Skip to main content
Log in

Development of a groundnut core collection using taxonomical, geographical and morphological descriptors

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Groundnut (Arachis hypogaea L.) is an important oilseed crop cultivated in 96 countries of world.World crop productivity (1.30 t ha−1) is low. The available large variability contained in the germplasm accessions has not been adequately utilized in the crop improvement programs and most groundnut cultivars stand on a very narrow genetic base. This is due to lack of information on agronomic and other economic traits, which require extensive evaluation. The development of a core collection could facilitate easier access to groundnut genetic resources, enhance their use in crop improvement programs, and simplify the genebank management. This paper describes the development of a core collection from 14310 accessions of groundnut available from ICRISAT genebank. Germplasm accessions were stratified by country of origin within each of six botanical varieties. Data on 14 morphological descriptor traits were used for clustering by Ward's method. From each cluster ≈ 10 percent accessions were randomly selected to constitute a core collection consisting of 1704 accessions. Mean comparisons using 't' test and distribution using chi-square test and Wilcoxon's rank-sum non-parametric test on different descriptors indicated that the genetic variation available for these traits in the entire collection has been preserved in the core collection. The Shannon-Weaver diversity index for different traits was also similar in the entire collection and core collection. The important phenotypic correlations between different traits, which may be under the control of co-adapted gene complexes, were preserved in the core collection. This core collection provides an effective mechanism for the proper exploitation of groundnut germplasm resources for the genetic improvement of this crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basigalup D.H., Barnes D.K. and Stucker R.E. 1995. Development of a core collection for perennial Medicago plant introductions. Crop Sci. 35: 1163–1168.

    Google Scholar 

  • Brown A.H.D. 1989a. Core collections: a practical approach to genetic resources management. Genome 31: 818–824.

    Google Scholar 

  • Brown A.H.D. 1989b.The case for core collections. In: Brown A.H.D., Frankel O.H., Marshall D.R. and Williams J.T. (eds), The use of plant genetic resources. Cambridge Univ. Press, Cambridge, pp. 136–155.

    Google Scholar 

  • Brown A.H.D., Grace J.P. and Speer S.S. 1987. Designation of a core collection of perennial Glycine. Soybean Genet. Newsl. 14: 59–70.

    Google Scholar 

  • Cordeiro C.M.T., Morales E.A.V., Ferreira P., Rocha D.M.S., Costa I.R.S., Valois A.C.C. et al. 1995. Towards a Brazilian core collection of cassava. In: Hodgkin T., Brown A.H.D., van Hintum Th.J.L. and Morales B.A.V. (eds), Core collections of plant genetic resources. International Plant Genetic Resources Institute (IPGRI), John Wiley & Sons, New York, pp. 155–168.

    Google Scholar 

  • Diwan N., Bauchan G.R. and McIntosh M.S. 1994. A core collection for the United States annual Medicago germplasm collection. Crop Sci. 34: 279–285.

    Google Scholar 

  • Dussert S., Chabrillange N., Anthony F., Engelmann F., Recalt C. and Hamon S. 1997. Variability in storage response within a coffee (Coffea spp.) core collection under slow growth conditions. Plant Cell Rep. 16: 344–348.

    Google Scholar 

  • Dwivedi, S.L., Gurtu S., Chandra S., Upadhyaya H.D. and Nigam S.N. 2001. Assessment of genetic diversity among selected rosette virus resistant groundnut (Arachis hypogaea L.) germplasm. II. RAPD, AFLP, and phenotypic diversity. Unpublished.

  • Erskine W. and Muehlbauer F.J. 1991. Allozyme and morphological variability, outcrossing rate and core collection formation in lentil germplasm. Theor. Appl. Genet. 83: 119–125.

    Google Scholar 

  • Frankel O.H. 1984. Genetic perspective of germplasm conservation. In: Arber W., Llimensee K., Peacock W.J. and Starlinger P. (eds), Genetic manipulations: impact on man and society. Cambridge University Press, Cambridge, pp. 161–170.

    Google Scholar 

  • Frankel O.H. and Brown A.H.D. 1984. Current plant genetic resources–a critical appraisal. In: Chopra V.L., Joshi B.C., Sharma R.P. and Bansal H.C. (eds), Genetics: new frontiers Vol. IV. Oxford & IBH Publ. Co., New Delhi, pp. p. 1–13.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations 1998. Production Yearbook 52: 103–104.

    Google Scholar 

  • Hannan R.M., Kaiser W.J. and Muehlbauer F.J. 1994. Development and utilization of the USDA chickpea germplasm core collection. In: Agronomy Abstracts 1994. ASA, Madison, WI p. 217.

    Google Scholar 

  • Halward T.M., Stalker H.T., Larue E.A. and Kochert G. 1991. Genetic variation detectable with molecular markers among unadapted germ-;plasm resources of cultivated peanut and related wild species. Genome 34: 1013–1020.

    Google Scholar 

  • Halward T.M., Stalker H.T., Larue E.A. and Kochert G. 1992. Use of single-;primer DNA amplification in genetic studies of peanut (Arachis hypogaea L.). Plant Mol. Biol. 18: 315–325.

    Google Scholar 

  • Halward T.M. and Wynne J.C. 1991. Generation means analysis for productivity in two diverse peanut crosses. Theor. Appl. Genet. 82: 784–792.

    Google Scholar 

  • He G. and Prakash C.S. 1997. Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97: 143–149.

    Google Scholar 

  • Holbrook C.C., Anderson W.F. and Pittman R.N. 1993. Selection of core collection from the U.S. germplasm collection of peanut. Crop Sci. 33: 859–861.

    Google Scholar 

  • Hopkins M.S., Casa A.M., Wang T., Mtchell S.E., Dean R.E., Kochert G.D. et al. 1999. Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci. 39: 1243–1247.

    Google Scholar 

  • Huaman Z., Aguilar C. and Ortiz R. 1999. Selecting a Peruvian sweet potato core collection on the basis of morphological, ecogeographical, and disease and pest reaction data. Theor. Appl. Genet. 98: 840–844.

    Google Scholar 

  • IBPGR & ICRISAT (1992). Descriptors for groundnut. Int. Board of Plant Genetic Resources, Rome, Italy, and Int. Crops Res. Inst. For the Semi-;Arid Tropics, Patancheru, A.P., India

  • Jiang H.F. and Duan N.X. 1998. Utilization of groundnut germ-;plasm resources in breeding programs. Crop Genetic Resources 2: 24–25.

    Google Scholar 

  • Knauft D.A. and Gorbet D.W. 1989. Genetic diversity among peanut cultivars. Crop Sci. 29: 1417–1422.

    Google Scholar 

  • Knupffer H. and van Hintum Th.J.L. 1995. The barley core collection: an international effort. In: Hodgkin T., Brown A.H.D., van Hintum Th.J.L. and Morales B.A.V. (eds), Core collections of plant genetic resources. International Plant Genetic Resources Institute (IPGRI), John Wiley & Sons, New York, pp. 171–178.

    Google Scholar 

  • Kochert G., Halward T., Branch W.D. and Simpson C.E. 1991. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor. Appl. Genet. 81: 565–570.

    Google Scholar 

  • Kochert G., Stalker H.T., Gimenes M., Galgaro L., Romero Lopes C. and Moore K. 1996. RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am. J. Bot. 83: 1282–1291.

    Google Scholar 

  • Krapovickas A. and Gregory W.C. 1994. Taxonomia del genero Arachis (Leguminosae). Bonplandia VIII: 1–187.

    Google Scholar 

  • Mahajan R.K., Bisht I.S., Agrawal R.C. and Rana R.S. 1996. Studies on south Asian okra collection: a methodology for establishing a representative core set using characterization data. Genet. Resour. Crop Evol. 43: 244–255.

    Google Scholar 

  • Milligan G.W. and Cooper M. 1985. An examination of procedures for determining the number of clusters in a data set. Psychometrika. 50: 159–179.

    Google Scholar 

  • Mixon A.C. and Rogers K.M. 1973. Peanut accessions resistant to seed infection by Aspergillus flavus. Agron. J. 65: 560–562.

    Google Scholar 

  • Ortiz R., Ruiz-;Tapia E.N. and Mujica-;Sanchez A. 1998. Sampling strategy for a core collection of Peruvian quinoa germplasm. Theor. Appl. Genet. 96: 475–483.

    Google Scholar 

  • Paik-;Rao O.G., Smith R.L. and Knauft D.A. 1992. Restriction fragment length polymorphism evaluation of 6 peanut species within the Arachis section. Theor. Appl. Genet. 84: 201–208.

    Google Scholar 

  • SAS Institute 1989. SAS/STAT User' Guide Version 6, 4th edn. SAS Institute, Inc., Cary, NC.

  • Shannon C.E. and Weaver W. 1949. The mathematical theory of communication. Univ. Illinois Press, Urbana.

    Google Scholar 

  • Singh A.K. and Simpson C.E. 1994. Biosystematics and genetic resources. In: Smartt J. (ed.), The groundnut crop: a scientific basis for improvement. Chapman & Hall, London, pp. 96–137.

    Google Scholar 

  • Singh A.K. and Nigam S.N. 1997. Groundnut. In: Fuccillo D., Sears L. and Stapleton P. (eds), Biodiversity in trust–conservation and use of plant genetic resources in CGIAR centers. Cambridge Univ. Press, Cambridge, pp. 114–128.

    Google Scholar 

  • Skinner D.Z., Bauchan G.R., Auricht G. and Hughes S. 1999. A method for the efficient management and utilization of large germplasm collections. Crop Sci. 39: 1237–1242.

    Google Scholar 

  • Snedecor G.W. and Cochran W.G. 1980. Statistical methods. 7th edn. Iowa State Univ. Press, Ames.

    Google Scholar 

  • Subramanian V., Gurtu S., Nageswara Rao R.C. and Nigam S.N. 2000. Identification of DNA polymorphism in cultivated ground-;nut using random amplified polymorphic DNA (RAPD) assay. Genome 43: 656–660.

    Google Scholar 

  • Tohme J., Jones P., Beebe S. and Iwanaga M. 1995. The combined use of agroecological and characterisation data to establish the CIAT Phaseolus vulgaris core collection. In: Hodgkin T., Brown A.H.D., van Hintum Th.J.L. and Morales B.A.V. (eds), Core collections of plant genetic resources. International Plant Genetic Resources Institute (IPGRI), John Wiley & Sons, New York, pp. 95–108.

    Google Scholar 

  • Upadhyaya H.D., Bramel P.J. and Singh S. 2001. Development of a chick pea core subset using geographic distribution and quantitative traits. Crop Sci. 41: 206–210.

    Google Scholar 

  • Ward J. 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 38: 236–244.

    Google Scholar 

  • Wilcoxon F. 1945. Individual comparisons by ranking methods. Biometrics Bull. 1: 80–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyaya, H.D., Ortiz, R., Bramel, P.J. et al. Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genetic Resources and Crop Evolution 50, 139–148 (2003). https://doi.org/10.1023/A:1022945715628

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022945715628

Navigation