

Supplementary Figure S1. A β pathology in pericyte-deficient *APP*^{sw/0} *Pdgfr* $\beta^{+/-}$ mice. a-b, Representative cortex and hippocampus sections stained for A β (a) and thioflavin S (b) in 6-month old *APP*^{sw/0}; *Pdgfr* $\beta^{+/+}$ and *APP*^{sw/0}; *Pdgfr* $\beta^{+/-}$ mice. Images are representative findings from 6 mice per group. Scale bar, 100 µm.

Supplementary Figure S2. Expression of different Aβ clearance receptors and enzymes and PDGFRβ in pericyte-deficient *APP*^{sw/0}*Pdgfrβ*^{+/-} mice. a-b, Relative abundance of LRP1 compared to β-actin determined by immunoblotting of brain microvessels (a) and isolated pericytes (b) from 9 month old *APP*^{sw/0}*Pdgfrβ*^{+/+} and *APP*^{sw/0}; *Pdgfrβ*^{+/-} littermates. c-d, Relative abundance of P-glycoprotein (Pgp) (c) and receptor for advanced end glycation end products (RAGE) (d) compared to β-actin determined by immunoblotting of brain microvessels from 9 month old *APP*^{sw/0} *Pdgfrβ*^{+/-} and *APP*^{sw/0}; *Pdgfrβ*^{+/-} littermates. c-d, Relative abundance of P-glycoprotein (Pgp) (c) and receptor for advanced end glycation end products (RAGE) (d) compared to β-actin determined by immunoblotting of brain microvessels from 9 month old *APP*^{sw/0} *Pdgfrβ*^{+/+} and *APP*^{sw/0}; *Pdgfrβ*^{+/-} littermates. e-f, Relative abundance of insulin-degrading enzyme (IDE) (d) and neprilysin (NEP) (e) compared to β-actin determined by immunoblotting in forebrain homogenates from 9 month old *APP*^{sw/0}; *Pdgfrβ*^{+/+} and *APP*^{sw/0}; *Pdgfrβ*^{+/+} littermates. In *A*-*f*, mean ± s.e.m., n=4 mice per group. NS, non-significant by Student's t-test. g-h, Relative abundance of PDGFRβ compared to β-actin in brain microvessels derived from 9 month old *Pdgfrβ*^{+/+}, *Pdgfrβ*^{+/-}, *APP*^{sw/0}; *Pdgfrβ*^{+/+} and *APP*^{sw/0}; *Pdgfrβ*^{+/-} littermates. In h, mean ± s.e.m., n=3 mice per group. NS, non-significant by ANOVA followed by Tukey's posthoc tests.

Supplementary Figure S3. Absence of p-tau in $Pdgfr\beta^{+/-}$ mice and $APP^{sw/0} Pdgfr\beta^{+/+}$ mice. ab, Representative cortex and hippocampus sections stained with antibodies against p-tau (Thr231) (a) and p-tau (Ser202/Thr205, AT8) (b) from 9 month old $Pdgfr\beta^{+/+}$ and $Pdgfr\beta^{+/-}$ mice. Scale bar, 25 µm. c, Human Aβ40 and Aβ42 levels in the cortex and hippocampus in 12 month old $APP^{sw/0}$; $Pdgfr\beta^{+/}$ mice. Mean \pm s.e.m., n=6 mice per group. d, Representative cortex and hippocampus sections stained against p-tau (Ser202/Thr205, AT8) in 12 month old $APP^{sw/0}$; $Pdgfr\beta^{+/+}$ mouse. Scale bar, 25 µm. In **a**, **b** and **d**, images are representative findings from 6 mice per group.

Supplementary Figure S4. Absence of structural and molecular pathology in young pericyte-deficient *APP*^{sw/0} mice. a-b, Human Aβ40 and Aβ42 levels in the cortex and hippocampus of 1 month old $APP^{sw/0}$; $Pdgfr\beta^{+/+}$ and $APP^{sw/0}$; $Pdgfr\beta^{+/-}$ mice. c-d, p-tau (Thr231) western blot in forebrain homogenates (c) and quantification of p-tau levels relative to total tau (d) in 1-2 month old $Pdgfr\beta^{+/+}$, $Pdgfr\beta^{+/-}$, $APP^{sw/0}$; $Pdgfr\beta^{+/+}$ and $APP^{sw/0}$; $Pdgfr\beta^{+/-}$ mice. e-f, Quantification of SMI311-positive neurofilaments (e) and NeuN-positive neurons (f) in the cortex of 9 month old $Pdgfr\beta^{+/+}$, $Pdgfr\beta^{+/-}$, $APP^{sw/0}$; $Pdgfr\beta^{+/+}$ and $APP^{sw/0}$; $Pdgfr\beta^{+/-}$ mice. g-i, Representative time-lapse-imaging profile analysis of VSD signal response (g), peak amplitude

(h) and time-to-peak (i) in fluorescent VSD signal in the hind-limb somatosensory cortex after stimulation in 1-2 month old $Pdgfr\beta^{+/+}$, $Pdgfr\beta^{+/-}$, $APP^{sw/0}$; $Pdgfr\beta^{+/+}$ and $APP^{sw/0}$; $Pdgfr\beta^{+/-}$ mice. **j-l**, Burrowing (**j**), nest construction (**k**) and novel object location (**l**) in 1-2 month old $Pdgfr\beta^{+/+}$, $Pdgfr\beta^{+/-}$, $APP^{sw/0}$; $Pdgfr\beta^{+/-}$ and $APP^{sw/0}$; $Pdgfr\beta^{+/-}$ mice. In **a**, **b**, **e**, **f**, **h** and **i**, and in **j** and **k**, mean \pm s.e.m., n=5 mice per group. In **d**, mean \pm s.e.m., n=3 mice per group. NS, non-significant by ANOVA followed by Tukey's posthoc tests.

Supplementary Figure S5. Full scans of western blots.

Figure 4f APP

Supplementary Figure S.2a LRP-85

Supplementary Figure S.2c Pgp

Supplementary Figure S.2e IDE

Supplementary Figure S.2g PDGFRβ

Figure 9a IgG

Supplementary Figure S.2b LRP85

Supplementary Figure S.2d RAGE

Supplementary Figure S.2f Neprilysin

Supplementary Figure S.4c p-tau

