Skip to main content
Log in

Taxonomic, spatial and adaptive genetic variation of Beta section Beta

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The genetic variation of Beta section Beta is structured into four taxonomic and spatial clusters. There are significant associations between molecular markers and environmental variables.

Abstract

We investigated the genetic diversity of Beta section Beta, which includes the wild and cultivated relatives of the sugar beet. The taxa included in the study were: Beta vulgaris subsp. maritima, B. vulgaris subsp. adanensis, B. macrocarpa, B. patula and B. vulgaris subsp. vulgaris (garden beet, leaf beet and swiss chards). We collected 1264 accessions originating from the entire distribution area of these taxa and genotyped them for 4436 DArT markers (DArTs). We showed that the genetic variation of these accessions is structured into four taxonomic and spatial clusters: (1) samples of Beta macrocarpa, (2) samples of Beta vulgaris subsp. adanensis, (3) Mediterranean and Asian samples and (4) Atlantic and Northern European samples. These last two clusters were mainly composed of samples of Beta vulgaris subsp. maritima. We investigated in deeper detail the genetic structure of B. vulgaris subsp. maritima, which constituted the majority (80 %) of the wild samples. This subspecies exhibited a clinal genetic variation from South-East to North-West. We detected some markers significantly associated to environmental variables in B. vulgaris subsp. maritima. These associations are interpreted as results of natural selection. The variable most often involved in the associations was annual mean temperature. Therefore, these markers can be useful for the development of frost-tolerant winter beets and drought-tolerant rain-fed beets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrello M, Jacobi MN, Manel S et al (2015) Extending networks of protected areas to optimize connectivity and population growth rate. Ecography 38:273–282. doi:10.1111/ecog.00975

    Article  Google Scholar 

  • Arnaud J-F, Viard F, Delescluse M, Cuguen J (2003) Evidence for gene flow via seed dispersal from crop to wild relatives in Beta vulgaris (Chenopodiaceae): consequences for the release of genetically modified crop species with weedy lineages. Proc R Soc Lond B Biol Sci 270:1565–1571

    Article  Google Scholar 

  • Arnaud J-F, Fénart S, Godé C et al (2009) Fine-scale geographical structure of genetic diversity in inland wild beet populations. Mol Ecol 18:3201–3215. doi:10.1111/j.1365-294X.2009.04279.x

    Article  PubMed  Google Scholar 

  • Bartsch D, Lehnen M, Clegg J et al (1999) Impact of gene flow from cultivated beet on genetic diversity of wild sea beet populations. Mol Ecol 8:1733–1741

    Article  PubMed  Google Scholar 

  • Berline L, Rammou A-M, Doglioli A et al (2014) A connectivity-based eco-regionalization method of the Mediterranean Sea. PLoS One 9:e111978. doi:10.1371/journal.pone.0111978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biancardi E, Panella LW, Lewellen RT (2012) Beta maritima. The Origin of Beets. Springer

  • Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758. doi:10.1111/j.1365-294X.2007.03435.x

    Article  PubMed  CAS  Google Scholar 

  • Buttler KP (1977) Variation in Wild Populations of Annual Beet (Beta, Chenopodiaceae). Plant Syst Evol 128:123–136

    Article  Google Scholar 

  • Dale MFB, Ford-Lloyd BV (1985) The significance of multigerm seedballs in the genus Beta. Watsonia 15:265–267

    Google Scholar 

  • De Cauwer I, Dufay M, Cuguen J, Arnaud J-F (2010) Effects of fine-scale genetic structure on male mating success in gynodioecious Beta vulgaris ssp. maritima. Mol Ecol 19:1540–1558. doi:10.1111/j.1365-294X.2010.04586.x

    Article  CAS  Google Scholar 

  • Desplanque B, Boudry P, Broomberg K et al (1999) Genetic diversity and gene flow between wild, cultivated and weedy forms of Beta vulgaris L. (Chenopodiaceae), assessed by RFLP and microsatellite markers. Theor Appl Genet 98:1194–1201

    Article  CAS  Google Scholar 

  • Ecke W, Michaelis G (1990) Comparison of chloroplast and mitochondrial DNA from five morphologically distinct Beta vulgaris cultivars: sugar beet, fodder beet, beet root, foliage beet, and Swiss chard. TAG Theor Appl Genet Theor Angew Genet 79:440–442. doi:10.1007/BF00226149

    CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578. doi:10.1111/j.1471-8286.2007.01758.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fénart S, Arnaud J-F, De Cauwer I, Cuguen J (2008) Nuclear and cytoplasmic genetic diversity in weed beet and sugar beet accessions compared to wild relatives: new insights into the genetic relationships within the Beta vulgaris complex species. Theor Appl Genet 116:1063–1077. doi:10.1007/s00122-008-0735-1

    Article  PubMed  Google Scholar 

  • Fievet V, Touzet P, Arnaud J-F, Cuguen J (2007) Spatial analysis of nuclear and cytoplasmic DNA diversity in wild sea beet (Beta vulgaris ssp. maritima) populations: do marine currents shape the genetic structure? Mol Ecol 16:1847–1864. doi:10.1111/j.1365-294X.2006.03208.x

    Article  PubMed  Google Scholar 

  • Frese L (2010) Conservation and Access to Sugarbeet Germplasm. Sugar Tech 12:207–219. doi:10.1007/s12355-010-0054-0

    Article  Google Scholar 

  • Frichot E, Francois O (2015) LEA: an R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929. doi: 10.1111/2041-210X.12382

    Article  Google Scholar 

  • Frichot E, Schoville SD, Bouchard G, Francois O (2013) Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 30:1687–1699. doi:10.1093/molbev/mst063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guillot G, Vitalis R, le Rouzic A, Gautier M (2014) Detecting correlation between allele frequencies and environmental variables as a signature of selection. A fast computational approach for genome-wide studies. Spat Stat 8:145–155. doi:10.1016/j.spasta.2013.08.001

    Article  Google Scholar 

  • Henry RJ (2014) Sequencing of wild crop relatives to support the conservation and utilization of plant genetic resources. Plant Genet Resour-Charact Util 12:S9–S11

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Hjerdin A, Sall T, Nilsson NO et al (1994) Genetic variation among wild and cultivated beets of the section Beta as revealed by RFLP analysis. J Sugar Beet Res 31:59–67

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. doi:10.1093/bioinformatics/btm233

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics btr521. doi: 10.1093/bioinformatics/btr521

  • Jombart T, Devillard S, Dufour AB, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones PD, Lister DH, Jaggard KW, Pidgeon JD (2003) Future climate impact on the productivity of sugar beet (Beta vulgaris L.) in Europe. Clim Change 58:93–108

    Article  Google Scholar 

  • Jung C, Pillen K, Frese L et al (1993) Phylogenetic relationships between cultivated and wild species of the genus Beta revealed by DNA “fingerprinting”. Theor Appl Genet 86:449–457. doi:10.1007/BF00838560

    Article  PubMed  CAS  Google Scholar 

  • Kadereit G, Hohmann S, Kadereit JW (2006) A synopsis of Chenopodiaceae subfam. Betoideae and notes on the taxonomy of Beta. Willdenowia 36:9–19. doi:10.3372/wi.36.36101

    Article  Google Scholar 

  • Kilian A, Wenzl P, Huttner E et al (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. In: Pompanon F, Bonin A (eds) Data production and analysis in population genomics. Humana Press, New York, pp 67–91

    Chapter  Google Scholar 

  • Kirchhoff M, Svirshchevskaya A, Hoffmann C et al (2012) High degree of genetic variation of winter hardiness in a panel of L. Crop Sci 52:179. doi:10.2135/cropsci2011.04.0185

    Article  Google Scholar 

  • Kornienko AV, Podvigina OA, Zhuzhzhalova TP et al (2014) High-priority research directions in genetics and the breeding of the sugar beet (Beta vulgaris L.) in the 21st century. Russ J Genet 50:1137–1148. doi:10.1134/S1022795414110064

    Article  CAS  Google Scholar 

  • Kraft T, Säll T, Fridlund B et al (1997) Estimating genetic variation in sugar beets and wild beets using pools of individuals. Genome 40:527–533

    Article  PubMed  CAS  Google Scholar 

  • Letschert JPW (1993) Beta section Beta: biogeographical patterns of variation, and taxonomy. Wagening Agric Univ Pap 93(1):1–155

    Google Scholar 

  • Leys M, Petit EJ, El-Bahloul Y et al (2014) Spatial genetic structure in Beta vulgaris subsp. maritima and Beta macrocarpa reveals the effect of contrasting mating system, influence of marine currents, and footprints of postglacial recolonization routes. Ecol Evol 4:1828–1852. doi:10.1002/ece3.1061

    Article  PubMed  PubMed Central  Google Scholar 

  • Maxted N, Ford-Lloyd BV, Jury S et al (2006) Towards a definition of a crop wild relative. Biodivers Conserv 15:2673–2685. doi:10.1007/s10531-005-5409-6

    Article  Google Scholar 

  • Monteiro F, Romeiras MM, Batista D, Duarte MC (2013) Biodiversity assessment of sugar beet species and its wild relatives: linking ecological data with new genetic approaches. Am J Plant Sci 04:21–34. doi:10.4236/ajps.2013.48A003

    Article  Google Scholar 

  • Ober ES, Clark CJA, Bloa ML et al (2004) Assessing the genetic resources to improve drought tolerance in sugar beet: agronomic traits of diverse genotypes under droughted and irrigated conditions. Field Crops Res 90:213–234. doi:10.1016/j.fcr.2004.03.004

    Article  Google Scholar 

  • Panella L, Lewellen RT (2007) Broadening the genetic base of sugar beet: introgression from wild relatives. Euphytica 154:383–400. doi:10.1007/s10681-006-9209-1

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rossi V, Ser-Giacomi E, López C, Hernández-García E (2014) Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. Geophys Res Lett 41:2883–2891. doi:10.1002/2014GL059540

    Article  Google Scholar 

  • Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci USA 104:8641–8648. doi:10.1073/pnas.0700643104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schoville SD, Bonin A, François O et al (2012) Adaptive Genetic Variation on the Landscape: methods and Cases. Annu Rev Ecol Evol Syst 43:23–43. doi:10.1146/annurev-ecolsys-110411-160248

    Article  Google Scholar 

  • Shen Y, Newbury HJ, Ford-Lloyd BV (1996) The taxonomic characterisation of annual Beta germplasm in a genetic resources collection using RAPD markers. Euphytica 91:205–212. doi:10.1007/BF00021071

    CAS  Google Scholar 

  • Shen Y, Ford-Lloyd BV, Newbury J (1998) Genetic relationships within the genus Beta determined using both PCR-based marker and DNA sequencing techniques. Heredity 80:624–632

    Article  PubMed  CAS  Google Scholar 

  • USDA/ARS Germplasm Resources Information Network–(GRIN) National Germplasm Resources Laboratory, Beltsville MD. http://www.ars-grin.gov. Accessed 20 Apr 2015

  • van Geyt JPC, Lange W, Oleo M, De Bock TSM (1990) Natural variation within the genus Beta and its possible use for breeding sugar beet: a review. Euphytica 49:57–76

    Article  Google Scholar 

  • Villain S (2007) Histoire évolutive de la section Beta: mise en évidence des phénomènes d’hybridation et de spéciation au sein de la Section dans le bassin Méditerranéen. Ph.D., Université Lille 1-Sciences et Technologies

  • Warschefsky E, Penmetsa RV, Cook DR, von Wettberg EJB (2014) Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. Am J Bot 101:1791–1800. doi:10.3732/ajb.1400116

    Article  PubMed  Google Scholar 

  • Yoshida Y, Matsunaga M, Cheng D et al (2012) Mitochondrial minisatellite polymorphisms in fodder and sugar beets reveal genetic bottlenecks associated with domestication. Biol Plant 56:369–372. doi:10.1007/s10535-012-0101-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Andrello.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by A. H. Schulman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrello, M., Henry, K., Devaux, P. et al. Taxonomic, spatial and adaptive genetic variation of Beta section Beta . Theor Appl Genet 129, 257–271 (2016). https://doi.org/10.1007/s00122-015-2625-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2625-7

Keywords

Navigation