Monte Carlo Calibration of Distributions of Partition Statistics
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Introduction

In recursive partitioning (decision trees) a search is made for each factor as to how to best
make a split. Because of this searching over many possibilities, the p-values for the split
itself do not have the claimed distribution. Most often a p-value multiplicity correction is
made using the Bonferroni adjustment. The p-value is multiplied by B, where B is the total
number of ways of arranging c levels into two groups (we evaluate only 2-group partitions

in this study). For the unordered nominal case, B = 2¢1_1. For the ordinal case, this is
B=c-1. It turns out that this strongly overcorrects, and thus we investigated fitting the
distribution to obtain better p-values.

Initial Study for Unordered Factor
First, we study the distribution of the unadjusted p-value and the Bonferroni-adjusted p-
value.

All simulations were done in the null case, i.e. the data was completely random, and there
should be no association between the response and factor except by random coincidence.
5000 trials were made at even numbers of levels between 2 and 80; the number of levels c is
called nx in the simulations. Each sample had 500 observations. The response had two
levels.

The script to do this was done in JMP's scripting language (JSL). A JSL function
'‘BestPartition' was created to interface with the partition searching code in JMP's Partition
platform. The chi-square values were then stored in a JMP table with formulas to calculate
the various p-values.

nxx = 40; nxd = 2; // nx will go from l*nxd to nxx*nxd
m = 5000;

g2vec = j(m*nxx,1,0);
= j(m*nxx,1,0);
gg2 = 0;

ij = 0;
for(j=0, j<nxx, j++,
nx = j*nxd; if (nx==0,nx=2);
show(nx);
for(i=1,i<=m,i++,
xx = j(n,l,randomInteger(nx)-1);
yy = j(n,1l,randomInteger(ny)-1);
{11,12,gg2} = BestPartition(xx,yy);
ij++;
g2vec[ij]
nxvec[ij]
)
)i

dt = newTable("PValMonteCarloLarge.jmp");
dt<<NewColumn("G2",values(g2vec));

dt<<NewColumn( "NX",nominal,values (nxvec));
dt<<NewColumn("PV", formula(l-ChiSquareDistribution(:G2,1)));
dt<<NewColumn("B", formula(2”(:NX-1)-1));
dt<<NewColumn("PVB", formula(:PV*:B));
dt<<NewColumn("PVSQRTB", formula(:PV*Sqrt(:B)));
dt<<NewColumn( "LogPV", formula(-Log(:PV)));
dt<<NewColumn ( "LogPVB", formula(-Log(:PVB)));
dt<<NewColumn ( "LogPVSqrtB", formula(-Log(:PV*Sqrt(:B))));
dt<<RunFormulas();

992;
nx;

obj=Oneway (x(NX) ,Y(LogPV,LogPVB,LogPVSqrtB) ,Box Plots(1l),GrandMean(0));

r = obj<<report;

r[1l][FrameBox (1) ]<<addGraphicsScript(hline(-log(.25));hline(-log(.5));hline(-log(.75)));
r[2][FrameBox(1l) ]<<addGraphicsScript(hline(-log(.25));hline(-log(.5));hline(-log(.75)));
r[3][FrameBox (1) ]<<addGraphicsScript(hline(-log(.25));hline(-log(.5));hline(-log(.75)));



This creates a data table with 200,000 rows, 5000 for each number of factors. A similar
script creates the data for the ordered case in which only splits in the original order are
considered.

Results of the P-Values and adjusted P-Values for Unordered Case

The plots below show the box plots of the 5000 -log(pvalues) for each of the numbers of
levels from 2 to 80 by 2. There are three reference lines drawn at -log(.25), -log(.5) and -
log(.75). If the p-value distributions are right, the box plots should line up closely with the
three reference lines. This occurs, as you would expect, for nx=2 levels. Notice

a. The unadjusted p-values are far too significant after the correct distribution for nx=2
b. The full adjustment by B makes things too-little significant, by far.
c. The pvalue-value transformation that makes sense is to use sqrt(B) instead of B.

The sqrt(B) transformation was suggested by plotting the resulting distribution quantiles
and fitting a regression. This modified adjustment centers the distribution well, but the
Unordered: -Log of Unadjusted P-Values
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Initial Study for Ordinal Factor



The PValues and adjusted PValues are far better in the ordinal case, mostly because the
number of combinations is much smaller. Still the ordinary pvalue is too significant. The
Bonferroni pvalue suppresses it too much. Using Sqrt(B) instead of B for adjusting works
out well for the center of the distribution, but the variance seem bigger than a chi-square.

Ordered: -Log of Unadjusted P-Values
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Modeling the Test Statistic's Distribution -- Unordered Case
The conclusion from the above studies is that while a square root of B transformation to the

p-value gets the right center of the distribution, it doesn't get the tails right. The null p-value
distribution should look more uniform.

We undertook to fit the distribution empirically. The natural generalization of the chi-square

distribution would be the gamma distribution. The gamma distribution is easily fit using the
first two moments.

We wanted to fit a variety of number of X levels and numbers of Y levels to the data. The
preliminary study above only covered 2 Y levels. We were especially concerned about fitting



the lower values, so we decided on a Fibonacci grid. Since the numbers of X levels needed
to be kept small, since the computing time went up exponentially, we chose the Fibonacci
numbers to 133 for NX, the number of levels of X. For NY, we chose the 7 Fibonacci
numbers to 24. Each sample needed to be large enough to get counts into all the cells, and it
seemed like n=800 was enough. To get a good handle on the test statistic distribution, we
ran 5000 Monte Carlo trials. Thus the script to generate the data looked like this:

nyy = 7; // ny will go Fibonacci, i.e. 2,3,5,8,13,21,34

nxx = 5; // ny will go Fibonacci, i.e. 2,3,5,8,13,21

n = 800; // number of rows in each data set in MonteCarlo

m = 5000; // number of MonteCarlo trials

= j(m*nxx*nyy,1,0); nxvec = j(m*nxx*nyy,1,0);
= j(m*nxx*nyy,1,0); lwvec = j(m*nxx*nyy,1,0);

gg2 = 0; 1lw = 0; 1ij = 0;

(SN

ny = 1; nylast = 1;
for (k=1,k<=nyy,k++, ny = ny+nylast; nylast = ny-nylast;
nx = 1; nxlast = 1;
for(j=1,j<=nxx,j++, nx = nx+nxlast; nxlast = nx-nxlast;
for(i=1,i<=m,i++,
xx = j(n,l,randomInteger(nx)-1);

yy j(n,1,randomInteger(ny)-1);

{11,12,992,1w} = BestPartition(xx,yy);

i++;

g2vec[ij] = gg2; nxvec[ij] = nx; nyvec[ij] = ny; lwvec[i]] = 1lw;

i
));

i
dt = newTable("PValLW5000B.JMP");
dt<<NewColumn("G2",values(g2vec));
dt<<NewColumn("NX",nominal,values(nxvec));
dt<<NewColumn("NR",nominal,values(nyvec));

That produced a data set of 175,000 trials. We repeated it to make twice that many.

Next, we needed to fit the distributions and see if they were well-modeled by a gamma
distribution. We made the script that inserted slider controls so that we could adjust the
parameters of the gamma distribution if the moments didn't fit it well. No such adjustments
seemed necessary after the analysis was completed.

The script to do that was this:

dt = currentDataTable();

subdt = dt << Summary(Group(:NR, :NX), Mean(:G2), Variance( :G2));
means = Column("Mean(G2)")<<GetAsMatrix;

varis = Column("Variance(G2)")<<GetAsMatrix;

currentDataTable(dt);

close(subdt,nosave);

bparmest = varis:/means;

aparmest = means:/bparmest;

obj=Distribution(Stack(l), By(NR,NX),Continuous Distribution(Column(:G2), Quantiles(0), Moments (0), Horizontal Layout(l), Prc
Axis(1l), Outlier Box Plot(0)));

r = obj<<report;
ni = nitems(r);
for(i=1,i<=ni,it++,
eval (substitute(
expr(
ri = r[i];
aparmi=aparmiz;
bparmi = bparmiz;
ri[FrameBox(1) ]<<FrameSize(400,300);
ri[FrameBox (1) ]<<AddGraphicsScript( YFunction(GammaDensity(x,aparmi,bparmi),x));
ri[OutlineBox(2) ]<<Append(hlistBox(SliderBox(0,20,aparmi,ri[FrameBox (1) ]<<reshow),GlobalBox(aparmi)
ri[OutlineBox(2) ]<<Append(hlistBox(SliderBox(0,20,bparmi,ri[FrameBox (1) ]<<reshow),GlobalBox (bparmi)
) s
expr(ri), asname("RI"||char(i)),
expr (aparmi) ,asname( "aparm" | |char(i)),
expr (bparmi) ,asname( "bparm" | |char(i)),
expr (aparmiz),aparmest[i],
expr (bparmiz) ,bparmest[i]
))
)i

)i
)i

The result was 35 fitted histograms, one of which was this. All seemed to fit well.
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Now that we knew that the moments would work well, we needed to actually fit the moments
as a function of nx and nr, the number of levels in X and the response. We decided to use a
Neural Net to do that. Instead of using sample moments for every case, we used true
moments for cases when nx was 2, since they were known. We also up-weighted the low
values of nx and nr. Despite these efforts, it was not fitting the lower values of nx and nr
very well. So we fit log(mean) and log(variance).

The moments from the Monte Carlo trials w1th 10000 trials were
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The resulting Neural Net expressions to get the a and b gamma parameters were:

if (nx==2) { mean = nr-1; variance = 2*mean; }

else {
mean = (0.2760966063147902
- 2.755053381082162 *squash(1.240416754698371
- 4.154202088411108 *squash(0.5312751474270642
+ 0.7851580431604441*squash(3.713613173491597
+ 0.8582241159788044*squash(-2.394641262806448
+ 1.423112997009518 *squash(-2.073886078453307
*1.326133750719967 + 1.436992834494008;
mean = exp(mean);

variance = (0.05730119378771649

+ 1.399124821317178 *squash(-1.246134861818054
- 4.460610791451469 *squash(1.506225885258226
+ 1.329504815693271 *squash(-1.769242311377324
- 0.7931959767628654*squash(1.688445772013076
%*1.129158910274815 + 1.964942161096689;
variance = exp(variance);

variance/mean;
mean/b;

o'
[}

Modeling the Test Statistic's Distribution -- Ordered Case

++ 10
ocoooo

+4+0 o+

ocooo

.6032431624857673 *nx
.1278894468108674 *nx
.8278633814248664 *nx
.08769613494498227*nx
.0630763758049051 *nx

.02289272257494033*nx
.5470508563196945 *nx
.1492245418164505 *nx
.3333298625240388 *nx

++ 01011
ocooooo

I+ 1+

ocoocoo

// special case for knowing true value

.05642514914674863*nr)
.6932686600047646 *nr)
.1197972373660215 *nr)
.240506138757354 *nr)
.05684361604628144%nr))

.06337779889683313*nr)
.7192919712743862 *nr)
.2375652258150597 *nr)
.06735956562280759*nr) )

The ordered case was modeled in the same way as the unordered case, though larger values

of nx could be used, since the method was still fast for large nx values.

The moments obtained (with true values where known) were these:
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The neural net expressions for the gamma parameters were this:

if (nx==2) { mean = nr-1; variance = 2*mean; } // special case for knowing true value
else {
mean=(1.301769477083182

- 7.94692504665389 * squash(-0.0210123408666232 - 0.2518613156386489 * nx - 0.06727041462914558 *
- 4.077814018416775 * squash(0.2235513471395557 - 0.006010078927027169 * nx - 0.6982453780867636 *
+ 2.191896597732866 * squash(2.35102691594594 - 0.3569390844668006 * nx - 0.1245875970073678 *

+ 0.928447356341446 * squash(-2.223583104899824 + 0.003107036751429028 * nx + 0.2500806295975323 *
- 1.218519901635325 * squash(1.951502740399493 - 0.001311840317569508 * nx - 0.08166483883705047 *
* 1.138081563249612 + 1.786178322906917;

mean = exp(mean);

variance = (-0.3831532845610621

0111 + +1

oNUTOoO

.9654108489785114 + 2.222724833424783;
variance = exp(variance);

variance/mean;
mean/b;

o'
[}

Evaluation of Resulting p-values

We reran the simulations calculating pvalues corresponding to the fitted gamma

1.469765640428693 * squash(2.637404535262809 - 0.00201549213395159 * nx - 0.09140700525110769 *
3.564959674389817 * squash(-0.1886542988420415 + 0.0023325631538162 * nx + 0.6366501165090098 *
.32083818385447 * squash(-3.227088025889567 + 0.1680736675939787 * nx + 0.1473719725610988 *

.6125564910317741 * squash(2.991316133978449 - 0.0001063246797539832 * nx - 0.3154312734939435 *
.53975146770328 * squash(-0.104495544378832 - 0.3302280397694065 * nx - 0.26616402089296 *
.296828210396418 * squash(-1.027867872780368 + 0.115714146444512 * nx + 0.06136431966040862 *

distributions. For the unordered case, this produced the following histograms, shown in two

tables.

In the first table, we compare the fitted p-values with the unadjusted and Bonferroni-
adjusted pvalues that are used traditionally. Only the nx=2 distributions actually are

Uniform(0,1). The Bonferroni values are even on different scales, because many values far

exceed 1 in value.

In the second table we show the fitted p-values distributions across all the nx and nr values

in the Fibonacci grid.

NR—2 NX=2
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For the ordered case, first compare the fitted p-values with the unadjusted and the
Bonferroni-adjusted p-values.

: Unadjusted
! P-Value
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Then look at a table of all the fitted p-value distributions in the Fibonacci grid. The
distributions in the first column are true uniforms--the others fitted from moments. Some of
the distributions look slightly less uniform than the first column distributions, but in general
the fit is reasonable, much more reasonable than the unadjusted p-values and Bonferroni p-
values of tradition.
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Imbalance of X-level frequencies

All the simulations so far have used balanced classifications, with roughly an equal number
of occurrences for each level. To check the pvalues for unbalanced distributions, we made
the X with half the cases on the last level, with the other levels equal to each other. This was
done by modifying one line in the simulation script:

xx = j(n,1l,min(randomInteger(nx*2),nx)-1);

The resulting p-value distributions looked reasonable.

NR=2 NR=3
NX=3
NX=5 -

These results suggested that an adjustment for imbalance was not needed, though we didn't
test any more stressful situations. If the test statistic distribution did on these X-level rates,
then we would try using functions of the unbalance, starting with the marginal entropy-
equivalent balanced number of levels, which is NXE=-exp(Sum(p[i]*log(pl[i])))

Continuous Responses with Categorical X's

The preliminary study on the distribution of continuous responses turned up distributions
that the gamma distribution did not fit very well. The fit below was for the F statistic for a
continuous normal response with an ordered X with 13 levels. This was among the worst

fitting among the distributions examined.
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However, we decided to go ahead with gamma distributions anyway and see how the p-value
distribution looked in the NULL case.

The moments of F statistics over 5000 Monte Carlo samples for unordered-X samples were
this:

NX F Mean F Variance

2 1.0081888 2.0492372

3 1.81826093 3.33011866
5 3.2770996 5.53976317
8 5.23020957 8.11351644
13 8.57822411 13.1827308
21 13.458647 19.8100357

We used a neural net to fit the log moments, with the resulting expressions for the gamma
parameters:

logMean = (0.3247401514044082

- 3.377924250520082 * squash(0.6928893526465474 - 0.5108055293941157 * nx)
+ 1.404646616649575 * squash((-1.548447235304804) + 0.1424129088976174 * nx)
- 0.8111344305114346 * squash(0.9552247732829481 - 0.102707945360597 * nx))
* 0.9679128513133213 + 1.366049129723897;

mean = exp(logMean );

logVariance = (0.09999563736950218

+ 1.499493412598702 * squash((-2.501182784952456) + 0.2120655661008282 * nx)
- 0.2982074540555843 * squash(0.3707045401415789 - 0.04351974257350025 * nx)
- 3.335570427975299 * squash(0.7003618842539239 - 0.5107079416841145 * nx))
* 0.8480260134033467 + 1.881842508423816;

variance = exp(logVariance );

b = variance/mean;

a = mean/b;

The moments of F statistics over 5000 Monte Carlo samples for ordered-X samples were
this:

NX F Mean F Variance

2 0.97898017 1.94658557
3 1.53383408 2.61049221
5 2.16492664 3.52630601
8 2.68634194 425617303



13 3.21531017
21 3.57907503

4.85654314
5.27199196

The neural net fit for the gamma parameters (not using logs) for unordered was this:

mean = (-0.1057020494568139
- 3.414250949476012 * squash(0.7230383201277949 - 0.4643842977130933 * nx)
+ 1.532971661689726 * squash(-1.692665100927281 + 0.170743298371788 * nx))

* 0.9951901912449169 + 2.359744670193956;

variance = (0.005509654653496981
.419586807289863 * squash(-1.331713402887075 + 0.1372340412035706 * nx)
.445110164564215 * squash(0.903536453165965 - 0.4574306647384537 * nx))

© o * 1 +

1

3
1

.295975255042254 + 3.744681986456623;

variance/mean;
mean/b;

Fitted P-values were calculated for 10000 samples resulting the following p-value
distributions:

X Levels
NX=2

NX=3

NX=5

NX=8

NX=13

UnOrdered X Levels

Ordered X Levels
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NX=21

We decided that these p-value distributions looked acceptable, certainly much better than the
unadjusted F's or the Bonferroni-adjusted F's that are commonly used. We concede that the
actual distribution does not look like a gamma (except for NX=2), but the p-values look
reasonable despite that. We hope to get better advice concerning the tail the distribution.

Continuous Responses with Continuous X's
This is the limiting distribution for the previous ordered case, as NX goes to N.

Discussion

The goal here is to make fair comparisons to choose partition splits among X variables
where the number of levels and the type of X (unordered categories, ordered categories, and
continuous) is different among the terms. We need to compare the taste of apples and
oranges of different sizes.

It is clear that the using raw statistics or unadjusted p-values is not very fair, since it unfairly
chooses factors with many levels. It is also clear that using Bonferroni-adjusted p-values is
not fair, since it prefers terms with few levels, especially for unordered categories.

The Monte-Carlo derived p-value formulas certainly produce better null-case p-value
distributions than the unadjusted or Bonferroni-adjusted methods. Of course, since we are
calibrating the tests so that it produces fair tests under the null case, where there is no
relationship. This does not guarantee us good behavior when there really are relationships,
however, significance testing is what we know how to do.

Ultimately, we want to be able to use these p-values, with further selection-bias adjustments,
to make judgments on how much to grow the tree. Making further adjustments would be a
good subject for further, more complicated, experiments.



