduced microvascular density in non-ischemic myocardium of patients with recent non-ST-segment-elevation myocardial infarction. Int J Cardiol. 2013;167:1027–37.

    Article  PubMed  Google Scholar 

  92. Corrado D, Basso C, Rizzoli G, Schiavon M, Thiene G. Does sports activity enhance the risk of sudden death in adolescents and young adults? J Am Coll Cardiol. 2003;42:1959–63.

    Article  PubMed  Google Scholar 

  93. Sen-Chowdhry S, Syrris P, McKenna WJ. Role of genetic analysis in the management of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol. 2007;50:1813–21.

    Article  PubMed  CAS  Google Scholar 

  94. James CA, Bhonsale A, Tichnell C, et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013;62:1290–7.

    Article  PubMed  Google Scholar 

  95. La Gerche A, Robberecht C, Kuiperi C, et al. Lower than expected desmosomal gene mutation prevalence in endurance athletes with complex ventricular arrhythmias of right ventricular origin. Heart. 2010;96:1267–74.

    Google Scholar 

  96. Sen-Chowdhry S, Syrris P, Ward D, Asimaki A, Sevdalis E, McKenna WJ. Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation. 2007;115:1710–20.

    Article  PubMed  Google Scholar 

  97. Gerull B, Heuser A, Wichter T, et al. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet. 2004;36:1162–4.

    Article  PubMed  CAS  Google Scholar 

  98. Pilichou K, Nava A, Basso C, et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation. 2006;113:1171–9.

    Article  PubMed  CAS  Google Scholar 

  99. van Tintelen JP, Entius MM, Bhuiyan ZA, et al. Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2006;113:1650–8.

    Article  PubMed  Google Scholar 

  100. Dalal D, Molin LH, Piccini J, et al. Clinical features of arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in plakophilin-2. Circulation. 2006;113: 1641–9.

    Article  PubMed  CAS  Google Scholar 

  101. den Haan AD, Tan BY, Zikusoka MN, et al. Comprehensive desmosome mutation analysis in North Americans with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Cardiovasc Genet. 2009;2(5):428–35. doi:10.1161/CIRCGENETICS.109.858217.

    Article  PubMed Central  Google Scholar 

  102. Heidbuchel H, Prior DL, La Gerche A. Ventricular arrhythmias associated with long-term endurance sports: what is the evidence? Br J Sports Med. 2012;46 Suppl 1:i44–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Prior M.B.B.S., Ph.D., F.R.A.C.P., D.D.U., F.C.S.A.N.Z .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Rest and exercise cardiac magnetic resonance images comparing a nonathlete, an endurance athlete, and a patient with pulmonary hypertension. Note the relative dilation of the athlete’s RV. The remodeling approaches that of the patient with pulmonary hypertension, presumably because the hemodynamic stress of exercise shares some similarities with the high RV afterload state of pulmonary hypertension. Further insights are provided during exercise where the ventricular interdependence can readily be appreciated with profound septal shift toward the LV in the patient with pulmonary hypertension but, again, a tendency for a similar pattern in the athlete (MP4 681 kb)

Video 15.2

Examples of cardiac function and RV remodeling in four professional cyclists. Profound cardiac remodeling can be observed amongst these four elite cyclists. These examples were all obtained from a single session of screening world-class asymptomatic athletes. Athlete 1 has RV dilation and apical hypokinesis. In athletes 2 and 4 there is marked RV hypertrophy, with very prominent apical trabeculation in the latter. Apical rocking is demonstrated in athlete 3, a finding that usually indicates dyssynchronous or unbalanced ventricular contraction (MP4 874 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prior, D., La Gerche, A. (2015). Exercise-Induced Right Heart Disease in Athletes. In: Voelkel, N., Schranz, D. (eds) The Right Ventricle in Health and Disease. Respiratory Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1065-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1065-6_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1064-9

  • Online ISBN: 978-1-4939-1065-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics