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Context
Designing a more approachable API on top of Vulkan

http://nice.graphics

• Graphics API abstraction 
layer (RHI) with back-ends 
for Metal and Vulkan.


• Designed to be at the 
“middle” level of 
abstraction.


• Sync in Vulkan backend 
was a serious pain point.

http://nice.graphics
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Not So Basic Case
Multiple command buffers

• Order of submission is not 
known a priori.


• Therefore, can’t emit the correct 
memory barriers as commands 
are recorded.


• This problem arises with both 
multi- and single-threaded 
recording.
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Solution: Interim Barriers
Part 1: independently track resources per command buffer

• Each resource has:


• a single global synchronization state


• one local synchronization state per each 
command buffer it is used in.


• Assume the first access of a pipeline stage to a given 
resource in a command buffer will NOT need 
synchronization.


• Remember the first accesses of each pipeline stage 
that touches the resource. Collectively, those are the 
“expected sync state”.


• Track subsequent accesses of a pipeline stage to the 
resource using the resource’s local synchronization 
state.

Image A
Global sync state Buffer B

Global sync state

Command Buffer Y

Command Buffer X

A

B

A
B
C

Local sync stateExpected sync state

Local sync stateExpected sync state

Local sync stateExpected sync state

Local sync stateExpected sync state

Local sync stateExpected sync state



Solution: Interim Barriers
Part 2: insert barriers between command buffers

• All command buffers are submitted on a single 
thread, forming an ordered timeline.


• Infer the necessary barriers by comparing the 
expected sync states of the resources 
participating in the upcoming command buffer to 
their corresponding current global sync states .


• Record and submit the inferred barriers in an 
auxiliary command buffer before submitting the 
upcoming “main” command buffer.


• Update the current global states of all the 
participating resources according to the last 
known local sync state.
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Hazard Tracking Inside Command Buffers
Synchronization requests

• Sync requests describe an 
operation we intend to perform on a 
resource.


• Issued when we’re about to record 
commands that may result in 
resource memory being read or 
modified.


• Might or might not result in a barrier, 
depending on the resource’s sync 
state.

// Stage + access masks
typedef struct ngfvk_sync_barrier_masks {
  // Ways in which the resource is accessed
  VkAccessFlags access_mask;

  // Pipeline stages accessing the resource.
  VkPipelineStageFlags stage_mask;  
} ngfvk_sync_barrier_masks;

// Specifies the intent to access a resource.
typedef struct ngfvk_sync_req {
  // Access/stage masks
  ngfvk_sync_barrier_masks barrier_masks;

  // Requested layout (images only).
  VkImageLayout layout; 
} ngfvk_sync_req;



Hazard Tracking Inside Command Buffers
Rules for handling sync requests

• Concurrent reads are (almost) always allowed


• Only a single pipeline stage can be modifying the resource at a time.


• Once an access within a stage has “seen” the preceding write, it needs no 
further synchronization until the resource is modified again.


• Layout transitions need to be treated as writes.



Hazard Tracking Inside Command Buffers
Command buffer resource table

• A flat hash table keyed by a 64-bit resource handle, using open addressing.


• Memory reused between frames.


• We have precise control of re-hashing policy.



Hazard Tracking Inside Command Buffers
Resource table entry

typedef struct ngfvk_sync_res_data {
  // Expected sync state.
  ngfvk_sync_req expected_sync_state;

  // Latest synchronization state.
  ngfvk_sync_state local_sync_state;      
  //…
} ngfvk_sync_res_data;



Hazard Tracking Inside Command Buffers
Resource synchronization state

// Synchronization state 
typedef struct ngfvk_sync_state {
  // What access in what stage has modified the resource last.
  ngfvk_sync_barrier_masks last_writer;

  // Which accesses in which stages have seen the last write.
  uint32_t per_stage_readers;

  // …

  // Current layout (images only).
  VkImageLayout layout;
} ngfvk_sync_state;



Hazard Tracking Inside Command Buffers
What happens when a pipeline stage needs to access a resource?

• Issue a synchronization request for the access needed by the pipeline stage 
against the current local synchronization state.


• Keep in mind that local sync state starts out as “blank slate”: no writers, 
no readers.


• If no barriers have been generated for this resource up until this point, 
update the expected synchronization state.



Hazard Tracking Inside Command Buffers
Deciding when to emit barriers

• If a pipeline stage is requesting non-modifying access:


• Has there been a preceding write?


• No: just update the corresponding access bits in the 
per stage readers mask. No barrier emitted.  


• Yes:


• Has this access in this stage already seen the 
effects of the preceding write?


• Yes: no-op


• No: emit barrier, update the corresponding 
access bits in the per stage readers mask.

// Synchronization state 
typedef struct ngfvk_sync_state {
  // What access in what stage has 
  // modified the resource last.
  ngfvk_sync_barrier_masks last_writer;

  // Which accesses in which stages 
  // have seen the last write.
  uint32_t per_stage_readers;

  // Current layout (images only).
  VkImageLayout layout;
} ngfvk_sync_state;



Hazard Tracking Inside Command Buffers
Deciding when to emit barriers

• If a pipeline stage is requesting modifying access:


• Sync with preceding reads/writes (if there are any).


• Update the last writer.


• Zero out per stage readers mask.


• Update current layout.


• A non-modifying access that requires a layout 
transition is a bit of a special case, need to add the 
stage/access to per stage readers mask immediately.


// Synchronization state 
typedef struct ngfvk_sync_state {
  // What access in what stage has modified the 
  // resource last.
  ngfvk_sync_barrier_masks last_writer;

  // Which accesses in which stages have seen 
  // the last write.
  uint32_t per_stage_readers;

  // Current layout (images only).
  VkImageLayout layout;
} ngfvk_sync_state;



Hazard Tracking Inside Command Buffers
Coalescing barriers

• Pending sync requests are handled in bulk (minimize vkCmdPipelineBarrier calls).


• For compute, handle them just before the dispatch.


• For graphics, handle at the end of the render pass


• Barrier synchronization scopes are limited to subpass for barriers emitted 
inside the render pass. We have to emit all the necessary barriers _before_ 
actually recording the render pass commands.


• VK_KHR_dynamic_rendering fixes this.


• Use sync2 wherever possible



Hazard Tracking Across Command Buffers
Emitting interim barriers

• All cmd buffers are submitted from the same 
single thread; it is the only thread that touches 
resources’ global sync states.


• Sync request generation using the expected 
access/layout from the upcoming command 
buffer’s resource table, targeting the global sync 
state.


• Update the resource’s global sync state 
according to the final local sync state from the 
upcoming command buffer.


• Any barriers generated are coalesced and written 
to an auxiliary cmd buffer which is submitted 
before the upcoming main cmd buffer.

Image A
Global sync state Buffer B

Global sync state

Command Buffer Y

Command Buffer X

A

B

A
B
C

Local sync stateExpected sync state

Local sync stateExpected sync state

Local sync stateExpected sync state

Local sync stateExpected sync state

Local sync stateExpected sync state



Limitations
(Of this particular implementation)

• Single queue only.


• Theoretically extensible to a multi-queue model. Maybe, someday.


• Probably want to address it for async compute… 


• No resource aliasing.


• nicegraf does not expose memory allocation so that’s not relevant for us.


• No stores/atomics in vert/frag shaders.  


• Poor sync granularity.


• Could track individual mip levels or predefined disjoint buffer regions.


• Sync commands are issued exactly at the point they’re required, limiting implementation’s ability to overlap 
e.g. layout transitions with other work.



Future
Can we have VK_LAYER_KHRONOS_synchronization please?!

• VMA has solved memory management:


• Pretty much industry standard


• Still possible to have finer grained control (and don’t have to choose either/
or)


• Why not repeat the same success story for synchronization?



Thanks!
Q & A

Twitter http://twitter.com/nice_byte

Mastodon http://mastodon.gamedev.place/@nicebyte

http://twitter.com/nice_byte

