.

‘ N - The 6t Vulkan Developer Conference
VUI I(anlsed 2 024 Sunnyvale, California | February 5-7, 2024

Using Vulkan Synchronization Validation
Effectively

John Zulauf, LunarG

IEIH-.".!"EI

Presentation:




Why Synchronization Validation?

e \Vulkan Synchronization Is Challenging
o Massively parallel implementations, few ordering guarantees
o Robust, complex synchronization capabilities in Vulkan API
o Performance implications of too much synchronization
o Need ensure correctness, not just correct appearance

e Quick Level Set

o Technical deep-dive into using Synchronization Validation to find and debug issues
o Assumes working knowledge of Vulkan Synchronization functionality



Synchronization Validation

e Detects Hazard From Insufficient Synchronization Operations
o Hazard -- any access were the access pattern is not well defined
o Byte Resolution Access/Synchronization Tracking
o All vkCmd types (transfer, draw, renderpass, compute, resolve, etc)
o Sync2 support

e Inter-Command Buffer Support
o vkCmdExecuteCommands

Queue Submit

Binary Semaphores

Fence

Queue|Device Wait Idle

O O O O



Synchronization Validation Limitations

Limited aliasing detection (like kinds of resources)

No timeline semaphore support

No Host side resource tracking

No swizzle support

Not GPU Assisted (doesn’t know shader execution time information)
Limited extension support

Challenging to use



Using Synchronization Validation

e C(Clean Validation Run

o Resolve all outstanding non-synchronization issues.
o Recommend “GPU Assisted” as well.

e Running
o Enable Synchronization Validation (next slide)
o Disable all other validation
o Chase down issues in debugger.
m  “Debug Action: Break” on Windows
m Break in vkCreateDebugUtilsMessengerEXT callback



Enabling Synchronization Validation

e \Vkconfig

o Select the “Synchronization Preset”
e VK layer_settings.txt

khronos_validation.enables = VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT
Khronos_validation.disables =

VK_VALIDATION_FEATURE_DISABLE_OBJECT_LIFETIMES EXT,VK_VALIDATION_FEATURE_DISABLE_API_PARA
METERS_EXT,VK_VALIDATION_FEATURE_DISABLE_CORE_CHECKS_EXT

e Environment variables

VK_LAYER_ENABLES=VK_VALIDATION FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT
VK_LAYER_DISABLES=VK_VALIDATION_FEATURE_DISABLE_CORE_CHECKS_EXT:VK_VALIDATION_FEATURE_D
ISABLE_OBJECT _LIFETIMES_EXT:VK_VALIDATION FEATURE_DISABLE_API_PARAMETERS_ EXT

6 LUN/\R)G



“Congratulations! It's an Error”

Validation Error: [ SYNC-HAZARD-WRITE-AFTER-READ ] Object ©: handle =
Oxfa21a40000000003, type = VK _OBJECT_TYPE_BUFFER; | MessagelD =
©x376bcodf | vkCmdCopyBuffer(): Hazard WRITE_AFTER_READ for dstBuffer
VkBuffer 0xfa21a40000000003[], region ©. Access info (usage:
SYNC_COPY_TRANSFER_WRITE, pRior.usage: SYNC_COPY_TRANSFER_READ,
read_barriers: VkPipelineStageFlags2(©), command: vkCmdCopyBuffer,
seq_no: 1, reset_no: 1).

e Now what?

o Step 1: Understanding Hazard Messages

o Step 2: Finding the Missing Synchronization
e But first some background...



Synchronization Validation Operations

e Tracks access history
o Operation Type as Stage/Access pairs
o Stores “first” and “most recent” prior only
e Applies synchronization operations to access history
o ldentifies “safe” subsequent access operations
o Track dependency chaining
e \alidates accesses of each operation against prior accesses

o The stage and access for each are compared prior access and synchronization
o Reports hazards
o Any hazard reported earlier may mask detection of subsequent hazard with same memory

g LUN/\R)G.



Synchronization Validation Concepts

e Stage/Access pairs
o Describe the usage of resources
o Not all pairs are valid, valid pairs expressed as enum SYNC <STAGE> <ACCESS>
o Meta stages/access for non-pipeline operations (e.g. layout transition)

th 1

e “Prior’, “Current”, and “First”
o Hazard reports always reference two stage/access usages (prior and current/first)
o Relative to a specific resource
o Barrier information reflects synchronization operations between “prior” and “current/first”

e Access Operations
o Commands that access (or record operations that will modify) resources

e Synchronization Operations
o Commands that enforce (or record operations that will enforce) ordering between accesses

o LUN/\R)G.



Record Time vs. Submit Time Validation

e Record Time
o Validates effect of current vkCmd... relative to earlier commands in same command buffer
o vkCmdExecuteCommands special; validates effect of “first” access of secondary command
buffers
o Does not validate against any other command buffer

e Submit Time
o Validates effect of “first” access of each submitted command buffer relative to all others in
“Queue Submission Order” same queue
o Validates against all other queue’s submissions including the presence(or absence) of
semaphore, wait, and fence operations

LUN/\R)G.



Prior, Current, and First Accesses

e “Prior’ — most recent access...
o In command buffer record and submission order (see Queue Submission Order)
o Most recent non-recorded access in API calling sequence

e “Current’

o the immediate effect of a command at record time
o ‘“usage” — For the currently recorded vkCmd... command
o “First’

o The earliest (in Queue Submission Order) effect of a recorded command
m Zero or more reads
m Zero or one write

o “executed usage” — The first access of executed command buffer

o ‘“submitted _usage” — The first access submitted command buffer



Types of synchronization errors

RAW

WAR

WAW

WRW

RRW

Read-after-write

Write-after-read

Write-after-write

Write-racing-write

Read-racing-write

This occurs when a subsequent operation uses the result of a previous
operation without waiting for the result to be completed

This occurs when a subsequent operation overwrites a memory location
read by a previous operation before that operation is complete. (requires
only execution dependency)

This occurs when a subsequent operation writes to the same set of memory
locations (in whole or in part) being written by a previous operation

This occurs when unsynchronized subpasses/queues perform writes to the
same set of memory locations

This occurs when unsynchronized subpasses/queues perform read and
write operations on the same set of memory locations

! LUNAR)G



Synchronization Validation Operations (revisited)

e Tracks access history
o How does the current operation (draw, transfer, etc.) affect the resource
o Stage/access of operation for each resource
o Include implicit operations (layout transition, load, resolve, store)
o “First” access of an executed or submitted command buffer

e Applies synchronization operations
o  What relation do synch operations have relative to a given resource?
o Do they apply at all? Also include earlier synch operations (chaining)
o  What subsequent operations are “safed” for that resource

e \alidates accesses of each operation against prior accesses
o  What are the prior commands that touch a given resource (memory location)?
o Comparison to earlier command stage/access and sync operations (“..is it safe?”)
o Command from earlier queue submissions
o Accesses from acquire or present LUN ARX:"



Step 1: Understanding Hazard Messages

e Lots of information

e Densely Packed



Record Time Hazard
Validation Error: [ _ ] Object ©: handle =

Oxfa21a40000000003, type = VK_OBIECT_TYPE_BUFFER; | MessageID = 0x376bc9odf

| WRCHECOPYBNEEeR (): Hazard WRITE_AFTER_READ for dstBuffer VkBuffer
Oxfa21a40000000003[ ], region O. Access info (usage:

SYNC_COPY_TRANSFER_WRITE, pRior.usage: SYNC_COPY_ TRANSFER_READ,
read_barriers: VkPipelineStageFlags2(0), command: vkCmdCopyBuffer, seq_no:

1, reset_no: 1).

VREREEEPYENEEE is the current command being recorded

5 LUN/\RX]



Record Time Hazard (cont'd)
Validation Error: [ _ ] Object ©: handle =

Oxfa21a40000000003, type = VK_OBIECT_TYPE_BUFFER; | MessageID = 0x376bc9odf
| WRCHECOPYBNEEeR (): Hazard WRITE_AFTER_READ for dstBuffer VkBuffer
Oxfa21a40000000003[ ], region O. Access info (usage:
SYNC_COPY_TRANSFER_WRITE, pRior.usage: SYNC_COPY_ TRANSFER_READ,
read_barriers: VkPipelineStageFlags2(0), command: vkCmdCopyBuffer, seq_no:
1, reset_no: 1).

usage — vkCmdCopyBuffer is writing to the destination buffer at the transfer stage

prior usage — the most recent previous access was a read at the transfer stage

6 LUN/\RX]



Record Time Hazard (cont'd)

Validation Error: [ SYNC-HAZARD-WRITE-AFTER-READ ] Object ©: handle =
Oxfa21a40000000003, type = VK _OBJECT TYPE_BUFFER; | MessageID = ©x376bc9odf

| WRCHECOPYBNEEeR (): Hazard WRITE_AFTER_READ for dstBuffer VkBuffer
Oxfa21a40000000003[ ], region O. Access info (usage:

SYNC_COPY_TRANSFER_WRITE, pRior.usage: SYNC_COPY_ TRANSFER_READ,
read_barriers: VkPipelineStageFlags2(0), command: vkCmdCopyBuffer, seq_no:
1, reset_no: 1).

command — vkCmdCopyBuffer was the command that read from the buffer
read_barriers — there are no barriers to read operations since priorausage

seq_no and reset_no — indicate the where in the command buffer the read lives

17 LUN/\RX:.



Submitted Command Buffer Hazard

Validation Error: [ SYNC-HAZARD-WRITE-AFTER-READ ] Object o: [iSHGIE = ox1febb508d20,
type = VK_OBJECT_TYPE_QUEUE; | MessageID = 0x376bcodf | [KONCHESHDMEE(): Hazard
WRITE_AFTER_READ for entry 1, VkCommandBuffer @xlfebae67c50[], Submitted access info
(submitted_usage: SYNC_COPY_TRANSFER_WRITE, command: vkCmdCopyBuffer, seq_no: 1,
reset_no: 2). Access info (PPrior.usage: SYNC_COPY_TRANSFER_READ, read_barriers:
VkPipelineStageFlags2(0), queue: VkQueue Ox1lfebb508d20[], submit: 0, batch: o,
batch_tag: 1, command: vkCmdCopyBuffer, command_buffer: VkCommandBuffer
Ox1fec5015920[], seq no: 1, reset _no: 2).

VROIEIESIEEE — Submit of command buffer exifebaes7ese on queue [ENGIE

submitted_usage — IS the first usage within exifebae67cse of the affected resource

LUN/\R)G.



Submitted Command Buffer Hazard

Validation Error: [ SYNC-HAZARD-WRITE-AFTER-READ ] Object o: [iSHGIE = ox1febb508d20,
type = VK_OBJECT_TYPE_QUEUE; | MessageID = 0x376bcodf | [KONCHESHDMEE(): Hazard
WRITE_AFTER_READ for entry 1, VkCommandBuffer @xlfebae67c50[], Submitted access info
(submitted_usage: SYNC_COPY_TRANSFER_WRITE, command: vkCmdCopyBuffer, seq_no: 1,
reset_no: 2). Access info (PPrior.usage: SYNC_COPY_TRANSFER_READ, read_barriers:
VkPipelineStageFlags2(0), queue: VkQueue Ox1lfebb508d20[], submit: 0, batch: o,
batch_tag: 1, command: vkCmdCopyBuffer, command_buffer: VkCommandBuffer
Ox1fec5015920[], seq no: 1, reset _no: 2).

prior usage — Information for command_buffer submitted on gueue

command — |S the most recent access within command_buffer Of the affected resource

LUN/\R)G.



Command Type Specific Error Details

o Copy
o  Source/Destination
o Region index
e Draw or dispatch
o Descriptor: binding, type
o Attachment: index and type
o Bound buffer: vertex or index
e Image Barriers
o Transitions: oldLayout, newLayout
o Image Subresource
e Render pass

o Transitions: oldLayout, newLayout
o load/store/resolve: attachment index, type, and operation
20



Call To Action 1

Tell us how to improve hazard messages.
Be specific. Give use cases.

Open Github Issue. Link below.

21



Step 2: Finding the Missing Synchronization

Frequently Found Issues

Debugging Using Access info information
Method of Bisection Using Additional Barriers
ldentifying Affected Resources and Operations
Using Code Inspection



Frequently Found Issues

Assuming pipeline stages are logically extended with respect to memory
access barriers. Specifying the vertex shader stage in a barrier will not apply
to all subsequent shader stages read/write access.

Invalid stage/access pairs (specifying a pipeline stage for which a given
access is not valid) that yield no barrier.

Relying on implicit subpass dependencies with VK_SUBPASS EXTERNAL
when memory barriers are needed.

Missing memory dependencies with Image Layout Transitions from pipeline
barrier or renderpass Begin/Next/End operations.

Missing stage/access scopes for load and store operations, noting that color
and depth/stencil are done by different stage/access pairs.

2 LUN/\R)G



Debugging Using Access info information

e Hazards from Missing or Incomplete Barriers
o Zero (empty) Read and Write Barriers — missing barrier or scope
o Non-Zero Barriers — scope vs. usage mismatch
e Hazards vs. Prior Image Layout Transitions
o Find the last layout transition (barrier or subpass dependency)
o Usually a missing dstStageMask or dstAccessMask
e Hazards at Image Layout Transitions
o Missing srcStageMask or srcAccessMask for the affected resource
e Hazards between buffer and/or image resource uses
o  Write-target to/from Read-target (pre/post transfer, attachment-to/from-texture)
o Application needs to track the changing roles of a resource
o Look for where these role changes happen, and check the synchronization operations

2 LUN/\R)G



Hazards from Missing or Incomplete Barriers

e Zero (empty) Read and Write Barriers (one of)
o Barrier of apropos type was not issued
o Resource not included in barrier
m Resource handle not specified in BufferMemoryBarrier/ImageMemoryBarrier
m Resource usage not included correctly included in barrier first (or source) scope

e Non-Zero Barriers

o Barrier affecting resource has been used
o  Current usage not include in barrier second (or destination) scope



Method of Bisection

e Insert “big hammer” Barriers/Subpass Dependency
o Stage:
m Outside Renderpass: VK _PIPELINE_STAGE ALL_ COMMANDS BIT
m Inside Renderpass:  VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT
o Access
m VK _ACCESS_MEMORY_READ BIT | VK_ACCESS_MEMORY_WRITE_BIT

e If error disappears, error source is prior to Barrier, else it is after

e Move barrier to determine source of hazard

e Alternatively “Big Hammer” Semaphore or Fence between Queue Submits
instead of barrier

e Be sure to remove after — they will impact performance

LUN/\R)G.



|dentifying Affected Resources and Operations

e Getting Consistent Resource Identification
o Resource handles are not guaranteed to be invariant
o Use vkSetDebugUtilsObjectNameEXT and vkSetDebugUtilsObjectTagEXT
o  Object Names will be shown in hazard messages
e Tracking Operations For a Given Resource
o Use the object name to identify the current handle at vkSetDebug... time
o Break at APl where handle is referenced and call matches _ and command
o Note that handle may be referenced indirectly (descriptors, vkSet...Buffer, etc)



Region Labels (WIP)

On main branch (and next SDK) VK _EXT debug_utils support for

vkCmdBeginDebugUtilsLabelEXT and vkCmdEndDebugUtilsLabelEXT

Validation Error: [ SYNC-HAZARD-WRITE-AFTER-READ ] Object ©: handle =
Oxfa21a40000000003, type = VK _OBJECT_TYPE_BUFFER; | MessageID = 0x376bc9df |
vkCmdCopyBuffer(): Hazard WRITE_AFTER_READ for dstBuffer VkBuffer
Oxfa21a40000000003[ ], region O. Access info (usage: SYNC_COPY_TRANSFER_WRITE,
prior.usage: SYNC_COPY_TRANSFER_READ, read_barriers: VkPipelineStageFlags2(0),
command: vkCmdCopyBuffer, seq no: 1, reset no: 1, debug region: RegionA::RegionB).

debug_region is the region set current at priorousage joined with *::"

LUN/\R)C..



Using Code Inspection

e Look near the stack trace location
o  Often missing/malformed barrier is on or near the current stack trace
o Use the “Zero” and “Non-zero” barrier inspection rules above to evaluate
e |dentifying Incomplete Existing Barriers
o Search the code for VK_PIPELINE_STAGE_* or VK_ACCESS_* matching:
m The current usage (check dst*Mask) or
m Prior usage (check src*Mask fields) and
m Do notinclude the correct flags for the opposite usage.



Using Code Inspection (cont'd)

e Examining Resource Use Transitions

o Applications frequently track the logical use (or role) of a resource in metadata.
m E.g. texture vs. rendering target

o Inspect code which implements the role change
m Frequently there will be call to barrier, layout, or queue family ownership calls
m Inspect these relative to the “Missing or Incomplete Barriers” discussion above

o Look at objects where the logical use mismatch the actual use
m This may indicate that, while the correct transition code exists, it isn’t being called



Call To Action 2

Tell us what debugging features are missing and needed.
Be specific. Give use cases.

Open Github Issue. Link below.



Two Final Thoughts...

e Be sure and check Core/Parameter Validation as you change code to address
synchronization issues.

e Remember that “no corruption” doesn’t imply “correct”
o Timing is implementation specific
o “Be lucky” isn’t a strategy



tVuli(am Vulkan

Share Your Feedback

Help Us Improve the
SDK and Ecosystem

Take the LunarG annual developer’s survey

https://www.surveymonkey.com/r/KTBZDCM

Survey results are tabulated

Shared with the Vulkan Working Group
Actions are assigned

Results are reported

Survey closes February 26, 2024

Today’s
Presentation:

https://bit.ly/3USPtWU

Get A FREE Tumbler
at the LunarG Sponsor Table!

<=4
LUNAR)G

lw‘

LUN/\R)G



