Monte Carlo Calibration of Distributions of Partition Statistics

John Sall, SAS Institute, Nov 18, 2002

Introduction

In recursive partitioning (decision trees) a search is made for each factor as to how to best make a split. Because of this searching over many possibilities, the p -values for the split itself do not have the claimed distribution. Most often a p-value multiplicity correction is made using the Bonferroni adjustment. The p-value is multiplied by B , where B is the total number of ways of arranging c levels into two groups (we evaluate only 2-group partitions in this study). For the unordered nominal case, $\mathrm{B}=2^{\mathrm{c}-1}-1$. For the ordinal case, this is $\mathrm{B}=\mathrm{c}-1$. It turns out that this strongly overcorrects, and thus we investigated fitting the distribution to obtain better p-values.

Initial Study for Unordered Factor

First, we study the distribution of the unadjusted p-value and the Bonferroni-adjusted pvalue.

All simulations were done in the null case, i.e. the data was completely random, and there should be no association between the response and factor except by random coincidence. 5000 trials were made at even numbers of levels between 2 and 80 ; the number of levels c is called $n x$ in the simulations. Each sample had 500 observations. The response had two levels.

The script to do this was done in JMP's scripting language (JSL). A JSL function 'BestPartition' was created to interface with the partition searching code in JMP's Partition platform. The chi-square values were then stored in a JMP table with formulas to calculate the various p -values.

```
ny = 2;
nxx = 40; nxd = 2; // nx will go from 1*nxd to nxx*nxd
m = 5000;
g2vec = j(m*nxx,1,0);
nxvec = j(m*nxx,1,0);
gg2 = 0;
ij = 0;
for(j=0,j<nxx,j++,
    nx = j*nxd; if (nx==0,nx=2);
    show(nx);
    for(i=1,i<=m,i++,
        xx = j(n,1,randomInteger(nx)-1);
        yy = j(n,1,randomInteger(ny)-1);
        {11,12,gg2} = BestPartition(xx,yy);
        ij++;
    g2vec[ij] = gg2;
    nxvec[ij] = nx;
);
);
dt = newTable("PValMonteCarloLarge.jmp");
dt<<NewColumn("G2",values(g2vec));
dt<<NewColumn("NX", nominal,values(nxvec));
dt<<NewColumn("PV", formula(1-ChiSquareDistribution(:G2,1)));
dt<<NewColumn("B", formula(2^(:NX-1)-1));
dt<<NewColumn("PVB", formula(:PV*:B));
dt<<NewColumn("PVSQRTB", formula(:PV*Sqrt(:B)));
dt<<NewColumn("LogPV",formula(-Log(:PV)));
dt<<NewColumn("LogPVB", formula(-Log(:PVB)) );
dt<<NewColumn("LogPVSqreB", formula(-Log(:PV*Sqrt(:B) ) ) ;
dt<<RunFormulas();
obj=Oneway(x(NX),Y(LogPV,LogPVB,LogPVSqrtB),Box Plots(1),GrandMean(0));
r = obj<<report;
r[1][FrameBox(1)]<<addGraphicsScript(hline(-log(.25));hline(-log(.5));hline(-log(.75)));
r[2][FrameBox(1)]<<addGraphicsScript(hline(-log(.25));hline(-log(.5));hline(-log(.75)));
r[3][FrameBox(1)]<<addGraphicsScript(hline(-log(.25));hline(-log(.5));hline(-log(.75)));
```

This creates a data table with 200,000 rows, 5000 for each number of factors. A similar script creates the data for the ordered case in which only splits in the original order are considered.

Results of the P-Values and adjusted P-Values for Unordered Case

The plots below show the box plots of the $5000-\log (p$ values) for each of the numbers of levels from 2 to 80 by 2 . There are three reference lines drawn at $-\log (.25),-\log (.5)$ and $\log (.75)$. If the p-value distributions are right, the box plots should line up closely with the three reference lines. This occurs, as you would expect, for $n x=2$ levels. Notice
a. The unadjusted p -values are far too significant after the correct distribution for $\mathrm{nx}=2$
b. The full adjustment by B makes things too-little significant, by far.
c. The pvalue-value transformation that makes sense is to use sqrt(B) instead of B.

The sqrt(B) transformation was suggested by plotting the resulting distribution quantiles and fitting a regression. This modified adjustment centers the distribution well, but the variance is far larger than what the p -value distribution should be.

Initial Study for Ordinal Factor

The PValues and adjusted PValues are far better in the ordinal case, mostly because the number of combinations is much smaller. Still the ordinary pvalue is too significant. The Bonferroni pvalue suppresses it too much. Using Sqrt(B) instead of B for adjusting works out well for the center of the distribution, but the variance seem bigger than a chi-square.

Modeling the Test Statistic's Distribution -- Unordered Case

The conclusion from the above studies is that while a square root of B transformation to the p-value gets the right center of the distribution, it doesn't get the tails right. The null p-value distribution should look more uniform.

We undertook to fit the distribution empirically. The natural generalization of the chi-square distribution would be the gamma distribution. The gamma distribution is easily fit using the first two moments.

We wanted to fit a variety of number of X levels and numbers of Y levels to the data. The preliminary study above only covered 2 Y levels. We were especially concerned about fitting
the lower values, so we decided on a Fibonacci grid. Since the numbers of X levels needed to be kept small, since the computing time went up exponentially, we chose the Fibonacci numbers to 133 for NX, the number of levels of X. For NY, we chose the 7 Fibonacci numbers to 24 . Each sample needed to be large enough to get counts into all the cells, and it seemed like $\mathrm{n}=800$ was enough. To get a good handle on the test statistic distribution, we ran 5000 Monte Carlo trials. Thus the script to generate the data looked like this:

```
nyy = 7; // ny will go Fibonacci, i.e. 2,3,5,8,13,21,34
nxx = 5; // ny will go Fibonacci, i.e. 2,3,5,8,13,21
n = 800; // number of rows in each data set in MonteCarlo
m = 5000; // number of MonteCarlo trials
g2vec = j(m*nxx*nyy,1,0); nxvec = j(m*nxx*nyy,1,0);
nyvec = j(m*nxx*nyy,1,0); lwvec = j(m*nxx*nyy,1,0);
gg2 = 0; lw = 0; ij = 0;
ny = 1; nylast = 1;
for(k=1,k<=nyy,k++, ny = ny+nylast; nylast = ny-nylast;
    nx = 1; nxlast = 1;
    for(j=1,j<=nxx,j++, nx = nx+nxlast; nxlast = nx-nxlast;
        for(i=1,i<=m,i++,
            xx = j(n,1,randomInteger(nx)-1);
            yy = j(n,1,randomInteger(ny)-1);
            {11,12,gg2,lw} = BestPartition(xx,yy);
            ij++;
            g2vec[ij] = gg2; nxvec[ij] = nx; nyvec[ij] = ny; lwvec[ij] = lw;
        );
    );
);
dt = newTable("PValLW5000B.JMP");
dt<<NewColumn("G2",values(g2vec));
dt<<NewColumn("NX",nominal,values(nxvec));
dt<<NewColumn("NR",nominal,values(nyvec));
```

That produced a data set of 175,000 trials. We repeated it to make twice that many.
Next, we needed to fit the distributions and see if they were well-modeled by a gamma distribution. We made the script that inserted slider controls so that we could adjust the parameters of the gamma distribution if the moments didn't fit it well. No such adjustments seemed necessary after the analysis was completed.

The script to do that was this:

```
dt = currentDataTable();
subdt = dt << Summary(Group(:NR, :NX), Mean(:G2), Variance( :G2));
means = Column("Mean(G2)")<<GetAsMatrix;
varis = Column("Variance(G2)")<<GetAsMatrix;
currentDataTable(dt);
close(subdt,nosave);
bparmest = varis:/means;
aparmest = means:/bparmest;
obj=Distribution(Stack(1), By(NR,NX),Continuous Distribution(Column(:G2), Quantiles(0), Moments (0), Horizontal Layout(1), Pro
Axis(1), Outlier Box Plot(0)));
r = obj<<report;
ni = nitems(r);
for(i=1,i<=ni,i++,
    eval(substitute(
    expr(
        ri = r[i];
        aparmi=aparmiz
        bparmi = bparmiz
        ri[FrameBox(1)]<<FrameSize(400,300);
        ri[FrameBox(1)]<<AddGraphicsScript('YFunction(GammaDensity(x,aparmi,bparmi),x));
        ri[OutlineBox(2)]<<Append(hlistBOx(SliderBox(0,20,aparmi,ri[FrameBox(1)]<<reshow),GlobalBox(aparmi)));
        ri[OutlineBox(2)]<<Append(hlistBox(SliderBox(0,20,bparmi,ri[FrameBox(1)]<<reshow),GlobalBox(bparmi)));
    ),
    expr(ri), asname("RI"||char(i)),
    expr(aparmi),asname("aparm"||char(i)),
    expr(aparmi), asname("aparm"}|\begin{array}{l}{\mathrm{ char(i)),}}\\{\mathrm{ expr(bparmi), asname("bparm" (i)}}\\{\mathrm{ char(i)),}}
    expr(bparmi),asname("bparm
    expr(bparmiz),bparmest[i]
    ))
);
```

The result was 35 fitted histograms, one of which was this. All seemed to fit well.

Now that we knew that the moments would work well, we needed to actually fit the moments as a function of $n x$ and nr, the number of levels in X and the response. We decided to use a Neural Net to do that. Instead of using sample moments for every case, we used true moments for cases when nx was 2 , since they were known. We also up-weighted the low values of $n x$ and n. Despite these efforts, it was not fitting the lower values of $n x$ and $n r$ very well. So we fit \log (mean) and \log (variance).

The moments from the Monte Carlo trials with 10000 trials were:
(2

The resulting Neural Net expressions to get the a and b gamma parameters were：

```
if (nx==2) { mean = nr-1; variance = 2*mean; } // special case for knowing true value
else {
    mean = (0.2760966063147902
    - 2.755053381082162 *squash(1.240416754698371 - 0.6032431624857673 *nx - 0.05642514914674863*nr)
    - 4.154202088411108 *squash(0.5312751474270642 - 0.1278894468108674 *nx - 0.6932686600047646 *nr)
    + 0.7851580431604441*squash(3.713613173491597 - 0.8278633814248664 *nx - 0.1197972373660215 *nr)
    + 0.8582241159788044*squash(-2.394641262806448 + 0.08769613494498227*nx + 0.240506138757354 *nr)
    +1.423112997009518 *squash(-2.073886078453307 + 0.0630763758049051 *nx + 0.05684361604628144*nr))
    *1.326133750719967 + 1.436992834494008;
    mean = exp(mean);
    variance = (0.05730119378771649
    +1.399124821317178 *squash(-1.246134861818054 + 0.02289272257494033*nx + 0.06337779889683313*nr)
    -4.460610791451469 *squash(1.506225885258226 - 0.5470508563196945 *nx - 0.7192919712743862 *nr )
    +1.329504815693271 *squash(-1.769242311377324 + 0.1492245418164505 *nx + 0.2375652258150597 *nr)
    - 0.7931959767628654*squash(1.688445772013076 + 0.3333298625240388*nx - 0.06735956562280759*nr))
    *1.129158910274815 + 1.964942161096689;
    variance = exp(variance);
}
variance/mean;
a = mean/b;
```


Modeling the Test Statistic＇s Distribution－－Ordered Case

The ordered case was modeled in the same way as the unordered case，though larger values of $n x$ could be used，since the method was still fast for large $n x$ values．

The moments obtained（with true values where known）were these：

－NX	NR ${ }^{\text {a }}$－	väriäñë
2	2	－2
：	3－1．．．．．．．．－2	4
－2	$5 \cdots$	8
2	8	－ 4
	13	24
2	21.	40
2	34	66
3	2－1．．．．．．．． 1.573593354	2.9130551
3	3 －	47043334
－3＇		
－ 3		－14＇208193
－ 3		－24．6゙5̈8̇80̇7\％
3	21.	37．4538116
－3＇		＂22．7331599\％
－		
5	3 － 3.	5．76375731
5	$5-\ldots67075969$	－92191659
5	8－．．．．．．．．． 10.498810056	14．94522036
		222＂3016945＂
5	24．．．．．．．．．－26゙．3103З35＂	
5		
8	2 －	－13761761
8	3．．．．．．．．．．． 4.466961517	66650̇2ั8゙5
8		－10．6976152＇
8	$8 \cdots \cdots \cdots$	
8	13 － 18.1 .1466878	23．08851328
8	21.	35－900 ${ }^{\circ} 70$
8		566．0゙6゙5゙4933
＇13		4．615072゙4＊
13		6.66176084
13	$5 \cdots$	10．9513776
＇13＇		－6．8976341
－13		25．0゙2゙13゙ブ3゙
13	21 －	35．5264484
13＊		－500．8゙8153008
21	2 －	5．21411358
21	3－1．．．．．．．．．－ $5.6544070{ }^{\circ}$	－ 7.468873359
24＇	－5．．．．．．．．．．－．9010011598＂	－ 4 ＂ 4732 Cl 46.
21	8－1．．．．．．．－13－7621884	－16．33988467
21	－13	－23．50゙88116
21	21．．．．．．．． 321198467	
210		－45．9455＇47＂
34	2－．．．．．．．．－3 36767946	5．2672810
34	3 621132316	8．067688＇18
34	5－．．．．．．．．．．． 9.74976575	－1169330219
34		

－34	13	22.0315512	22.4350861
－34	27		37\％ 0 ¢ 490042
34	34	50．2795559	48.30130961
－55＇	2	4．36005＇6224	5．972＇19゙3＇95
－55	亿	－6．62107453＂	8．23472973
－55	5	－10．4194459＊	12.00529338
55	8	－15．3517718	15.4801469
55	13		
－55	＂27	－33．84200219＇	30．21560088
－55	－34	51．333̈8428	48．2314163
－89	2	4．61304146	5．9゙3゙344097
89＇	3	－ 7.1565744	8．16589692
89\％	5		
－89＇	－8	－15．83＇464564＂	－15．85＇49゙206
－89＇	－13＂	－23．32234238	22．4781522
89	－21＂	－34．5887655	－31．38360゙7
－8＇9	＂34		

The neural net expressions for the gamma parameters were this：

```
if (nx==2) { mean = nr-1; variance = 2*mean; } // special case for knowing true value
else {
    mean=(1.301769477083182
    - 7.94692504665389 * squash(-0.0210123408666232 - 0.2518613156386489 * nx - 0.06727041462914558* nr)
    - 4.077814018416775 * squash(0.2235513471395557-0.006010078927027169 * nx - 0.6982453780867636 * nr)
    +2.191896597732866 * squash(2.35102691594594-0.3569390844668006 * nx - 0.1245875970073678 * nr)
    +0.928447356341446 * squash(-2.223583104899824 + 0.003107036751429028 * nx + 0.2500806295975323 * nr)
    - 1.218519901635325 * squash(1.951502740399493 - 0.001311840317569508 * nx - 0.08166483883705047 * nr))
    * 1.138081563249612 + 1.786178322906917;
    mean = exp(mean);
    variance = (-0.3831532845610621
    -1.469765640428693 * squash(2.637404535262809 - 0.00201549213395159 * nx - 0.09140700525110769 * nr)
    + 3.564959674389817 * squash(-0.1886542988420415 + 0.0023325631538162 * nx + 0.6366501165090098 * nr)
    + 1.32083818385447 * squash(-3.227088025889567 + 0.1680736675939787 * nx + 0.1473719725610988 * nr)
    - 0.6125564910317741 * squash(2.991316133978449 - 0.0001063246797539832 * nx - 0.3154312734939435 * nr)
    - 5.53975146770328 * squash(-0.104495544378832 - 0.3302280397694065 * nx - 0.26616402089296 * nr)
    - 2.296828210396418 * squash(-1.027867872780368 + 0.115714146444512 * nx + 0.06136431966040862 * nr))
    * 0.9654108489785114 + 2.222724833424783;
    variance = exp(variance);
}
b = variance/mean;
a = mean/b;
```


Evaluation of Resulting p－values

We reran the simulations calculating pvalues corresponding to the fitted gamma distributions．For the unordered case，this produced the following histograms，shown in two tables．

In the first table，we compare the fitted p－values with the unadjusted and Bonferroni－ adjusted pvalues that are used traditionally．Only the $n x=2$ distributions actually are Uniform $(0,1)$ ．The Bonferroni values are even on different scales，because many values far exceed 1 in value．

In the second table we show the fitted p －values distributions across all the nx and nr values in the Fibonacci grid．

	Ünadjusted P －Value	Bonferroni Adjusted	Fitted P －Value
$\mathrm{NR}=2, \mathrm{NX}=2$			

$\mathrm{NR}=2, \mathrm{NX}=3$			$\begin{gathered} 1= \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0 \\ 0 \end{gathered}$	
$\mathrm{NR}=2, \mathrm{NX}=5$			$\begin{aligned} & 1 . \\ & 0.8 \\ & 0.6 \\ & 0 . \text { I. }_{\text {I. }}^{0 .} \\ & 0 . \\ & 0 . \end{aligned}$	
$\mathrm{NR}=2, \mathrm{NX}=8$		$\xrightarrow{800} 30$	1 0.8 0.6 0.4 0.2 0. 0.	
$\mathrm{NR}=2, \mathrm{NX}=13$			$\begin{gathered} 1 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.4 \\ 0.2 \\ 0= \\ 0 \end{gathered}$	
$\mathrm{NR}=3, \mathrm{NX}=2$				
$N R=3, N X=3$			1 0.8 0.6 0.4 0.2 0.	
$\mathrm{NR}=3, \mathrm{NX}=5$				
$\mathrm{NR}=3, \mathrm{NX}=8$			1 0.8 0.6 0.4 0.2 0.	

For the ordered case, first compare the fitted p-values with the unadjusted and the Bonferroni-adjusted p-values.

	Unadjusted P-Value	Bonferroni Adjusted	Fitted P -Value
$\mathrm{NR}=2, \mathrm{NX}=2$			

$\mathrm{NR}=2, \mathrm{NX}=3$			\square
$\mathrm{NR}=2, \mathrm{NX}=5$			
$\mathrm{NR}=2, \mathrm{NX}=8$			
$\mathrm{NR}=2, \mathrm{NX}=13$			
$\mathrm{NR}=2, \mathrm{NX}=21$		Consen	
$\mathrm{NR}=2, \mathrm{NX}=34$			\square
$\mathrm{NR}=3, \mathrm{NX}=2$	\square	\square	
$N R=3, N X=3$			

Then look at a table of all the fitted p-value distributions in the Fibonacci grid. The distributions in the first column are true uniforms--the others fitted from moments. Some of the distributions look slightly less uniform than the first column distributions, but in general the fit is reasonable, much more reasonable than the unadjusted p-values and Bonferroni p values of tradition.

Imbalance of X-level frequencies

All the simulations so far have used balanced classifications, with roughly an equal number of occurrences for each level. To check the pvalues for unbalanced distributions, we made the X with half the cases on the last level, with the other levels equal to each other. This was done by modifying one line in the simulation script:

$$
x x=j(n, 1, \min (\text { randomInteger }(n x * 2), n x)-1) ;
$$

The resulting p -value distributions looked reasonable.

These results suggested that an adjustment for imbalance was not needed, though we didn't test any more stressful situations. If the test statistic distribution did on these X-level rates, then we would try using functions of the unbalance, starting with the marginal entropyequivalent balanced number of levels, which is NXE=-exp(Sum $(\mathrm{p}[\mathrm{i}] * \log (\mathrm{p}[\mathrm{i}])))$

Continuous Responses with Categorical X's

The preliminary study on the distribution of continuous responses turned up distributions that the gamma distribution did not fit very well. The fit below was for the F statistic for a continuous normal response with an ordered X with 13 levels. This was among the worst fitting among the distributions examined.

However, we decided to go ahead with gamma distributions anyway and see how the p-value distribution looked in the NULL case.

The moments of F statistics over 5000 Monte Carlo samples for unordered- X samples were this:

NX	F Mean	F Variance
2	1.0081888	2.0492372
3	1.81826093	3.33011866
5	3.2770996	5.53976317
8	5.23020957	8.11351644
13	8.57822411	13.1827308
21	13.458647	19.8100357

We used a neural net to fit the log moments, with the resulting expressions for the gamma parameters:

```
logMean = (0.3247401514044082
- 3.377924250520082 * squash(0.6928893526465474 - 0.5108055293941157 * nx)
+1.404646616649575 * squash ( (-1.548447235304804) + 0.1424129088976174 * nx)
- 0.8111344305114346 * squash(0.9552247732829481 - 0.102707945360597 * nx))
* 0.9679128513133213 + 1.366049129723897;
mean = exp(logMean );
logVariance = (0.09999563736950218
+ 1.499493412598702 * squash((-2.501182784952456) + 0.2120655661008282 * nx)
- 0.2982074540555843 * squash(0.3707045401415789 - 0.04351974257350025 * nx)
- 3.335570427975299 * squash(0.7003618842539239 - 0.5107079416841145 * nx))
* 0.8480260134033467 + 1.881842508423816;
variance = exp(logVariance );
b = variance/mean;
a = mean/b;
```

The moments of F statistics over 5000 Monte Carlo samples for ordered- X samples were this:

NX	F Mean	F Variance
2	0.97898017	1.94658557
3	1.53383408	2.61049221
5	2.16492664	3.52630601
8	2.68634194	4.25617303

13	3.21531017	4.85654314
21	3.57907503	5.27199196

The neural net fit for the gamma parameters (not using logs) for unordered was this:

```
mean = (-0.1057020494568139
- 3.414250949476012 * squash(0.7230383201277949 - 0.4643842977130933 * nx)
+1.532971661689726 * squash(-1.692665100927281 + 0.170743298371788 * nx))
* 0.9951901912449169 + 2.359744670193956;
variance = (0.005509654653496981
+ 1.419586807289863 * squash(-1.331713402887075 + 0.1372340412035706 * nx)
- 3.445110164564215 * squash(0.903536453165965 - 0.4574306647384537 * nx))
* 1.295975255042254 + 3.744681986456623;
b = variance/mean;
a = mean/b;
```

Fitted P-values were calculated for 10000 samples resulting the following p-value distributions:

$\mathrm{NX}=21$

We decided that these p-value distributions looked acceptable, certainly much better than the unadjusted F's or the Bonferroni-adjusted F's that are commonly used. We concede that the actual distribution does not look like a gamma (except for $\mathrm{NX}=2$), but the p-values look reasonable despite that. We hope to get better advice concerning the tail the distribution.

Continuous Responses with Continuous X's

This is the limiting distribution for the previous ordered case, as NX goes to N.

Discussion

The goal here is to make fair comparisons to choose partition splits among X variables where the number of levels and the type of X (unordered categories, ordered categories, and continuous) is different among the terms. We need to compare the taste of apples and oranges of different sizes.

It is clear that the using raw statistics or unadjusted p-values is not very fair, since it unfairly chooses factors with many levels. It is also clear that using Bonferroni-adjusted p-values is not fair, since it prefers terms with few levels, especially for unordered categories.

The Monte-Carlo derived p-value formulas certainly produce better null-case p-value distributions than the unadjusted or Bonferroni-adjusted methods. Of course, since we are calibrating the tests so that it produces fair tests under the null case, where there is no relationship. This does not guarantee us good behavior when there really are relationships, however, significance testing is what we know how to do.

Ultimately, we want to be able to use these p-values, with further selection-bias adjustments, to make judgments on how much to grow the tree. Making further adjustments would be a good subject for further, more complicated, experiments.

