
The 6th Vulkan Developer Conference
Sunnyvale, California | February 5-7, 20242024

Vulkan Synchronization Made Easy
(without rendergraphs)

Grigory Dzhavadyan, Independent

Context
Designing a more approachable API on top of Vulkan

http://nice.graphics

• Graphics API abstraction
layer (RHI) with back-ends
for Metal and Vulkan.

• Designed to be at the
“middle” level of
abstraction.

• Sync in Vulkan backend
was a serious pain point.

http://nice.graphics

Result
Screenshot Courtesy of Triada Studio

Result
Screenshot Courtesy of Triada Studio

Basic Case
Single command buffer

Render pass
writes to A

Compute pass
writes to B

Render pass
samples from A

reads from B

Image
A

Buffer
B

Basic Case
Single command buffer

Render pass
writes to A

Compute pass
writes to B

Render pass
samples from A

reads from B

Image
A

Buffer
B

“Trivial” to deduce

the necessary barriers

Command Buffer Y

Command Buffer X

Not So Basic Case
Multiple command buffers

• Order of submission is not
known a priori.

• Therefore, can’t emit the correct
memory barriers as commands
are recorded.

• This problem arises with both
multi- and single-threaded
recording.

Image
A

Buffer
B

Render pass
writes to A

Compute pass
writes to B

Render pass
samples from A

reads from B

Solution: Interim Barriers
Part 1: independently track resources per command buffer

• Each resource has:

• a single global synchronization state

• one local synchronization state per each
command buffer it is used in.

• Assume the first access of a pipeline stage to a given
resource in a command buffer will NOT need
synchronization.

• Remember the first accesses of each pipeline stage
that touches the resource. Collectively, those are the
“expected sync state”.

• Track subsequent accesses of a pipeline stage to the
resource using the resource’s local synchronization
state.

Image A
Global sync state Buffer B

Global sync state

Command Buffer Y

Command Buffer X

A

B

A
B
C

Local sync stateExpected sync state

Local sync stateExpected sync state

Local sync stateExpected sync state

Local sync stateExpected sync state

Local sync stateExpected sync state

Solution: Interim Barriers
Part 2: insert barriers between command buffers

• All command buffers are submitted on a single
thread, forming an ordered timeline.

• Infer the necessary barriers by comparing the
expected sync states of the resources
participating in the upcoming command buffer to
their corresponding current global sync states .

• Record and submit the inferred barriers in an
auxiliary command buffer before submitting the
upcoming “main” command buffer.

• Update the current global states of all the
participating resources according to the last
known local sync state.

Image A
Global sync state Buffer B

Global sync state

Command Buffer Y

Command Buffer X

A

B

A
B
C

Local sync stateExpected sync state

Local sync stateExpected sync state

Local sync stateExpected sync state

Local sync stateExpected sync state

Local sync stateExpected sync state

Hazard Tracking Inside Command Buffers
Synchronization requests

• Sync requests describe an
operation we intend to perform on a
resource.

• Issued when we’re about to record
commands that may result in
resource memory being read or
modified.

• Might or might not result in a barrier,
depending on the resource’s sync
state.

// Stage + access masks
typedef struct ngfvk_sync_barrier_masks {
 // Ways in which the resource is accessed
 VkAccessFlags access_mask;

 // Pipeline stages accessing the resource.
 VkPipelineStageFlags stage_mask;
} ngfvk_sync_barrier_masks;

// Specifies the intent to access a resource.
typedef struct ngfvk_sync_req {
 // Access/stage masks
 ngfvk_sync_barrier_masks barrier_masks;

 // Requested layout (images only).
 VkImageLayout layout;
} ngfvk_sync_req;

Hazard Tracking Inside Command Buffers
Rules for handling sync requests

• Concurrent reads are (almost) always allowed

• Only a single pipeline stage can be modifying the resource at a time.

• Once an access within a stage has “seen” the preceding write, it needs no
further synchronization until the resource is modified again.

• Layout transitions need to be treated as writes.

Hazard Tracking Inside Command Buffers
Command buffer resource table

• A flat hash table keyed by a 64-bit resource handle, using open addressing.

• Memory reused between frames.

• We have precise control of re-hashing policy.

Hazard Tracking Inside Command Buffers
Resource table entry

typedef struct ngfvk_sync_res_data {
 // Expected sync state.
 ngfvk_sync_req expected_sync_state;

 // Latest synchronization state.
 ngfvk_sync_state local_sync_state;
 //…
} ngfvk_sync_res_data;

Hazard Tracking Inside Command Buffers
Resource synchronization state

// Synchronization state
typedef struct ngfvk_sync_state {
 // What access in what stage has modified the resource last.
 ngfvk_sync_barrier_masks last_writer;

 // Which accesses in which stages have seen the last write.
 uint32_t per_stage_readers;

 // …

 // Current layout (images only).
 VkImageLayout layout;
} ngfvk_sync_state;

Hazard Tracking Inside Command Buffers
What happens when a pipeline stage needs to access a resource?

• Issue a synchronization request for the access needed by the pipeline stage
against the current local synchronization state.

• Keep in mind that local sync state starts out as “blank slate”: no writers,
no readers.

• If no barriers have been generated for this resource up until this point,
update the expected synchronization state.

Hazard Tracking Inside Command Buffers
Deciding when to emit barriers

• If a pipeline stage is requesting non-modifying access:

• Has there been a preceding write?

• No: just update the corresponding access bits in the
per stage readers mask. No barrier emitted.

• Yes:

• Has this access in this stage already seen the
effects of the preceding write?

• Yes: no-op

• No: emit barrier, update the corresponding
access bits in the per stage readers mask.

// Synchronization state
typedef struct ngfvk_sync_state {
 // What access in what stage has
 // modified the resource last.
 ngfvk_sync_barrier_masks last_writer;

 // Which accesses in which stages
 // have seen the last write.
 uint32_t per_stage_readers;

 // Current layout (images only).
 VkImageLayout layout;
} ngfvk_sync_state;

Hazard Tracking Inside Command Buffers
Deciding when to emit barriers

• If a pipeline stage is requesting modifying access:

• Sync with preceding reads/writes (if there are any).

• Update the last writer.

• Zero out per stage readers mask.

• Update current layout.

• A non-modifying access that requires a layout
transition is a bit of a special case, need to add the
stage/access to per stage readers mask immediately.

// Synchronization state
typedef struct ngfvk_sync_state {
 // What access in what stage has modified the
 // resource last.
 ngfvk_sync_barrier_masks last_writer;

 // Which accesses in which stages have seen
 // the last write.
 uint32_t per_stage_readers;

 // Current layout (images only).
 VkImageLayout layout;
} ngfvk_sync_state;

Hazard Tracking Inside Command Buffers
Coalescing barriers

• Pending sync requests are handled in bulk (minimize vkCmdPipelineBarrier calls).

• For compute, handle them just before the dispatch.

• For graphics, handle at the end of the render pass

• Barrier synchronization scopes are limited to subpass for barriers emitted
inside the render pass. We have to emit all the necessary barriers _before_
actually recording the render pass commands.

• VK_KHR_dynamic_rendering fixes this.

• Use sync2 wherever possible

Hazard Tracking Across Command Buffers
Emitting interim barriers

• All cmd buffers are submitted from the same
single thread; it is the only thread that touches
resources’ global sync states.

• Sync request generation using the expected
access/layout from the upcoming command
buffer’s resource table, targeting the global sync
state.

• Update the resource’s global sync state
according to the final local sync state from the
upcoming command buffer.

• Any barriers generated are coalesced and written
to an auxiliary cmd buffer which is submitted
before the upcoming main cmd buffer.

Image A
Global sync state Buffer B

Global sync state

Command Buffer Y

Command Buffer X

A

B

A
B
C

Local sync stateExpected sync state

Local sync stateExpected sync state

Local sync stateExpected sync state

Local sync stateExpected sync state

Local sync stateExpected sync state

Limitations
(Of this particular implementation)

• Single queue only.

• Theoretically extensible to a multi-queue model. Maybe, someday.

• Probably want to address it for async compute…

• No resource aliasing.

• nicegraf does not expose memory allocation so that’s not relevant for us.

• No stores/atomics in vert/frag shaders.

• Poor sync granularity.

• Could track individual mip levels or predefined disjoint buffer regions.

• Sync commands are issued exactly at the point they’re required, limiting implementation’s ability to overlap
e.g. layout transitions with other work.

Future
Can we have VK_LAYER_KHRONOS_synchronization please?!

• VMA has solved memory management:

• Pretty much industry standard

• Still possible to have finer grained control (and don’t have to choose either/
or)

• Why not repeat the same success story for synchronization?

Thanks!
Q & A

Twitter http://twitter.com/nice_byte

Mastodon http://mastodon.gamedev.place/@nicebyte

http://twitter.com/nice_byte

