
The 6th Vulkan Developer Conference
Sunnyvale, California | February 5-7, 20242024

8 years of open drivers

Faith Ekstrand, Collabora
Iago Toral, Igalia

About Iago

● Graphics engineer at Igalia
● Contributor to Mesa since 2014
● Initial contributions in Mesa to Intel drivers for OpenGL and Vulkan
● Currently leading the Raspberry Pi 3D driver team at Igalia, mostly focused on

the Vulkan stack

About Faith

● Active member of the Vulkan working group since before 1.0
● Led Linux Vulkan driver development at Intel for 6 years
● Now at Collabora working on Linux graphics over-all
● Mesa Maintainer, focused on:

○ NIR optimizing shader compiler
○ SPIR-V front-end
○ Common Vulkan runtime
○ NVK, the new open-source driver for NVIDIA hardware

History of Vulkan in Mesa

● Mesa Vulkan work started May 8, 2015 (that’s before the 1.0 release 😉)
● Initial Intel driver was released on February 16, 2016

○ Released in tandem with the Vulkan 1.0 spec
○ One of the first 4 conformant implementations
○ Merged into mesa/main about 2 months later

● The RADV driver for AMD hardware landed October 7, 2016
○ Initially not conformant, but some apps ran

● Since then, we’ve gained drivers for nearly every major HW vendor:
○ Qualcomm (Turnip), Arm (Panvk), Broadcom (V3DV), Imagination (PVR), and NVIDIA (NVK)

● Lavapipe, utilizing the LLVMpipe CPU rasterization core

History of Vulkan in Mesa

Mesa also has a common runtime, shared across HW drivers

● Some of this was built as part of the initial Intel efforts:
○ NIR optimizing shader compiler core
○ SPIR-V front-end for NIR
○ Window-system code for X11 and Wayland

● Other pieces have been added later:
○ Dispatch and vkGet*ProcAddr() handling
○ vkQueueSubmit() threading and timeline semaphores
○ Render passes in terms of VK_KHR_dynamic rendering
○ Pipelines in terms of VK_EXT_shader_object (still WIP)

A timeline of Vulkan in Mesa
As of Febuary 1, 2024

The Mesa Matrix (https://mesamatrix.net)

Layered drivers

● Venus:
○ VirtIO-GPU Vulkan driver.
○ Allows guest OS to use the host’s native Vulkan implementation.
○ Merged upstream in April 2021.

● Dozen:
○ Vulkan over Direct3D 12
○ Vulkan support on Microsoft platforms where native Vulkan is not available.
○ Merged upstream in March 2022.

● Zink:
○ OpenGL over Vulkan.
○ OpenGL support on platforms where native OpenGL is not available.
○ Merged upstream in October 2019.

Useful environment variables

● MESA_VK_TRACE=rmv,rgp,rra
○ Comma-separated list of trace types to dump for offline analysis.
○ All currently supported trace types are for AMD Radeon tools:

■ Radeon Memory Visualizer: rmv (RADV, ANV)
■ Radeon GPU profiler: rgp (RADV)
■ Radeon Raytracing Analyzer: rra (RADV)

● MESA_VK_TRACE_FRAME
○ Specifies a frame index to capture.

● MESA_VK_TRACE_TRIGGER
○ Triggers frame capture when specified trigger file is created.

Useful environment variables

● MESA_VK_WSI_PRESENT_MODE=fifo|relaxed|mailbox|immediate
○ Overrides present mode in VkSwapchinCreateInfoKHR::presentMode.

● MESA_VK_HEADLESS_SWAPCHAIN
○ Forces all swapchains to be headless, as if VK_EXT_headless_surface was used.

● MESA_VK_ABORT_ON_DEVICE_LOSS (*)
○ Aborts execution upon seeing VK_ERROR_DEVICE_LOST.

● MESA_VK_ENABLE_SUBMIT_THREAD
○ Forces use of a submit thread on all queue submissions.

Useful environment variables

● Per-driver variables
○ These expose many driver-specific options.
○ Some accept ‘help’ as value to dump the list of accepted options.

■ INTEL_DEBUG (Anvil)
■ RADV_DEBUG, ACO_DEBUG (Radv)
■ TU_DEBUG (Turnip)
■ V3D_DEBUG (V3DV)
■ NVK_DEBUG (NVK)
■ PANVK_DEBUG (Panvk)

Useful Vulkan layers

● VK_LAYER_MESA_device_select
○ Forces device selection on platforms with multiple Vulkan implementations available.
○ Build with -Dvulkan-layers=device-select

Useful Vulkan layers

● VK_LAYER_MESA_overlay
○ Renders an overlay with selected statistics.
○ Build with -Dvulkan-layers=overlay.
○ VK_LAYER_MESA_OVERLAY_CONFIG=help for available stats.

Benefits of open drivers

● Linux OS integration
○ You already have a Mesa driver 😉
○ Packaged by all the Linux and BSD distros
○ No binary downloads from independent 3rd parties.

Benefits of open drivers

● Linux OS integration
● Application debugging

○ We aren’t hiding anything! (You can look at the code)
○ All the Driver developer tools are available to you

■ Environment variables
■ Command buffer streams
■ Shader compiler dumps

○ Most drivers support VK_pipeline_executable_properties integration for RenderDoc.

Benefits of open drivers

Benefits of open drivers

● Linux OS integration
● Application debugging
● Source code access

○ You can look under the hood
○ See how software drives the actual hardware
○ Build in debug mode and set breakpoints inside the driver
○ Maybe you can even try to fix your issue yourself!

Benefits of open drivers

● Linux OS integration
● Application debugging
● Source code access
● Better access to driver developers

○ We respond directly to issues
■ https://gitlab.freedesktop.org/mesa/mesa/-/issues/

○ You can join our IRC channels and ask questions

https://gitlab.freedesktop.org/mesa/mesa/-/issues/

Benefits of open drivers

Benefits of open drivers

Benefits of open drivers

● Linux OS integration
● Application debugging
● Source code access
● Better access to driver developers
● Better cross-company collaboration

○ All the Mesa developers talk to each other
○ We all work on the common runtime and shader compiler
○ Most of us are also Khronos members

■ Pre-release extension work happens in Khronos gitlab

Want to help out?

Mesa lives at https://gitlab.freedesktop.org/mesa/mesa/

https://gitlab.freedesktop.org/mesa/mesa/

Want to help out?

Mesa lives at https://gitlab.freedesktop.org/mesa/mesa/

And also https://mesa3d.org

https://gitlab.freedesktop.org/mesa/mesa/
https://mesa3d.org

Want to help out?

Mesa lives at https://gitlab.freedesktop.org/mesa/mesa/

And also https://mesa3d.org

We’re also in the #dri-devel channel on the OFTC IRC server

https://gitlab.freedesktop.org/mesa/mesa/
https://mesa3d.org

Any Questions?

Thanks!

